/* * Copyright (c) 2009-2021, Google LLC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Google LLC nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Google LLC BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* ** Our memory representation for parsing tables and messages themselves. ** Functions in this file are used by generated code and possibly reflection. ** ** The definitions in this file are internal to upb. **/ #ifndef UPB_MSG_INT_H_ #define UPB_MSG_INT_H_ #include #include #include #include "upb/msg.h" #include "upb/table_internal.h" #include "upb/upb.h" /* Must be last. */ #include "upb/port_def.inc" #ifdef __cplusplus extern "C" { #endif /** upb_msglayout *************************************************************/ /* upb_msglayout represents the memory layout of a given upb_msgdef. The * members are public so generated code can initialize them, but users MUST NOT * read or write any of its members. */ typedef struct { uint32_t number; uint16_t offset; int16_t presence; // If >0, hasbit_index. If <0, ~oneof_index uint16_t submsg_index; // undefined if descriptortype != MESSAGE/GROUP/ENUM uint8_t descriptortype; uint8_t mode; /* upb_fieldmode | upb_labelflags | (upb_rep << _UPB_REP_SHIFT) */ } upb_msglayout_field; typedef enum { _UPB_MODE_MAP = 0, _UPB_MODE_ARRAY = 1, _UPB_MODE_SCALAR = 2, _UPB_MODE_MASK = 3, /* Mask to isolate the mode from upb_rep. */ } upb_fieldmode; /* Extra flags on the mode field. */ enum upb_labelflags { _UPB_MODE_IS_PACKED = 4, _UPB_MODE_IS_EXTENSION = 8, }; /* Representation in the message. Derivable from descriptortype and mode, but * fast access helps the serializer. */ enum upb_rep { _UPB_REP_1BYTE = 0, _UPB_REP_4BYTE = 1, _UPB_REP_8BYTE = 2, _UPB_REP_STRVIEW = 3, #if UINTPTR_MAX == 0xffffffff _UPB_REP_PTR = _UPB_REP_4BYTE, #else _UPB_REP_PTR = _UPB_REP_8BYTE, #endif _UPB_REP_SHIFT = 6, /* Bit offset of the rep in upb_msglayout_field.mode */ }; UPB_INLINE upb_fieldmode _upb_getmode(const upb_msglayout_field *field) { return (upb_fieldmode)(field->mode & 3); } UPB_INLINE bool _upb_repeated_or_map(const upb_msglayout_field *field) { /* This works because upb_fieldmode has no value 3. */ return !(field->mode & _UPB_MODE_SCALAR); } UPB_INLINE bool _upb_issubmsg(const upb_msglayout_field *field) { return field->descriptortype == UPB_DTYPE_MESSAGE || field->descriptortype == UPB_DTYPE_GROUP; } struct upb_decstate; struct upb_msglayout; typedef const char *_upb_field_parser(struct upb_decstate *d, const char *ptr, upb_msg *msg, intptr_t table, uint64_t hasbits, uint64_t data); typedef struct { uint64_t field_data; _upb_field_parser *field_parser; } _upb_fasttable_entry; typedef struct { const int32_t *values; // List of values <0 or >63 uint64_t mask; // Bits are set for acceptable value 0 <= x < 64 int value_count; } upb_enumlayout; UPB_INLINE bool _upb_enumlayout_checkval(const upb_enumlayout *e, int32_t val) { uint32_t uval = (uint32_t)val; if (uval < 64) return e->mask & (1 << uval); // OPT: binary search long lists? int n = e->value_count; for (int i = 0; i < n; i++) { if (e->values[i] == val) return true; } return false; } typedef union { const struct upb_msglayout *submsg; const upb_enumlayout *subenum; } upb_msglayout_sub; typedef enum { _UPB_MSGEXT_NONE = 0, // Non-extendable message. _UPB_MSGEXT_EXTENDABLE = 1, // Normal extendable message. _UPB_MSGEXT_MSGSET = 2, // MessageSet message. _UPB_MSGEXT_MSGSET_ITEM = 3, // MessageSet item (temporary only, see decode.c) } upb_msgext_mode; /* MessageSet wire format is: * message MessageSet { * repeated group Item = 1 { * required int32 type_id = 2; * required string message = 3; * } * } */ typedef enum { _UPB_MSGSET_ITEM = 1, _UPB_MSGSET_TYPEID = 2, _UPB_MSGSET_MESSAGE = 3, } upb_msgext_fieldnum; struct upb_msglayout { const upb_msglayout_sub *subs; const upb_msglayout_field *fields; /* Must be aligned to sizeof(void*). Doesn't include internal members like * unknown fields, extension dict, pointer to msglayout, etc. */ uint16_t size; uint16_t field_count; uint8_t ext; // upb_msgext_mode, declared as uint8_t so sizeof(ext) == 1 uint8_t dense_below; uint8_t table_mask; uint8_t required_count; // Required fields have the lowest hasbits. /* To statically initialize the tables of variable length, we need a flexible * array member, and we need to compile in gnu99 mode (constant initialization * of flexible array members is a GNU extension, not in C99 unfortunately. */ _upb_fasttable_entry fasttable[]; }; typedef struct { upb_msglayout_field field; const upb_msglayout *extendee; upb_msglayout_sub sub; /* NULL unless submessage or proto2 enum */ } upb_msglayout_ext; typedef struct { const upb_msglayout **msgs; const upb_enumlayout **enums; const upb_msglayout_ext **exts; int msg_count; int enum_count; int ext_count; } upb_msglayout_file; /** upb_extreg ****************************************************************/ /* Adds the given extension info for message type |l| and field number |num| * into the registry. Returns false if this message type and field number were * already in the map, or if memory allocation fails. */ bool _upb_extreg_add(upb_extreg *r, const upb_msglayout_ext **e, size_t count); /* Looks up the extension (if any) defined for message type |l| and field * number |num|. If an extension was found, copies the field info into |*ext| * and returns true. Otherwise returns false. */ const upb_msglayout_ext *_upb_extreg_get(const upb_extreg *r, const upb_msglayout *l, uint32_t num); /** upb_msg *******************************************************************/ /* Internal members of a upb_msg that track unknown fields and/or extensions. * We can change this without breaking binary compatibility. We put these * before the user's data. The user's upb_msg* points after the * upb_msg_internal. */ typedef struct { /* Total size of this structure, including the data that follows. * Must be aligned to 8, which is alignof(upb_msg_ext) */ uint32_t size; /* Offsets relative to the beginning of this structure. * * Unknown data grows forward from the beginning to unknown_end. * Extension data grows backward from size to ext_begin. * When the two meet, we're out of data and have to realloc. * * If we imagine that the final member of this struct is: * char data[size - overhead]; // overhead = sizeof(upb_msg_internaldata) * * Then we have: * unknown data: data[0 .. (unknown_end - overhead)] * extensions data: data[(ext_begin - overhead) .. (size - overhead)] */ uint32_t unknown_end; uint32_t ext_begin; /* Data follows, as if there were an array: * char data[size - sizeof(upb_msg_internaldata)]; */ } upb_msg_internaldata; typedef struct { upb_msg_internaldata *internal; /* Message data follows. */ } upb_msg_internal; /* Maps upb_fieldtype_t -> memory size. */ extern char _upb_fieldtype_to_size[12]; UPB_INLINE size_t upb_msg_sizeof(const upb_msglayout *l) { return l->size + sizeof(upb_msg_internal); } UPB_INLINE upb_msg *_upb_msg_new_inl(const upb_msglayout *l, upb_arena *a) { size_t size = upb_msg_sizeof(l); void *mem = upb_arena_malloc(a, size); upb_msg *msg; if (UPB_UNLIKELY(!mem)) return NULL; msg = UPB_PTR_AT(mem, sizeof(upb_msg_internal), upb_msg); memset(mem, 0, size); return msg; } /* Creates a new messages with the given layout on the given arena. */ upb_msg *_upb_msg_new(const upb_msglayout *l, upb_arena *a); UPB_INLINE upb_msg_internal *upb_msg_getinternal(upb_msg *msg) { ptrdiff_t size = sizeof(upb_msg_internal); return (upb_msg_internal*)((char*)msg - size); } /* Clears the given message. */ void _upb_msg_clear(upb_msg *msg, const upb_msglayout *l); /* Discards the unknown fields for this message only. */ void _upb_msg_discardunknown_shallow(upb_msg *msg); /* Adds unknown data (serialized protobuf data) to the given message. The data * is copied into the message instance. */ bool _upb_msg_addunknown(upb_msg *msg, const char *data, size_t len, upb_arena *arena); /** upb_msg_ext ***************************************************************/ /* The internal representation of an extension is self-describing: it contains * enough information that we can serialize it to binary format without needing * to look it up in a upb_extreg. * * This representation allocates 16 bytes to data on 64-bit platforms. This is * rather wasteful for scalars (in the extreme case of bool, it wastes 15 * bytes). We accept this because we expect messages to be the most common * extension type. */ typedef struct { const upb_msglayout_ext *ext; union { upb_strview str; void *ptr; char scalar_data[8]; } data; } upb_msg_ext; /* Adds the given extension data to the given message. |ext| is copied into the * message instance. This logically replaces any previously-added extension with * this number */ upb_msg_ext *_upb_msg_getorcreateext(upb_msg *msg, const upb_msglayout_ext *ext, upb_arena *arena); /* Returns an array of extensions for this message. Note: the array is * ordered in reverse relative to the order of creation. */ const upb_msg_ext *_upb_msg_getexts(const upb_msg *msg, size_t *count); /* Returns an extension for the given field number, or NULL if no extension * exists for this field number. */ const upb_msg_ext *_upb_msg_getext(const upb_msg *msg, const upb_msglayout_ext *ext); void _upb_msg_clearext(upb_msg *msg, const upb_msglayout_ext *ext); void _upb_msg_clearext(upb_msg *msg, const upb_msglayout_ext *ext); /** Hasbit access *************************************************************/ UPB_INLINE bool _upb_hasbit(const upb_msg *msg, size_t idx) { return (*UPB_PTR_AT(msg, idx / 8, const char) & (1 << (idx % 8))) != 0; } UPB_INLINE void _upb_sethas(const upb_msg *msg, size_t idx) { (*UPB_PTR_AT(msg, idx / 8, char)) |= (char)(1 << (idx % 8)); } UPB_INLINE void _upb_clearhas(const upb_msg *msg, size_t idx) { (*UPB_PTR_AT(msg, idx / 8, char)) &= (char)(~(1 << (idx % 8))); } UPB_INLINE size_t _upb_msg_hasidx(const upb_msglayout_field *f) { UPB_ASSERT(f->presence > 0); return f->presence; } UPB_INLINE bool _upb_hasbit_field(const upb_msg *msg, const upb_msglayout_field *f) { return _upb_hasbit(msg, _upb_msg_hasidx(f)); } UPB_INLINE void _upb_sethas_field(const upb_msg *msg, const upb_msglayout_field *f) { _upb_sethas(msg, _upb_msg_hasidx(f)); } UPB_INLINE void _upb_clearhas_field(const upb_msg *msg, const upb_msglayout_field *f) { _upb_clearhas(msg, _upb_msg_hasidx(f)); } /** Oneof case access *********************************************************/ UPB_INLINE uint32_t *_upb_oneofcase(upb_msg *msg, size_t case_ofs) { return UPB_PTR_AT(msg, case_ofs, uint32_t); } UPB_INLINE uint32_t _upb_getoneofcase(const void *msg, size_t case_ofs) { return *UPB_PTR_AT(msg, case_ofs, uint32_t); } UPB_INLINE size_t _upb_oneofcase_ofs(const upb_msglayout_field *f) { UPB_ASSERT(f->presence < 0); return ~(ptrdiff_t)f->presence; } UPB_INLINE uint32_t *_upb_oneofcase_field(upb_msg *msg, const upb_msglayout_field *f) { return _upb_oneofcase(msg, _upb_oneofcase_ofs(f)); } UPB_INLINE uint32_t _upb_getoneofcase_field(const upb_msg *msg, const upb_msglayout_field *f) { return _upb_getoneofcase(msg, _upb_oneofcase_ofs(f)); } UPB_INLINE bool _upb_has_submsg_nohasbit(const upb_msg *msg, size_t ofs) { return *UPB_PTR_AT(msg, ofs, const upb_msg*) != NULL; } /** upb_array *****************************************************************/ /* Our internal representation for repeated fields. */ typedef struct { uintptr_t data; /* Tagged ptr: low 3 bits of ptr are lg2(elem size). */ size_t len; /* Measured in elements. */ size_t size; /* Measured in elements. */ uint64_t