/* * Copyright (c) 2009-2021, Google LLC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Google LLC nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Google LLC BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* ** Our memory representation for parsing tables and messages themselves. ** Functions in this file are used by generated code and possibly reflection. ** ** The definitions in this file are internal to upb. **/ #ifndef UPB_MSG_INT_H_ #define UPB_MSG_INT_H_ #include #include #include "upb/extension_registry.h" #include "upb/internal/table.h" #include "upb/msg.h" #include "upb/upb.h" // Must be last. #include "upb/port_def.inc" #ifdef __cplusplus extern "C" { #endif /** upb_*Int* conversion routines ********************************************/ UPB_INLINE int32_t _upb_Int32_FromI(int v) { return (int32_t)v; } UPB_INLINE int64_t _upb_Int64_FromLL(long long v) { return (int64_t)v; } UPB_INLINE uint32_t _upb_UInt32_FromU(unsigned v) { return (uint32_t)v; } UPB_INLINE uint64_t _upb_UInt64_FromULL(unsigned long long v) { return (uint64_t)v; } extern const float kUpb_FltInfinity; extern const double kUpb_Infinity; /** upb_MiniTable *************************************************************/ /* upb_MiniTable represents the memory layout of a given upb_MessageDef. The * members are public so generated code can initialize them, but users MUST NOT * read or write any of its members. */ typedef struct { uint32_t number; uint16_t offset; int16_t presence; // If >0, hasbit_index. If <0, ~oneof_index uint16_t submsg_index; // kUpb_NoSub if descriptortype != MESSAGE/GROUP/ENUM uint8_t descriptortype; uint8_t mode; /* upb_FieldMode | upb_LabelFlags | (upb_FieldRep << kUpb_FieldRep_Shift) */ } upb_MiniTable_Field; #define kUpb_NoSub ((uint16_t)-1) typedef enum { kUpb_FieldMode_Map = 0, kUpb_FieldMode_Array = 1, kUpb_FieldMode_Scalar = 2, } upb_FieldMode; // Mask to isolate the upb_FieldMode from field.mode. #define kUpb_FieldMode_Mask 3 /* Extra flags on the mode field. */ typedef enum { kUpb_LabelFlags_IsPacked = 4, kUpb_LabelFlags_IsExtension = 8, // Indicates that this descriptor type is an "alternate type": // - for Int32, this indicates that the actual type is Enum (but was // rewritten to Int32 because it is an open enum that requires no check). // - for Bytes, this indicates that the actual type is String (but does // not require any UTF-8 check). kUpb_LabelFlags_IsAlternate = 16, } upb_LabelFlags; // Note: we sort by this number when calculating layout order. typedef enum { kUpb_FieldRep_1Byte = 0, kUpb_FieldRep_4Byte = 1, kUpb_FieldRep_StringView = 2, kUpb_FieldRep_8Byte = 3, kUpb_FieldRep_Shift = 6, // Bit offset of the rep in upb_MiniTable_Field.mode kUpb_FieldRep_Max = kUpb_FieldRep_8Byte, } upb_FieldRep; UPB_INLINE upb_FieldMode upb_FieldMode_Get(const upb_MiniTable_Field* field) { return (upb_FieldMode)(field->mode & 3); } UPB_INLINE bool upb_IsRepeatedOrMap(const upb_MiniTable_Field* field) { /* This works because upb_FieldMode has no value 3. */ return !(field->mode & kUpb_FieldMode_Scalar); } UPB_INLINE bool upb_IsSubMessage(const upb_MiniTable_Field* field) { return field->descriptortype == kUpb_FieldType_Message || field->descriptortype == kUpb_FieldType_Group; } struct upb_Decoder; struct upb_MiniTable; typedef const char* _upb_FieldParser(struct upb_Decoder* d, const char* ptr, upb_Message* msg, intptr_t table, uint64_t hasbits, uint64_t data); typedef struct { uint64_t field_data; _upb_FieldParser* field_parser; } _upb_FastTable_Entry; typedef struct { uint32_t mask_limit; // Limit enum value that can be tested with mask. uint32_t value_count; // Number of values after the bitfield. uint32_t data[]; // Bitmask + enumerated values follow. } upb_MiniTable_Enum; typedef enum { _kUpb_FastEnumCheck_ValueIsInEnum = 0, _kUpb_FastEnumCheck_ValueIsNotInEnum = 1, _kUpb_FastEnumCheck_CannotCheckFast = 2, } _kUpb_FastEnumCheck_Status; UPB_INLINE _kUpb_FastEnumCheck_Status _upb_MiniTable_CheckEnumValueFast(const upb_MiniTable_Enum* e, uint32_t