// Protocol Buffers - Google's data interchange format // Copyright 2014 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "protobuf.h" // This function is equivalent to rb_str_cat(), but unlike the real // rb_str_cat(), it doesn't leak memory in some versions of Ruby. // For more information, see: // https://bugs.ruby-lang.org/issues/11328 VALUE noleak_rb_str_cat(VALUE rb_str, const char *str, long len) { char *p; size_t oldlen = RSTRING_LEN(rb_str); rb_str_modify_expand(rb_str, len); p = RSTRING_PTR(rb_str); memcpy(p + oldlen, str, len); rb_str_set_len(rb_str, oldlen + len); return rb_str; } // The code below also comes from upb's prototype Ruby binding, developed by // haberman@. /* stringsink *****************************************************************/ static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) { stringsink *sink = _sink; sink->len = 0; return sink; } static size_t stringsink_string(void *_sink, const void *hd, const char *ptr, size_t len, const upb_bufhandle *handle) { stringsink *sink = _sink; size_t new_size = sink->size; UPB_UNUSED(hd); UPB_UNUSED(handle); while (sink->len + len > new_size) { new_size *= 2; } if (new_size != sink->size) { sink->ptr = realloc(sink->ptr, new_size); sink->size = new_size; } memcpy(sink->ptr + sink->len, ptr, len); sink->len += len; return len; } void stringsink_init(stringsink *sink) { upb_byteshandler_init(&sink->handler); upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL); upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL); upb_bytessink_reset(&sink->sink, &sink->handler, sink); sink->size = 32; sink->ptr = malloc(sink->size); sink->len = 0; } void stringsink_uninit(stringsink *sink) { free(sink->ptr); } // ----------------------------------------------------------------------------- // Parsing. // ----------------------------------------------------------------------------- #define DEREF(msg, ofs, type) *(type*)(((uint8_t *)msg) + ofs) typedef struct { size_t ofs; int32_t hasbit; } field_handlerdata_t; // Creates a handlerdata that contains the offset and the hasbit for the field static const void* newhandlerdata(upb_handlers* h, uint32_t ofs, int32_t hasbit) { field_handlerdata_t *hd = ALLOC(field_handlerdata_t); hd->ofs = ofs; hd->hasbit = hasbit; upb_handlers_addcleanup(h, hd, xfree); return hd; } typedef struct { size_t ofs; int32_t hasbit; const upb_msgdef *md; } submsg_handlerdata_t; // Creates a handlerdata that contains offset and submessage type information. static const void *newsubmsghandlerdata(upb_handlers* h, uint32_t ofs, int32_t hasbit, const upb_fielddef* f) { submsg_handlerdata_t *hd = ALLOC(submsg_handlerdata_t); hd->ofs = ofs; hd->hasbit = hasbit; hd->md = upb_fielddef_msgsubdef(f); upb_handlers_addcleanup(h, hd, xfree); return hd; } typedef struct { size_t ofs; // union data slot size_t case_ofs; // oneof_case field uint32_t oneof_case_num; // oneof-case number to place in oneof_case field const upb_msgdef *md; // msgdef, for oneof submessage handler } oneof_handlerdata_t; static const void *newoneofhandlerdata(upb_handlers *h, uint32_t ofs, uint32_t case_ofs, const upb_fielddef *f) { oneof_handlerdata_t *hd = ALLOC(oneof_handlerdata_t); hd->ofs = ofs; hd->case_ofs = case_ofs; // We reuse the field tag number as a oneof union discriminant tag. Note that // we don't expose these numbers to the user, so the only requirement is that // we have some unique ID for each union case/possibility. The field tag // numbers are already present and are easy to use so there's no reason to // create a separate ID space. In addition, using the field tag number here // lets us easily look up the field in the oneof accessor. hd->oneof_case_num = upb_fielddef_number(f); if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE) { hd->md = upb_fielddef_msgsubdef(f); } else { hd->md = NULL; } upb_handlers_addcleanup(h, hd, xfree); return hd; } // A handler that starts a repeated field. Gets the Repeated*Field instance for // this field (such an instance always exists even in an empty message). static void *startseq_handler(void* closure, const void* hd) { MessageHeader* msg = closure; const size_t *ofs = hd; return (void*)DEREF(msg, *ofs, VALUE); } // Handlers that append primitive values to a repeated field. #define DEFINE_APPEND_HANDLER(type, ctype) \ static bool append##type##_handler(void *closure, const void *hd, \ ctype val) { \ VALUE ary = (VALUE)closure; \ RepeatedField_push_native(ary, &val); \ return true; \ } DEFINE_APPEND_HANDLER(bool, bool) DEFINE_APPEND_HANDLER(int32, int32_t) DEFINE_APPEND_HANDLER(uint32, uint32_t) DEFINE_APPEND_HANDLER(float, float) DEFINE_APPEND_HANDLER(int64, int64_t) DEFINE_APPEND_HANDLER(uint64, uint64_t) DEFINE_APPEND_HANDLER(double, double) // Appends a string to a