junk; } upb_array; UPB_INLINE const void *_upb_array_constptr(const upb_array *arr) { UPB_ASSERT((arr->data & 7) <= 4); return (void*)(arr->data & ~(uintptr_t)7); } UPB_INLINE uintptr_t _upb_array_tagptr(void* ptr, int elem_size_lg2) { UPB_ASSERT(elem_size_lg2 <= 4); return (uintptr_t)ptr | elem_size_lg2; } UPB_INLINE void *_upb_array_ptr(upb_array *arr) { return (void*)_upb_array_constptr(arr); } UPB_INLINE uintptr_t _upb_tag_arrptr(void* ptr, int elem_size_lg2) { UPB_ASSERT(elem_size_lg2 <= 4); UPB_ASSERT(((uintptr_t)ptr & 7) == 0); return (uintptr_t)ptr | (unsigned)elem_size_lg2; } UPB_INLINE upb_array *_upb_array_new(upb_arena *a, size_t init_size, int elem_size_lg2) { const size_t arr_size = UPB_ALIGN_UP(sizeof(upb_array), 8); const size_t bytes = sizeof(upb_array) + (init_size << elem_size_lg2); upb_array *arr = (upb_array*)upb_arena_malloc(a, bytes); if (!arr) return NULL; arr->data = _upb_tag_arrptr(UPB_PTR_AT(arr, arr_size, void), elem_size_lg2); arr->len = 0; arr->size = init_size; return arr; } /* Resizes the capacity of the array to be at least min_size. */ bool _upb_array_realloc(upb_array *arr, size_t min_size, upb_arena *arena); /* Fallback functions for when the accessors require a resize. */ void *_upb_array_resize_fallback(upb_array **arr_ptr, size_t size, int elem_size_lg2, upb_arena *arena); bool _upb_array_append_fallback(upb_array **arr_ptr, const void *value, int elem_size_lg2, upb_arena *arena); UPB_INLINE bool _upb_array_reserve(upb_array *arr, size_t size, upb_arena *arena) { if (arr->size < size) return _upb_array_realloc(arr, size, arena); return true; } UPB_INLINE bool _upb_array_resize(upb_array *arr, size_t size, upb_arena *arena) { if (!_upb_array_reserve(arr, size, arena)) return false; arr->len = size; return true; } UPB_INLINE const void *_upb_array_accessor(const void *msg, size_t ofs, size_t *size) { const upb_array *arr = *UPB_PTR_AT(msg, ofs, const upb_array*); if (arr) { if (size) *size = arr->len; return _upb_array_constptr(arr); } else { if (size) *size = 0; return NULL; } } UPB_INLINE void *_upb_array_mutable_accessor(void *msg, size_t ofs, size_t *size) { upb_array *arr = *UPB_PTR_AT(msg, ofs, upb_array*); if (arr) { if (size) *size = arr->len; return _upb_array_ptr(arr); } else { if (size) *size = 0; return NULL; } } UPB_INLINE void *_upb_array_resize_accessor2(void *msg, size_t ofs, size_t size, int elem_size_lg2, upb_arena *arena) { upb_array **arr_ptr = UPB_PTR_AT(msg, ofs, upb_array *); upb_array *arr = *arr_ptr; if (!arr || arr->size < size) { return _upb_array_resize_fallback(arr_ptr, size, elem_size_lg2, arena); } arr->len = size; return _upb_array_ptr(arr); } UPB_INLINE bool _upb_array_append_accessor2(void *msg, size_t ofs, int elem_size_lg2, const void *value, upb_arena *arena) { upb_array **arr_ptr = UPB_PTR_AT(msg, ofs, upb_array *); size_t elem_size = 1 << elem_size_lg2; upb_array *arr = *arr_ptr; void *ptr; if (!arr || arr->len == arr->size) { return _upb_array_append_fallback(arr_ptr, value, elem_size_lg2, arena); } ptr = _upb_array_ptr(arr); memcpy(UPB_PTR_AT(ptr, arr->len * elem_size, char), value, elem_size); arr->len++; return true; } /* Used by old generated code, remove once all code has been regenerated. */ UPB_INLINE int _upb_sizelg2(upb_fieldtype_t type) { switch (type) { case UPB_TYPE_BOOL: return 0; case UPB_TYPE_FLOAT: case UPB_TYPE_INT32: case UPB_TYPE_UINT32: case UPB_TYPE_ENUM: return 2; case UPB_TYPE_MESSAGE: return UPB_SIZE(2, 3); case UPB_TYPE_DOUBLE: case UPB_TYPE_INT64: case UPB_TYPE_UINT64: return 3; case UPB_TYPE_STRING: case UPB_TYPE_BYTES: return UPB_SIZE(3, 4); } UPB_UNREACHABLE(); } UPB_INLINE void *_upb_array_resize_accessor(void *msg, size_t ofs, size_t size, upb_fieldtype_t type, upb_arena *arena) { return _upb_array_resize_accessor2(msg, ofs, size, _upb_sizelg2(type), arena); } UPB_INLINE bool _upb_array_append_accessor(void *msg, size_t ofs, size_t elem_size, upb_fieldtype_t type, const void *value, upb_arena *arena) { (void)elem_size; return _upb_array_append_accessor2(msg, ofs, _upb_sizelg2(type), value, arena); } /** upb_map *******************************************************************/ /* Right now we use strmaps for everything. We'll likely want to use * integer-specific maps for integer-keyed maps.