val) { if (UPB_UNLIKELY(val >= 64)) return _kUpb_FastEnumCheck_CannotCheckFast; uint64_t mask = e->data[0] | ((uint64_t)e->data[1] << 32); return (mask & (1ULL << val)) ? _kUpb_FastEnumCheck_ValueIsInEnum : _kUpb_FastEnumCheck_ValueIsNotInEnum; } UPB_INLINE bool _upb_MiniTable_CheckEnumValueSlow(const upb_MiniTable_Enum* e, uint32_t val) { if (val < e->mask_limit) return e->data[val / 32] & (1ULL << (val % 32)); // OPT: binary search long lists? const uint32_t* start = &e->data[e->mask_limit / 32]; const uint32_t* limit = &e->data[(e->mask_limit / 32) + e->value_count]; for (const uint32_t* p = start; p < limit; p++) { if (*p == val) return true; } return false; } // Validates enum value against range defined by enum mini table. UPB_INLINE bool upb_MiniTable_Enum_CheckValue(const upb_MiniTable_Enum* e, uint32_t val) { _kUpb_FastEnumCheck_Status status = _upb_MiniTable_CheckEnumValueFast(e, val); if (UPB_UNLIKELY(status == _kUpb_FastEnumCheck_CannotCheckFast)) { return _upb_MiniTable_CheckEnumValueSlow(e, val); } return status == _kUpb_FastEnumCheck_ValueIsInEnum ? true : false; } typedef union { const struct upb_MiniTable* submsg; const upb_MiniTable_Enum* subenum; } upb_MiniTable_Sub; typedef enum { kUpb_ExtMode_NonExtendable = 0, // Non-extendable message. kUpb_ExtMode_Extendable = 1, // Normal extendable message. kUpb_ExtMode_IsMessageSet = 2, // MessageSet message. kUpb_ExtMode_IsMessageSet_ITEM = 3, // MessageSet item (temporary only, see decode.c) // During table building we steal a bit to indicate that the message is a map // entry. *Only* used during table building! kUpb_ExtMode_IsMapEntry = 4, } upb_ExtMode; /* MessageSet wire format is: * message MessageSet { * repeated group Item = 1 { * required int32 type_id = 2; * required bytes message = 3; * } * } */ typedef enum { _UPB_MSGSET_ITEM = 1, _UPB_MSGSET_TYPEID = 2, _UPB_MSGSET_MESSAGE = 3, } upb_msgext_fieldnum; struct upb_MiniTable { const upb_MiniTable_Sub* subs; const upb_MiniTable_Field* fields; /* Must be aligned to sizeof(void*). Doesn't include internal members like * unknown fields, extension dict, pointer to msglayout, etc. */ uint16_t size; uint16_t field_count; uint8_t ext; // upb_ExtMode, declared as uint8_t so sizeof(ext) == 1 uint8_t dense_below; uint8_t table_mask; uint8_t required_count; // Required fields have the lowest hasbits. /* To statically initialize the tables of variable length, we need a flexible * array member, and we need to compile in gnu99 mode (constant initialization * of flexible array members is a GNU extension, not in C99 unfortunately. */ _upb_FastTable_Entry fasttable[]; }; struct upb_MiniTable_Extension { upb_MiniTable_Field field; const upb_MiniTable* extendee; upb_MiniTable_Sub sub; /* NULL unless submessage or proto2 enum */ }; typedef struct { const upb_MiniTable** msgs; const upb_MiniTable_Enum** enums; const upb_MiniTable_Extension** exts; int msg_count; int enum_count; int ext_count; } upb_MiniTable_File; // Computes a bitmask in which the |l->required_count| lowest bits are set, // except that we skip the lowest bit (because upb never uses hasbit 0). // // Sample output: // requiredmask(1) => 0b10 (0x2) // requiredmask(5) => 0b111110 (0x3e) UPB_INLINE uint64_t upb_MiniTable_requiredmask(const upb_MiniTable* l) { int n = l->required_count; assert(0 < n && n <= 63); return ((1ULL << n) - 1) << 1; } /** upb_Message ***************************************************************/ /* Internal members of a upb_Message that track unknown fields and/or * extensions. We can change this without breaking binary compatibility. We put * these before the user's data. The user's upb_Message* points after the * upb_Message_Internal. */ typedef struct { /* Total size of this structure, including the data that follows. * Must be aligned to 8, which is alignof(upb_Message_Extension) */ uint32_t size; /* Offsets relative to the beginning of this structure. * * Unknown data grows forward from the beginning to unknown_end. * Extension data grows