repeated field. static void* appendstr_handler(void *closure, const void *hd, size_t size_hint) { VALUE ary = (VALUE)closure; VALUE str = rb_str_new2(""); rb_enc_associate(str, kRubyStringUtf8Encoding); RepeatedField_push_native(ary, &str); return (void*)str; } static void set_hasbit(void *closure, int32_t hasbit) { if (hasbit > 0) { uint8_t* storage = closure; storage[hasbit/8] |= 1 << (hasbit % 8); } } // Appends a 'bytes' string to a repeated field. static void* appendbytes_handler(void *closure, const void *hd, size_t size_hint) { VALUE ary = (VALUE)closure; VALUE str = rb_str_new2(""); rb_enc_associate(str, kRubyString8bitEncoding); RepeatedField_push_native(ary, &str); return (void*)str; } // Sets a non-repeated string field in a message. static void* str_handler(void *closure, const void *hd, size_t size_hint) { MessageHeader* msg = closure; const field_handlerdata_t *fieldhandler = hd; VALUE str = rb_str_new2(""); rb_enc_associate(str, kRubyStringUtf8Encoding); DEREF(msg, fieldhandler->ofs, VALUE) = str; set_hasbit(closure, fieldhandler->hasbit); return (void*)str; } // Sets a non-repeated 'bytes' field in a message. static void* bytes_handler(void *closure, const void *hd, size_t size_hint) { MessageHeader* msg = closure; const field_handlerdata_t *fieldhandler = hd; VALUE str = rb_str_new2(""); rb_enc_associate(str, kRubyString8bitEncoding); DEREF(msg, fieldhandler->ofs, VALUE) = str; set_hasbit(closure, fieldhandler->hasbit); return (void*)str; } static size_t stringdata_handler(void* closure, const void* hd, const char* str, size_t len, const upb_bufhandle* handle) { VALUE rb_str = (VALUE)closure; noleak_rb_str_cat(rb_str, str, len); return len; } static bool stringdata_end_handler(void* closure, const void* hd) { MessageHeader* msg = closure; const size_t *ofs = hd; VALUE rb_str = DEREF(msg, *ofs, VALUE); rb_obj_freeze(rb_str); return true; } static bool appendstring_end_handler(void* closure, const void* hd) { VALUE ary = (VALUE)closure; int size = RepeatedField_size(ary); VALUE* last = RepeatedField_index_native(ary, size - 1); VALUE rb_str = *last; rb_obj_freeze(rb_str); return true; } // Appends a submessage to a repeated field (a regular Ruby array for now). static void *appendsubmsg_handler(void *closure, const void *hd) { VALUE ary = (VALUE)closure; const submsg_handlerdata_t *submsgdata = hd; VALUE subdesc = get_def_obj((void*)submsgdata->md); VALUE subklass = Descriptor_msgclass(subdesc); MessageHeader* submsg; VALUE submsg_rb = rb_class_new_instance(0, NULL, subklass); RepeatedField_push(ary, submsg_rb); TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg); return submsg; } // Sets a non-repeated submessage field in a message. static void *submsg_handler(void *closure, const void *hd) { MessageHeader* msg = closure; const submsg_handlerdata_t* submsgdata = hd; VALUE subdesc = get_def_obj((void*)submsgdata->md); VALUE subklass = Descriptor_msgclass(subdesc); VALUE submsg_rb; MessageHeader* submsg; if (DEREF(msg, submsgdata->ofs, VALUE) == Qnil) { DEREF(msg, submsgdata->ofs, VALUE) = rb_class_new_instance(0, NULL, subklass); } set_hasbit(closure, submsgdata->hasbit); submsg_rb = DEREF(msg, submsgdata->ofs, VALUE); TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg); return submsg; } // Handler data for startmap/endmap handlers. typedef struct { size_t ofs; upb_fieldtype_t key_field_type; upb_fieldtype_t value_field_type; // We know that we can hold this reference because the handlerdata has the // same lifetime as the upb_handlers struct, and the upb_handlers struct holds // a reference to the upb_msgdef, which in turn has references to its subdefs. const upb_def* value_field_subdef; } map_handlerdata_t; // Temporary frame for map parsing: at the beginning of a map entry message, a // submsg handler allocates a frame to hold (i) a reference to the Map object // into which this message will be inserted and (ii) storage slots to // temporarily hold the key and value for this map entry until the end of the // submessage. When the submessage ends, another handler is called to insert the // value into the map. typedef struct { VALUE map; const map_handlerdata_t* handlerdata; char key_storage[NATIVE_SLOT_MAX_SIZE]; char value_storage[NATIVE_SLOT_MAX_SIZE]; } map_parse_frame_t; static void MapParseFrame_mark(void* _self) { map_parse_frame_t* frame = _self; // This shouldn't strictly be necessary since this should be rooted by the // message itself, but it can't hurt. rb_gc_mark(frame->map); native_slot_mark(frame->handlerdata->key_field_type, &frame->key_storage); native_slot_mark(frame->handlerdata->value_field_type, &frame->value_storage); } void MapParseFrame_free(void* self) { xfree(self); } rb_data_type_t MapParseFrame_type = { "MapParseFrame", { MapParseFrame_mark, MapParseFrame_free, NULL }, }; static map_parse_frame_t* map_push_frame(VALUE map, const map_handlerdata_t* handlerdata) { map_parse_frame_t* frame = ALLOC(map_parse_frame_t); frame->handlerdata = handlerdata; frame->map = map; native_slot_init(handlerdata->key_field_type, &frame->key_storage); native_slot_init(handlerdata->value_field_type, &frame->value_storage); Map_set_frame(map, TypedData_Wrap_Struct(rb_cObject, &MapParseFrame_type, frame)); return frame; } // Handler to begin a map entry: allocates a temporary frame. This is the // 'startsubmsg' handler on the msgdef that contains the map field. static void *startmapentry_handler(void *closure, const void *hd) { MessageHeader* msg = closure; const map_handlerdata_t* mapdata = hd; VALUE map_rb = DEREF(msg, mapdata->ofs, VALUE); return map_push_frame(map_rb, mapdata); } // Handler to end a map entry: inserts the value defined during the message into // the map. This is the 'endmsg' handler on the map entry msgdef. static bool endmap_handler(void *closure, const void *hd, upb_status* s) { map_parse_frame_t* frame = closure; const map_handlerdata_t* mapdata = hd; VALUE key = native_slot_get( mapdata->key_field_type, Qnil, &frame->key_storage); VALUE value_field_typeclass = Qnil; VALUE value; if (mapdata->value_field_type == UPB_TYPE_MESSAGE || mapdata->value_field_type == UPB_TYPE_ENUM) { value_field_typeclass = get_def_obj(mapdata->value_field_subdef); } value = native_slot_get( mapdata->value_field_type, value_field_typeclass, &frame->value_storage); Map_index_set(frame->map, key, value); Map_set_frame(frame->map, Qnil); return true; } // Allocates a new map_handlerdata_t given the map entry message definition. If // the offset of the field within the parent message is also given, that is // added to the handler data as well. Note that this is called *twice* per map // field: once in the parent message handler setup when setting the startsubmsg // handler and once in the map entry message handler setup when setting the // key/value and endmsg handlers. The reason is that there is no easy way to // pass the handlerdata down to the sub-message handler setup. static map_handlerdata_t* new_map_handlerdata( size_t ofs, const upb_msgdef* mapentry_def, Descriptor* desc) { const upb_fielddef* key_field; const upb_fielddef* value_field; map_handlerdata_t* hd = ALLOC(map_handlerdata_t); hd->ofs = ofs; key_field = upb_msgdef_itof(mapentry_def, MAP_KEY_FIELD); assert(key_field != NULL); hd->key_field_type = upb_fielddef_type(key_field); value_field = upb_msgdef_itof(mapentry_def, MAP_VALUE_FIELD); assert(value_field != NULL); hd->value_field_type = upb_fielddef_type(value_field); hd->value_field_subdef = upb_fielddef_subdef(value_field); return hd; } // Handlers that set primitive values in oneofs. #define DEFINE_ONEOF_HANDLER(type, ctype) \ static bool oneof##type##_handler(void *closure, const void *hd, \ ctype val) { \ const oneof_handlerdata_t *oneofdata = hd; \ DEREF(closure, oneofdata->case_ofs, uint32_t) = \ oneofdata->oneof_case_num; \ DEREF(closure, oneofdata->ofs, ctype) = val; \ return true; \ } DEFINE_ONEOF_HANDLER(bool, bool) DEFINE_ONEOF_HANDLER(int32, int32_t) DEFINE_ONEOF_HANDLER(uint32, uint32_t) DEFINE_ONEOF_HANDLER(float, float) DEFINE_ONEOF_HANDLER(int64, int64_t) DEFINE_ONEOF_HANDLER(uint64, uint64_t) DEFINE_ONEOF_HANDLER(double, double) #undef DEFINE_ONEOF_HANDLER // Handlers for strings in a oneof. static void *oneofstr_handler(void *closure, const void *hd, size_t size_hint) { MessageHeader* msg = closure; const oneof_handlerdata_t *oneofdata = hd; VALUE str = rb_str_new2(""); rb_enc_associate(str, kRubyStringUtf8Encoding); DEREF(msg, oneofdata->case_ofs, uint32_t) = oneofdata->oneof_case_num; DEREF(msg, oneofdata->ofs, VALUE) = str; return (void*)str; } static void *oneofbytes_handler(void *closure, const void *hd, size_t size_hint) { MessageHeader* msg = closure; const oneof_handlerdata_t *oneofdata = hd; VALUE str = rb_str_new2(""); rb_enc_associate(str, kRubyString8bitEncoding); DEREF(msg, oneofdata->case_ofs, uint32_t) = oneofdata->oneof_case_num; DEREF(msg, oneofdata->ofs, VALUE) = str; return (void*)str; } static bool oneofstring_end_handler(void* closure, const void* hd) { MessageHeader* msg = closure; const oneof_handlerdata_t *oneofdata = hd; rb_obj_freeze(DEREF(msg, oneofdata->ofs, VALUE)); return true; } // Handler for a submessage field in a oneof. static void *oneofsubmsg_handler(void *closure, const void *hd) { MessageHeader* msg = closure; const oneof_handlerdata_t *oneofdata = hd; uint32_t oldcase = DEREF(msg, oneofdata->case_ofs, uint32_t); VALUE subdesc = get_def_obj((void*)oneofdata->md); VALUE subklass = Descriptor_msgclass(subdesc); VALUE submsg_rb; MessageHeader* submsg; if (oldcase != oneofdata->oneof_case_num || DEREF(msg, oneofdata->ofs, VALUE) == Qnil) { DEREF(msg, oneofdata->ofs, VALUE) = rb_class_new_instance(0, NULL, subklass); } // Set the oneof case *after* allocating the new class instance -- otherwise, // if the Ruby GC is invoked as part of a call into the VM, it might invoke // our mark routines, and our mark routines might see the case value // indicating a VALUE is present and expect a valid VALUE. See comment in // layout_set() for more detail: basically, the change to the value and the // case must be atomic w.r.t. the Ruby VM. DEREF(msg, oneofdata->case_ofs, uint32_t) = oneofdata->oneof_case_num; submsg_rb = DEREF(msg, oneofdata->ofs, VALUE); TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg); return submsg; } // Set up handlers for a repeated field. static void add_handlers_for_repeated_field(upb_handlers *h, const upb_fielddef *f, size_t offset) { upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset, -1)); upb_handlers_setstartseq(h, f, startseq_handler, &attr); upb_handlerattr_uninit(&attr); switch (upb_fielddef_type(f)) { #define SET_HANDLER(utype, ltype) \ case utype: \ upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \ break; SET_HANDLER(UPB_TYPE_BOOL, bool); SET_HANDLER(UPB_TYPE_INT32, int32); SET_HANDLER(UPB_TYPE_UINT32, uint32); SET_HANDLER(UPB_TYPE_ENUM, int32); SET_HANDLER(UPB_TYPE_FLOAT, float); SET_HANDLER(UPB_TYPE_INT64, int64); SET_HANDLER(UPB_TYPE_UINT64, uint64); SET_HANDLER(UPB_TYPE_DOUBLE, double); #undef SET_HANDLER case UPB_TYPE_STRING: case UPB_TYPE_BYTES: { bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES; upb_handlers_setstartstr(h, f, is_bytes ? appendbytes_handler : appendstr_handler, NULL); upb_handlers_setstring(h, f, stringdata_handler, NULL); upb_handlers_setendstr(h, f, appendstring_end_handler, NULL); break; } case UPB_TYPE_MESSAGE: { upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, 0, -1, f)); upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr); upb_handlerattr_uninit(&attr); break; } } } // Set up handlers for a singular field. static void add_handlers_for_singular_field(upb_handlers *h, const upb_fielddef *f, size_t offset, size_t hasbit_off) { // The offset we pass to UPB points to the start of the Message, // rather than the start of where our data is stored. int32_t hasbit = -1; if (hasbit_off != MESSAGE_FIELD_NO_HASBIT) { hasbit = hasbit_off + sizeof(MessageHeader) * 8; } switch (upb_fielddef_type(f)) { case UPB_TYPE_BOOL: case UPB_TYPE_INT32: case UPB_TYPE_UINT32: case UPB_TYPE_ENUM: case UPB_TYPE_FLOAT: case UPB_TYPE_INT64: case UPB_TYPE_UINT64: case UPB_TYPE_DOUBLE: upb_msg_setscalarhandler(h, f, offset, hasbit); break; case UPB_TYPE_STRING: case UPB_TYPE_BYTES: { bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES; upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset, hasbit)); upb_handlers_setstartstr(h, f, is_bytes ? bytes_handler : str_handler, &attr); upb_handlers_setstring(h, f, stringdata_handler, &attr); upb_handlers_setendstr(h, f, stringdata_end_handler, &attr); upb_handlerattr_uninit(&attr); break; } case UPB_TYPE_MESSAGE: { upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, offset, hasbit, f)); upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr); upb_handlerattr_uninit(&attr); break; } } } // Adds handlers to a map field. static void add_handlers_for_mapfield(upb_handlers* h, const upb_fielddef* fielddef, size_t offset, Descriptor* desc) { const upb_msgdef* map_msgdef = upb_fielddef_msgsubdef(fielddef); map_handlerdata_t* hd = new_map_handlerdata(offset, map_msgdef, desc); upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlers_addcleanup(h, hd, xfree); upb_handlerattr_sethandlerdata(&attr, hd); upb_handlers_setstartsubmsg(h, fielddef, startmapentry_handler, &attr); upb_handlerattr_uninit(&attr); } // Adds handlers to a map-entry msgdef. static void add_handlers_for_mapentry(const upb_msgdef* msgdef, upb_handlers* h, Descriptor* desc) { const upb_fielddef* key_field = map_entry_key(msgdef); const upb_fielddef* value_field = map_entry_value(msgdef); map_handlerdata_t* hd = new_map_handlerdata(0, msgdef, desc); upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlers_addcleanup(h, hd, xfree); upb_handlerattr_sethandlerdata(&attr, hd); upb_handlers_setendmsg(h, endmap_handler, &attr); add_handlers_for_singular_field( h, key_field, offsetof(map_parse_frame_t, key_storage), MESSAGE_FIELD_NO_HASBIT); add_handlers_for_singular_field( h, value_field, offsetof(map_parse_frame_t, value_storage), MESSAGE_FIELD_NO_HASBIT); } // Set up handlers for a oneof field. static void add_handlers_for_oneof_field(upb_handlers *h, const upb_fielddef *f, size_t offset, size_t oneof_case_offset) { upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata( &attr, newoneofhandlerdata(h, offset, oneof_case_offset, f)); switch (upb_fielddef_type(f)) { #define SET_HANDLER(utype, ltype) \ case utype: \ upb_handlers_set##ltype(h, f, oneof##ltype##_handler, &attr); \ break; SET_HANDLER(UPB_TYPE_BOOL, bool); SET_HANDLER(UPB_TYPE_INT32, int32); SET_HANDLER(UPB_TYPE_UINT32, uint32); SET_HANDLER(UPB_TYPE_ENUM, int32); SET_HANDLER(UPB_TYPE_FLOAT, float); SET_HANDLER(UPB_TYPE_INT64, int64); SET_HANDLER(UPB_TYPE_UINT64, uint64); SET_HANDLER(UPB_TYPE_DOUBLE, double); #undef SET_HANDLER case UPB_TYPE_STRING: case UPB_TYPE_BYTES: { bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES; upb_handlers_setstartstr(h, f, is_bytes ? oneofbytes_handler : oneofstr_handler, &attr); upb_handlers_setstring(h, f, stringdata_handler, NULL); upb_handlers_setendstr(h, f, oneofstring_end_handler, &attr); break; } case UPB_TYPE_MESSAGE: { upb_handlers_setstartsubmsg(h, f, oneofsubmsg_handler, &attr); break; } } upb_handlerattr_uninit(&attr); } static bool unknown_field_handler(void* closure, const void* hd, const char* buf, size_t size) { UPB_UNUSED(hd); MessageHeader* msg = (MessageHeader*)closure; if (msg->unknown_fields == NULL) { msg->unknown_fields = malloc(sizeof(stringsink)); stringsink_init(msg->unknown_fields); } stringsink_string(msg->unknown_fields, NULL, buf, size, NULL); return true; } static void add_handlers_for_message(const void *closure, upb_handlers *h) { const upb_msgdef* msgdef = upb_handlers_msgdef(h); Descriptor* desc = ruby_to_Descriptor(get_def_obj((void*)msgdef)); upb_msg_field_iter i; // If this is a mapentry message type, set up a special set of handlers and // bail out of the normal (user-defined) message type handling. if (upb_msgdef_mapentry(msgdef)) { add_handlers_for_mapentry(msgdef, h, desc); return; } // Ensure layout exists. We may be invoked to create handlers for a given // message if we are included as a submsg of another message type before our // class is actually built, so to work around this, we just create the layout // (and handlers, in the class-building function) on-demand. if (desc->layout == NULL) { desc->layout = create_layout(desc->msgdef); } upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlers_setunknown(h, unknown_field_handler, &attr); for (upb_msg_field_begin(&i, desc->msgdef); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { const upb_fielddef *f = upb_msg_iter_field(&i); size_t offset = desc->layout->fields[upb_fielddef_index(f)].offset + sizeof(MessageHeader); if (upb_fielddef_containingoneof(f)) { size_t oneof_case_offset = desc->layout->fields[upb_fielddef_index(f)].case_offset + sizeof(MessageHeader); add_handlers_for_oneof_field(h, f, offset, oneof_case_offset); } else if (is_map_field(f)) { add_handlers_for_mapfield(h, f, offset, desc); } else if (upb_fielddef_isseq(f)) { add_handlers_for_repeated_field(h, f, offset); } else { add_handlers_for_singular_field( h, f, offset, desc->layout->fields[upb_fielddef_index(f)].hasbit); } } } // Creates upb handlers for populating a message. static const upb_handlers *new_fill_handlers(Descriptor* desc, const void* owner) { // TODO(cfallin, haberman): once upb gets a caching/memoization layer for // handlers, reuse subdef handlers so that e.g. if we already parse // B-with-field-of-type-C, we don't have to rebuild the whole hierarchy to // parse A-with-field-of-type-B-with-field-of-type-C. return upb_handlers_newfrozen(desc->msgdef, owner, add_handlers_for_message, NULL); } // Constructs the handlers for filling a message's data into an in-memory // object. const upb_handlers* get_fill_handlers(Descriptor* desc) { if (!desc->fill_handlers) { desc->fill_handlers = new_fill_handlers(desc, &desc->fill_handlers); } return desc->fill_handlers; } // Constructs the upb decoder method for parsing messages of this type. // This is called from the message class creation code. const upb_pbdecodermethod *new_fillmsg_decodermethod(Descriptor* desc, const void* owner) { const upb_handlers* handlers = get_fill_handlers(desc); upb_pbdecodermethodopts opts; upb_pbdecodermethodopts_init(&opts, handlers); return upb_pbdecodermethod_new(&opts, owner); } static const upb_pbdecodermethod *msgdef_decodermethod(Descriptor* desc) { if (desc->fill_method == NULL) { desc->fill_method = new_fillmsg_decodermethod( desc, &desc->fill_method); } return desc->fill_method; } static const upb_json_parsermethod *msgdef_jsonparsermethod(Descriptor* desc) { if (desc->json_fill_method == NULL) { desc->json_fill_method = upb_json_parsermethod_new(desc->msgdef, &desc->json_fill_method); } return desc->json_fill_method; } // Stack-allocated context during an encode/decode operation. Contains the upb // environment and its stack-based allocator, an initial buffer for allocations // to avoid malloc() when