*/ typedef struct { /* Size of key and val, based on the map type. Strings are represented as '0' * because they must be handled specially. */ char key_size; char val_size; upb_strtable table; } upb_map; /* Map entries aren't actually stored, they are only used during parsing. For * parsing, it helps a lot if all map entry messages have the same layout. * The compiler and def.c must ensure that all map entries have this layout. */ typedef struct { upb_msg_internal internal; union { upb_strview str; /* For str/bytes. */ upb_value val; /* For all other types. */ } k; union { upb_strview str; /* For str/bytes. */ upb_value val; /* For all other types. */ } v; } upb_map_entry; /* Creates a new map on the given arena with this key/value type. */ upb_map *_upb_map_new(upb_arena *a, size_t key_size, size_t value_size); /* Converting between internal table representation and user values. * * _upb_map_tokey() and _upb_map_fromkey() are inverses. * _upb_map_tovalue() and _upb_map_fromvalue() are inverses. * * These functions account for the fact that strings are treated differently * from other types when stored in a map. */ UPB_INLINE upb_strview _upb_map_tokey(const void *key, size_t size) { if (size == UPB_MAPTYPE_STRING) { return *(upb_strview*)key; } else { return upb_strview_make((const char*)key, size); } } UPB_INLINE void _upb_map_fromkey(upb_strview key, void* out, size_t size) { if (size == UPB_MAPTYPE_STRING) { memcpy(out, &key, sizeof(key)); } else { memcpy(out, key.data, size); } } UPB_INLINE bool _upb_map_tovalue(const void *val, size_t size, upb_value *msgval, upb_arena *a) { if (size == UPB_MAPTYPE_STRING) { upb_strview *strp = (upb_strview*)upb_arena_malloc(a, sizeof(*strp)); if (!strp) return false; *strp = *(upb_strview*)val; *msgval = upb_value_ptr(strp); } else { memcpy(msgval, val, size); } return true; } UPB_INLINE void _upb_map_fromvalue(upb_value val, void* out, size_t size) { if (size == UPB_MAPTYPE_STRING) { const upb_strview *strp = (const upb_strview*)upb_value_getptr(val); memcpy(out, strp, sizeof(upb_strview)); } else { memcpy(out, &val, size); } } /* Map operations, shared by reflection and generated code. */ UPB_INLINE size_t _upb_map_size(const upb_map *map) { return map->table.t.count; } UPB_INLINE bool _upb_map_get(const upb_map *map, const void *key, size_t key_size, void *val, size_t val_size) { upb_value tabval; upb_strview k = _upb_map_tokey(key, key_size); bool ret = upb_strtable_lookup2(&map->table, k.data, k.size, &tabval); if (ret && val) { _upb_map_fromvalue(tabval, val, val_size); } return ret; } UPB_INLINE void* _upb_map_next(const upb_map *map, size_t *iter) { upb_strtable_iter it; it.t = &map->table; it.index = *iter; upb_strtable_next(&it); *iter = it.index; if (upb_strtable_done(&it)) return NULL; return (void*)str_tabent(&it); } UPB_INLINE bool _upb_map_set(upb_map *map, const void *key, size_t key_size, void *val, size_t val_size, upb_arena *a) { upb_strview strkey = _upb_map_tokey(key, key_size); upb_value tabval = {0}; if (!