backward from size to ext_begin. * When the two meet, we're out of data and have to realloc. * * If we imagine that the final member of this struct is: * char data[size - overhead]; // overhead = * sizeof(upb_Message_InternalData) * * Then we have: * unknown data: data[0 .. (unknown_end - overhead)] * extensions data: data[(ext_begin - overhead) .. (size - overhead)] */ uint32_t unknown_end; uint32_t ext_begin; /* Data follows, as if there were an array: * char data[size - sizeof(upb_Message_InternalData)]; */ } upb_Message_InternalData; typedef struct { upb_Message_InternalData* internal; /* Message data follows. */ } upb_Message_Internal; /* Maps upb_CType -> memory size. */ extern char _upb_CTypeo_size[12]; UPB_INLINE size_t upb_msg_sizeof(const upb_MiniTable* l) { return l->size + sizeof(upb_Message_Internal); } /* Inline version upb_Message_New(), for internal use */ UPB_INLINE upb_Message* _upb_Message_New(const upb_MiniTable* mini_table, upb_Arena* arena) { size_t size = upb_msg_sizeof(mini_table); void* mem = upb_Arena_Malloc(arena, size + sizeof(upb_Message_Internal)); if (UPB_UNLIKELY(!mem)) return NULL; upb_Message* msg = UPB_PTR_AT(mem, sizeof(upb_Message_Internal), upb_Message); memset(mem, 0, size); return msg; } UPB_INLINE upb_Message_Internal* upb_Message_Getinternal(upb_Message* msg) { ptrdiff_t size = sizeof(upb_Message_Internal); return (upb_Message_Internal*)((char*)msg - size); } /* Clears the given message. */ void _upb_Message_Clear(upb_Message* msg, const upb_MiniTable* l); /* Discards the unknown fields for this message only. */ void _upb_Message_DiscardUnknown_shallow(upb_Message* msg); /* Adds unknown data (serialized protobuf data) to the given message. The data * is copied into the message instance. */ bool _upb_Message_AddUnknown(upb_Message* msg, const char* data, size_t len, upb_Arena* arena); /** upb_Message_Extension *****************************************************/ /* The internal representation of an extension is self-describing: it contains * enough information that we can serialize it to binary format without needing * to look it up in a upb_ExtensionRegistry. * * This representation allocates 16 bytes to data on 64-bit platforms. This is * rather wasteful for scalars (in the extreme case of bool, it wastes 15 * bytes). We accept this because we expect messages to be the most common * extension type. */ typedef struct { const upb_MiniTable_Extension* ext; union { upb_StringView str; void* ptr; char scalar_data[8]; } data; } upb_Message_Extension; /* Adds the given extension data to the given message. |ext| is copied into the * message instance. This logically replaces any previously-added extension with * this number */ upb_Message_Extension* _upb_Message_GetOrCreateExtension( upb_Message* msg, const upb_MiniTable_Extension* ext, upb_Arena* arena); /* Returns an array of extensions for this message. Note: the array is * ordered in reverse relative to the order of creation. */ const upb_Message_Extension* _upb_Message_Getexts(const upb_Message* msg, size_t* count); /* Returns an extension for the given field number, or NULL if no extension * exists for this field number. */ const upb_Message_Extension* _upb_Message_Getext( const upb_Message* msg, const upb_MiniTable_Extension* ext); void _upb_Message_Clearext(upb_Message* msg, const upb_MiniTable_Extension* ext); /** Hasbit access *************************************************************/ UPB_INLINE bool _upb_hasbit(const upb_Message* msg, size_t idx) { return (*UPB_PTR_AT(msg, idx / 8, const char) & (1 << (idx % 8))) != 0; } UPB_INLINE void _upb_sethas(const upb_Message* msg, size_t idx) { (*UPB_PTR_AT(msg, idx / 8, char)) |= (char)(1 << (idx % 8)); } UPB_INLINE void _upb_clearhas(const upb_Message* msg, size_t idx) { (*UPB_PTR_AT(msg, idx / 8, char)) &= (char)(~(1 << (idx % 8))); } UPB_INLINE size_t _upb_Message_Hasidx(const upb_MiniTable_Field* f) { UPB_ASSERT(f->presence > 0); return f->presence; } UPB_INLINE bool _upb_hasbit_field(const upb_Message* msg, const upb_MiniTable_Field* f) { return _upb_hasbit(msg, _upb_Message_Hasidx(f)); } UPB_INLINE void _upb_sethas_field(const upb_Message* msg, const upb_MiniTable_Field* f) { _upb_sethas(msg, _upb_Message_Hasidx(f)); } UPB_INLINE void _upb_clearhas_field(const upb_Message* msg, const upb_MiniTable_Field* f) { _upb_clearhas(msg, _upb_Message_Hasidx(f)); } /** Oneof case access *********************************************************/ UPB_INLINE uint32_t* _upb_oneofcase(upb_Message* msg, size_t case_ofs) { return UPB_PTR_AT(msg, case_ofs, uint32_t); } UPB_INLINE uint32_t _upb_getoneofcase(const void* msg, size_t case_ofs) { return *UPB_PTR_AT(msg, case_ofs, uint32_t); } UPB_INLINE size_t _upb_oneofcase_ofs(const upb_MiniTable_Field* f) { UPB_ASSERT(f->presence < 0); return ~(ptrdiff_t)f->presence; } UPB_INLINE uint32_t* _upb_oneofcase_field(upb_Message* msg, const upb_MiniTable_Field* f) { return _upb_oneofcase(msg, _upb_oneofcase_ofs(f)); } UPB_INLINE uint32_t _upb_getoneofcase_field(const upb_Message* msg, const upb_MiniTable_Field* f) { return _upb_getoneofcase(msg, _upb_oneofcase_ofs(f)); } UPB_INLINE bool _upb_has_submsg_nohasbit(const upb_Message* msg, size_t ofs) { return *UPB_PTR_AT(msg, ofs, const upb_Message*) != NULL; } /** upb_Map *******************************************************************/ /* Right now we use strmaps for everything. We'll likely want to use * integer-specific maps for integer-keyed maps.*/ struct upb_Map { /* Size of key and val, based on the map type. Strings are represented as '0' * because they must be handled specially. */ char key_size; char val_size; upb_strtable table; }; /* Map entries aren't actually stored, they are only used during parsing. For * parsing, it helps a lot if all map entry messages have the same layout. * The compiler and def.c must ensure that all map entries have this layout. */ typedef struct { upb_Message_Internal internal; union { upb_StringView str; /* For str/bytes. */ upb_value val; /* For all other types. */ } k; union { upb_StringView str; /* For str/bytes. */ upb_value val; /* For all other types. */ } v; } upb_MapEntry; /* Creates a new map on the given arena with this key/value type. */ upb_Map* _upb_Map_New(upb_Arena* a, size_t key_size, size_t value_size); /* Converting between internal table representation and user values. * * _upb_map_tokey() and _upb_map_fromkey() are inverses. * _upb_map_tovalue() and _upb_map_fromvalue() are inverses. * * These functions account for the fact that strings are treated differently * from other types when stored in a map. */ UPB_INLINE upb_StringView _upb_map_tokey(const void* key, size_t size) { if (size == UPB_MAPTYPE_STRING) { return *(upb_StringView*)key; } else { return upb_StringView_FromDataAndSize((const char*)key, size); } } UPB_INLINE void _upb_map_fromkey(upb_StringView key, void* out, size_t size) { if (size == UPB_MAPTYPE_STRING) { memcpy(out, &key, sizeof(key)); } else { memcpy(out, key.data, size); } } UPB_INLINE bool _upb_map_tovalue(const void* val, size_t size, upb_value* msgval, upb_Arena* a) { if (size == UPB_MAPTYPE_STRING) { upb_StringView* strp = (upb_StringView*)upb_Arena_Malloc(a, sizeof(*strp)); if (!strp) return false; *strp = *(upb_StringView*)val; *msgval = upb_value_ptr(strp); } else { memcpy(msgval, val, size); } return true; } UPB_INLINE void _upb_map_fromvalue(upb_value val, void* out, size_t size) { if (size == UPB_MAPTYPE_STRING) { const upb_StringView* strp = (const upb_StringView*)upb_value_getptr(val); memcpy(out, strp, sizeof(upb_StringView)); } else { memcpy(out, &val, size); } } /* Map operations, shared by reflection and generated code. */ UPB_INLINE size_t _upb_Map_Size(const upb_Map* map) { return map->table.t.count; } UPB_INLINE bool _upb_Map_Get(const upb_Map* map, const void* key, size_t key_size, void* val, size_t val_size) { upb_value tabval; upb_StringView k = _upb_map_tokey(key, key_size); bool ret = upb_strtable_lookup2(&map->table, k.data, k.size, &tabval); if (ret && val) { _upb_map_fromvalue(tabval, val, val_size); } return ret; } UPB_INLINE void* _upb_map_next(const upb_Map* map, size_t* iter) { upb_strtable_iter it; it.t = &map->table; it.index = *iter; upb_strtable_next(&it); *iter = it.index; if (upb_strtable_done(&it)) return NULL; return (void*)str_tabent(&it); } typedef enum { // LINT.IfChange _kUpb_MapInsertStatus_Inserted = 0, _kUpb_MapInsertStatus_Replaced = 1, _kUpb_MapInsertStatus_OutOfMemory = 2, // LINT.ThenChange(//depot/google3/third_party/upb/upb/map.h) } _upb_MapInsertStatus; UPB_INLINE _upb_MapInsertStatus _upb_Map_Insert(upb_Map* map, const void* key, size_t key_size, void* val, size_t val_size, upb_Arena* a) { upb_StringView strkey = _upb_map_tokey(key, key_size); upb_value tabval = {0}; if (!_upb_map_tovalue(val, val_size, &tabval, a)) { return _kUpb_MapInsertStatus_OutOfMemory; } /* TODO(haberman): add overwrite operation to minimize number of lookups. */ bool removed = upb_strtable_remove2(&map->table, strkey.data, strkey.size, NULL); if (!upb_strtable_insert(&map->table, strkey.data, strkey.size, tabval, a)) { return _kUpb_MapInsertStatus_OutOfMemory; } return removed ? _kUpb_MapInsertStatus_Replaced : _kUpb_MapInsertStatus_Inserted; } UPB_INLINE bool _upb_Map_Delete(upb_Map* map, const void* key, size_t key_size) { upb_StringView k = _upb_map_tokey(key, key_size); return upb_strtable_remove2(&map->table, k.data, k.size, NULL); } UPB_INLINE void _upb_Map_Clear(upb_Map* map) { upb_strtable_clear(&map->table); } /* Message map operations, these get the map from the message first. */ UPB_INLINE size_t _upb_msg_map_size(const upb_Message* msg, size_t ofs) { upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*); return map ? _upb_Map_Size(map) : 0; } UPB_INLINE bool _upb_msg_map_get(const upb_Message* msg, size_t ofs, const void* key, size_t key_size, void* val, size_t val_size) { upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*); if (!map) return false; return _upb_Map_Get(map, key, key_size, val, val_size); } UPB_INLINE void* _upb_msg_map_next(const upb_Message* msg, size_t ofs, size_t* iter) { upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*); if (!map) return NULL; return _upb_map_next(map, iter); } UPB_INLINE bool _upb_msg_map_set(upb_Message* msg, size_t ofs, const void* key, size_t key_size, void* val, size_t val_size, upb_Arena* arena) { upb_Map** map = UPB_PTR_AT(msg, ofs, upb_Map*); if (!*map) { *map = _upb_Map_New(arena, key_size, val_size); } return _upb_Map_Insert(*map, key, key_size, val, val_size, arena) != _kUpb_MapInsertStatus_OutOfMemory; } UPB_INLINE bool _upb_msg_map_delete(upb_Message* msg, size_t ofs, const void* key, size_t key_size) { upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*); if (!map) return false; return _upb_Map_Delete(map, key, key_size); } UPB_INLINE void _upb_msg_map_clear(upb_Message* msg, size_t ofs) { upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*); if (!map) return; _upb_Map_Clear(map); } /* Accessing map key/value from a pointer, used by generated code only. */ UPB_INLINE void _upb_msg_map_key(const void* msg, void* key, size_t size) { const upb_tabent* ent = (const upb_tabent*)msg; uint32_t u32len; upb_StringView k; k.data = upb_tabstr(ent->key, &u32len); k.size = u32len; _upb_map_fromkey(k, key, size); } UPB_INLINE void _upb_msg_map_value(const void* msg, void* val, size_t size) { const upb_tabent* ent = (const upb_tabent*)msg; upb_value v = {ent->val.val}; _upb_map_fromvalue(v, val, size); } UPB_INLINE void _upb_msg_map_set_value(void* msg, const void* val, size_t size) { upb_tabent* ent = (upb_tabent*)msg; /* This is like _upb_map_tovalue() except the entry already exists so we can * reuse the allocated upb_StringView for string fields. */ if (size == UPB_MAPTYPE_STRING) { upb_StringView* strp = (upb_StringView*)(uintptr_t)ent->val.val; memcpy(strp, val, sizeof(*strp)); } else { memcpy(&ent->val.val, val, size); } } #ifdef __cplusplus } /* extern "C" */ #endif #include "upb/port_undef.inc" #endif /* UPB_MSG_INT_H_ */