_upb_map_tovalue(val, val_size, &tabval, a)) return false; /* TODO(haberman): add overwrite operation to minimize number of lookups. */ upb_strtable_remove2(&map->table, strkey.data, strkey.size, NULL); return upb_strtable_insert(&map->table, strkey.data, strkey.size, tabval, a); } UPB_INLINE bool _upb_map_delete(upb_map *map, const void *key, size_t key_size) { upb_strview k = _upb_map_tokey(key, key_size); return upb_strtable_remove2(&map->table, k.data, k.size, NULL); } UPB_INLINE void _upb_map_clear(upb_map *map) { upb_strtable_clear(&map->table); } /* Message map operations, these get the map from the message first. */ UPB_INLINE size_t _upb_msg_map_size(const upb_msg *msg, size_t ofs) { upb_map *map = *UPB_PTR_AT(msg, ofs, upb_map *); return map ? _upb_map_size(map) : 0; } UPB_INLINE bool _upb_msg_map_get(const upb_msg *msg, size_t ofs, const void *key, size_t key_size, void *val, size_t val_size) { upb_map *map = *UPB_PTR_AT(msg, ofs, upb_map *); if (!map) return false; return _upb_map_get(map, key, key_size, val, val_size); } UPB_INLINE void *_upb_msg_map_next(const upb_msg *msg, size_t ofs, size_t *iter) { upb_map *map = *UPB_PTR_AT(msg, ofs, upb_map *); if (!map) return NULL; return _upb_map_next(map, iter); } UPB_INLINE bool _upb_msg_map_set(upb_msg *msg, size_t ofs, const void *key, size_t key_size, void *val, size_t val_size, upb_arena *arena) { upb_map **map = UPB_PTR_AT(msg, ofs, upb_map *); if (!*map) { *map = _upb_map_new(arena, key_size, val_size); } return _upb_map_set(*map, key, key_size, val, val_size, arena); } UPB_INLINE bool _upb_msg_map_delete(upb_msg *msg, size_t ofs, const void *key, size_t key_size) { upb_map *map = *UPB_PTR_AT(msg, ofs, upb_map *); if (!map) return false; return _upb_map_delete(map, key, key_size); } UPB_INLINE void _upb_msg_map_clear(upb_msg *msg, size_t ofs) { upb_map *map = *UPB_PTR_AT(msg, ofs, upb_map *); if (!map) return; _upb_map_clear(map); } /* Accessing map key/value from a pointer, used by generated code only. */ UPB_INLINE void _upb_msg_map_key(const void* msg, void* key, size_t size) { const upb_tabent *ent = (const upb_tabent*)msg; uint32_t u32len; upb_strview k; k.data = upb_tabstr(ent->key, &u32len); k.size = u32len; _upb_map_fromkey(k, key, size); } UPB_INLINE void _upb_msg_map_value(const void* msg, void* val, size_t size) { const upb_tabent *ent = (const upb_tabent*)msg; upb_value v = {ent->val.val}; _upb_map_fromvalue(v, val, size); } UPB_INLINE void _upb_msg_map_set_value(void* msg, const void* val, size_t size) { upb_tabent *ent = (upb_tabent*)msg; /* This is like _upb_map_tovalue() except the entry already exists so we can * reuse the allocated upb_strview for string fields. */ if (size == UPB_MAPTYPE_STRING) { upb_strview *strp = (upb_strview*)(uintptr_t)ent->val.val; memcpy(strp, val, sizeof(*strp)); } else { memcpy(&ent->val.val, val, size); } } /** _upb_mapsorter *************************************************************/ /* _upb_mapsorter sorts maps and provides ordered iteration over the entries. * Since maps can be recursive (map values can be messages which contain other maps). * _upb_mapsorter can contain a stack of maps. */ typedef struct { upb_tabent const**entries; int size; int cap; } _upb_mapsorter; typedef struct { int start; int pos; int end; } _upb_sortedmap; UPB_INLINE void _upb_mapsorter_init(_upb_mapsorter *s) { s->entries = NULL; s->size = 0; s->cap = 0; } UPB_INLINE void _upb_mapsorter_destroy(_upb_mapsorter *s) { if (s->entries) free(s->entries); } bool _upb_mapsorter_pushmap(_upb_mapsorter *s, upb_descriptortype_t key_type, const upb_map *map, _upb_sortedmap *sorted); UPB_INLINE void _upb_mapsorter_popmap(_upb_mapsorter *s, _upb_sortedmap *sorted) { s->size = sorted->start; } UPB_INLINE bool _upb_sortedmap_next(_upb_mapsorter *s, const upb_map *map, _upb_sortedmap *sorted, upb_map_entry *ent) { if (sorted->pos == sorted->end) return false; const upb_tabent *tabent = s->entries[sorted->pos++]; upb_strview key = upb_tabstrview(tabent->key); _upb_map_fromkey(key, &ent->k, map->key_size); upb_value val = {tabent->val.val}; _upb_map_fromvalue(val, &ent->v, map->val_size); return true; } #ifdef __cplusplus } /* extern "C" */ #endif #include "upb/port_undef.inc" #endif /* UPB_MSG_INT_H_ */