possible, and a template for Ruby exception messages // if any error occurs. #define STACK_ENV_STACKBYTES 4096 typedef struct { upb_env env; const char* ruby_error_template; char allocbuf[STACK_ENV_STACKBYTES]; } stackenv; static void stackenv_init(stackenv* se, const char* errmsg); static void stackenv_uninit(stackenv* se); // Callback invoked by upb if any error occurs during parsing or serialization. static bool env_error_func(void* ud, const upb_status* status) { stackenv* se = ud; // Free the env -- rb_raise will longjmp up the stack past the encode/decode // function so it would not otherwise have been freed. stackenv_uninit(se); // TODO(haberman): have a way to verify that this is actually a parse error, // instead of just throwing "parse error" unconditionally. rb_raise(cParseError, se->ruby_error_template, upb_status_errmsg(status)); // Never reached: rb_raise() always longjmp()s up the stack, past all of our // code, back to Ruby. return false; } static void stackenv_init(stackenv* se, const char* errmsg) { se->ruby_error_template = errmsg; upb_env_init2(&se->env, se->allocbuf, sizeof(se->allocbuf), NULL); upb_env_seterrorfunc(&se->env, env_error_func, se); } static void stackenv_uninit(stackenv* se) { upb_env_uninit(&se->env); } /* * call-seq: * MessageClass.decode(data) => message * * Decodes the given data (as a string containing bytes in protocol buffers wire * format) under the interpretration given by this message class's definition * and returns a message object with the corresponding field values. */ VALUE Message_decode(VALUE klass, VALUE data) { VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); Descriptor* desc = ruby_to_Descriptor(descriptor); VALUE msgklass = Descriptor_msgclass(descriptor); VALUE msg_rb; MessageHeader* msg; if (TYPE(data) != T_STRING) { rb_raise(rb_eArgError, "Expected string for binary protobuf data."); } msg_rb = rb_class_new_instance(0, NULL, msgklass); TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg); { const upb_pbdecodermethod* method = msgdef_decodermethod(desc); const upb_handlers* h = upb_pbdecodermethod_desthandlers(method); stackenv se; upb_sink sink; upb_pbdecoder* decoder; stackenv_init(&se, "Error occurred during parsing: %s"); upb_sink_reset(&sink, h, msg); decoder = upb_pbdecoder_create(&se.env, method, &sink); upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data), upb_pbdecoder_input(decoder)); stackenv_uninit(&se); } return msg_rb; } /* * call-seq: * MessageClass.decode_json(data) => message * * Decodes the given data (as a string containing bytes in protocol buffers wire * format) under the interpretration given by this message class's definition * and returns a message object with the corresponding field values. */ VALUE Message_decode_json(VALUE klass, VALUE data) { VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); Descriptor* desc = ruby_to_Descriptor(descriptor); VALUE msgklass = Descriptor_msgclass(descriptor); VALUE msg_rb; MessageHeader* msg; if (TYPE(data) != T_STRING) { rb_raise(rb_eArgError, "Expected string for JSON data."); } // TODO(cfallin): Check and respect string encoding. If not UTF-8, we need to // convert, because string handlers pass data directly to message string // fields. msg_rb = rb_class_new_instance(0, NULL, msgklass); TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg); { const upb_json_parsermethod* method = msgdef_jsonparsermethod(desc); stackenv se; upb_sink sink; upb_json_parser* parser; stackenv_init(&se, "Error occurred during parsing: %s"); upb_sink_reset(&sink, get_fill_handlers(desc), msg); parser = upb_json_parser_create(&se.env, method, &sink); upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data), upb_json_parser_input(parser)); stackenv_uninit(&se); } return msg_rb; } // ----------------------------------------------------------------------------- // Serializing. // ----------------------------------------------------------------------------- /* msgvisitor *****************************************************************/ static void putmsg(VALUE msg, const Descriptor* desc, upb_sink *sink, int depth, bool emit_defaults); static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) { upb_selector_t ret; bool ok = upb_handlers_getselector(f, type, &ret); UPB_ASSERT(ok); return ret; } static void putstr(VALUE str, const upb_fielddef *f, upb_sink *sink) { upb_sink subsink; if (str == Qnil) return; assert(BUILTIN_TYPE(str) == RUBY_T_STRING); // We should be guaranteed that the string has the correct encoding because // we ensured this at assignment time and then froze the string. if (upb_fielddef_type(f) == UPB_TYPE_STRING) { assert(rb_enc_from_index(ENCODING_GET(str)) == kRubyStringUtf8Encoding); } else { assert(rb_enc_from_index(ENCODING_GET(str)) == kRubyString8bitEncoding); } upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), RSTRING_LEN(str), &subsink); upb_sink_putstring(&subsink, getsel(f, UPB_HANDLER_STRING), RSTRING_PTR(str), RSTRING_LEN(str), NULL); upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR)); } static void putsubmsg(VALUE submsg, const upb_fielddef *f, upb_sink *sink, int depth, bool emit_defaults) { upb_sink subsink; VALUE descriptor; Descriptor* subdesc; if (submsg == Qnil) return; descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned); subdesc = ruby_to_Descriptor(descriptor); upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink); putmsg(submsg, subdesc, &subsink, depth + 1, emit_defaults); upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG)); } static void putary(VALUE ary, const upb_fielddef *f, upb_sink *sink, int depth, bool emit_defaults) { upb_sink subsink; upb_fieldtype_t type = upb_fielddef_type(f); upb_selector_t sel = 0; int size; if (ary == Qnil) return; if (!emit_defaults && NUM2INT(RepeatedField_length(ary)) == 0) return; size = NUM2INT(RepeatedField_length(ary)); if (size == 0 && !emit_defaults) return; upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink); if (upb_fielddef_isprimitive(f)) { sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); } for (int i = 0; i < size; i++) { void* memory = RepeatedField_index_native(ary, i); switch (type) { #define T(upbtypeconst, upbtype, ctype) \ case upbtypeconst: \ upb_sink_put##upbtype(&subsink, sel, *((ctype *)memory)); \ break; T(UPB_TYPE_FLOAT, float, float) T(UPB_TYPE_DOUBLE, double, double) T(UPB_TYPE_BOOL, bool, int8_t) case UPB_TYPE_ENUM: T(UPB_TYPE_INT32, int32, int32_t) T(UPB_TYPE_UINT32, uint32, uint32_t) T(UPB_TYPE_INT64, int64, int64_t) T(UPB_TYPE_UINT64, uint64, uint64_t) case UPB_TYPE_STRING: case UPB_TYPE_BYTES: putstr(*((VALUE *)memory), f, &subsink); break; case UPB_TYPE_MESSAGE: putsubmsg(*((VALUE *)memory), f, &subsink, depth, emit_defaults); break; #undef T } } upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ)); } static void put_ruby_value(VALUE value, const upb_fielddef *f, VALUE type_class, int depth, upb_sink *sink, bool emit_defaults) { upb_selector_t sel = 0; if (upb_fielddef_isprimitive(f)) { sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); } switch (upb_fielddef_type(f)) { case UPB_TYPE_INT32: upb_sink_putint32(sink, sel, NUM2INT(value)); break; case UPB_TYPE_INT64: upb_sink_putint64(sink, sel, NUM2LL(value)); break; case UPB_TYPE_UINT32: upb_sink_putuint32(sink, sel, NUM2UINT(value)); break; case UPB_TYPE_UINT64: upb_sink_putuint64(sink, sel, NUM2ULL(value)); break; case UPB_TYPE_FLOAT: upb_sink_putfloat(sink, sel, NUM2DBL(value)); break; case UPB_TYPE_DOUBLE: upb_sink_putdouble(sink, sel, NUM2DBL(value)); break; case UPB_TYPE_ENUM: { if (TYPE(value) == T_SYMBOL) { value = rb_funcall(type_class, rb_intern("resolve"), 1, value); } upb_sink_putint32(sink, sel, NUM2INT(value)); break; } case UPB_TYPE_BOOL: upb_sink_putbool(sink, sel, value == Qtrue); break; case UPB_TYPE_STRING: case UPB_TYPE_BYTES: putstr(value, f, sink); break; case UPB_TYPE_MESSAGE: putsubmsg(value, f, sink, depth, emit_defaults); } } static void putmap(VALUE map, const upb_fielddef *f, upb_sink *sink, int depth, bool emit_defaults) { Map* self; upb_sink subsink; const upb_fielddef* key_field; const upb_fielddef* value_field; Map_iter it; if (map == Qnil) return; if (!emit_defaults && Map_length(map) == 0) return; self = ruby_to_Map(map); upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink); assert(upb_fielddef_type(f) == UPB_TYPE_MESSAGE); key_field = map_field_key(f); value_field = map_field_value(f); for (Map_begin(map, &it); !Map_done(&it); Map_next(&it)) { VALUE key = Map_iter_key(&it); VALUE value = Map_iter_value(&it); upb_status status; upb_sink entry_sink; upb_sink_startsubmsg(&subsink, getsel(f, UPB_HANDLER_STARTSUBMSG), &entry_sink); upb_sink_startmsg(&entry_sink); put_ruby_value(key, key_field, Qnil, depth + 1, &entry_sink, emit_defaults); put_ruby_value(value, value_field, self->value_type_class, depth + 1, &entry_sink, emit_defaults); upb_sink_endmsg(&entry_sink, &status); upb_sink_endsubmsg(&subsink, getsel(f, UPB_HANDLER_ENDSUBMSG)); } upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ)); } static void putmsg(VALUE msg_rb, const Descriptor* desc, upb_sink *sink, int depth, bool emit_defaults) { MessageHeader* msg; upb_msg_field_iter i; upb_status status; upb_sink_startmsg(sink); // Protect against cycles (possible because users may freely reassign message // and repeated fields) by imposing a maximum recursion depth. if (depth > ENCODE_MAX_NESTING) { rb_raise(rb_eRuntimeError, "Maximum recursion depth exceeded during encoding."); } TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg); if (desc != msg->descriptor) { rb_raise(rb_eArgError, "The type of given msg is '%s', expect '%s'.", upb_msgdef_fullname(msg->descriptor->msgdef), upb_msgdef_fullname(desc->msgdef)); } for (upb_msg_field_begin(&i, desc->msgdef); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { upb_fielddef *f = upb_msg_iter_field(&i); bool is_matching_oneof = false; uint32_t offset = desc->layout->fields[upb_fielddef_index(f)].offset + sizeof(MessageHeader); if (upb_fielddef_containingoneof(f)) { uint32_t oneof_case_offset = desc->layout->fields[upb_fielddef_index(f)].case_offset + sizeof(MessageHeader); // For a oneof, check that this field is actually present -- skip all the // below if not. if (DEREF(msg, oneof_case_offset, uint32_t) != upb_fielddef_number(f)) { continue; } // Otherwise, fall through to the appropriate singular-field handler // below. is_matching_oneof = true; } if (is_map_field(f)) { VALUE map = DEREF(msg, offset, VALUE); if (map != Qnil || emit_defaults) { putmap(map, f, sink, depth, emit_defaults); } } else if (upb_fielddef_isseq(f)) { VALUE ary = DEREF(msg, offset, VALUE); if (ary != Qnil) { putary(ary, f, sink, depth, emit_defaults); } } else if (upb_fielddef_isstring(f)) { VALUE str = DEREF(msg, offset, VALUE); bool is_default = false; if (upb_msgdef_syntax(desc->msgdef) == UPB_SYNTAX_PROTO2) { is_default = layout_has(desc->layout, Message_data(msg), f) == Qfalse; } else if (upb_msgdef_syntax(desc->msgdef) == UPB_SYNTAX_PROTO3) { is_default = RSTRING_LEN(str) == 0; } if (is_matching_oneof || emit_defaults || !is_default) { putstr(str, f, sink); } } else if (upb_fielddef_issubmsg(f)) { putsubmsg(DEREF(msg, offset, VALUE), f, sink, depth, emit_defaults); } else { upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); #define T(upbtypeconst, upbtype, ctype, default_value) \ case upbtypeconst: { \ ctype value = DEREF(msg, offset, ctype); \ bool is_default = false; \ if (upb_fielddef_haspresence(f)) { \ is_default = layout_has(desc->layout, Message_data(msg), f) == Qfalse; \ } else if (upb_msgdef_syntax(desc->msgdef) == UPB_SYNTAX_PROTO3) { \ is_default = default_value == value; \ } \ if (is_matching_oneof || emit_defaults || !is_default) { \ upb_sink_put##upbtype(sink, sel, value); \ } \ } \ break; switch (upb_fielddef_type(f)) { T(UPB_TYPE_FLOAT, float, float, 0.0) T(UPB_TYPE_DOUBLE, double, double, 0.0) T(UPB_TYPE_BOOL, bool, uint8_t, 0) case UPB_TYPE_ENUM: T(UPB_TYPE_INT32, int32, int32_t, 0) T(UPB_TYPE_UINT32, uint32, uint32_t, 0) T(UPB_TYPE_INT64, int64, int64_t, 0) T(UPB_TYPE_UINT64, uint64, uint64_t, 0) case UPB_TYPE_STRING: case UPB_TYPE_BYTES: case UPB_TYPE_MESSAGE: rb_raise(rb_eRuntimeError, "Internal error."); } #undef T } } stringsink* unknown = msg->unknown_fields; if (unknown != NULL) { upb_sink_putunknown(sink, unknown->ptr, unknown->len); } upb_sink_endmsg(sink, &status); } static const upb_handlers* msgdef_pb_serialize_handlers(Descriptor* desc) { if (desc->pb_serialize_handlers == NULL) { desc->pb_serialize_handlers = upb_pb_encoder_newhandlers(desc->msgdef, &desc->pb_serialize_handlers); } return desc->pb_serialize_handlers; } static const upb_handlers* msgdef_json_serialize_handlers( Descriptor* desc, bool preserve_proto_fieldnames) { if (preserve_proto_fieldnames) { if (desc->json_serialize_handlers == NULL) { desc->json_serialize_handlers = upb_json_printer_newhandlers( desc->msgdef, true, &desc->json_serialize_handlers); } return desc->json_serialize_handlers; } else { if (desc->json_serialize_handlers_preserve == NULL) { desc->json_serialize_handlers_preserve = upb_json_printer_newhandlers( desc->msgdef, false, &desc->json_serialize_handlers_preserve); } return desc->json_serialize_handlers_preserve; } } /* * call-seq: * MessageClass.encode(msg) => bytes * * Encodes the given message object to its serialized form in protocol buffers * wire format. */ VALUE Message_encode(VALUE klass, VALUE msg_rb) { VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); Descriptor* desc = ruby_to_Descriptor(descriptor); stringsink sink; stringsink_init(&sink); { const upb_handlers* serialize_handlers = msgdef_pb_serialize_handlers(desc); stackenv se; upb_pb_encoder* encoder; VALUE ret; stackenv_init(&se, "Error occurred during encoding: %s"); encoder = upb_pb_encoder_create(&se.env, serialize_handlers, &sink.sink); putmsg(msg_rb, desc, upb_pb_encoder_input(encoder), 0, false); ret = rb_str_new(sink.ptr, sink.len); stackenv_uninit(&se); stringsink_uninit(&sink); return ret; } } /* * call-seq: * MessageClass.encode_json(msg) => json_string * * Encodes the given message object into its serialized JSON representation. */ VALUE Message_encode_json(int argc, VALUE* argv, VALUE klass) { VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); Descriptor* desc = ruby_to_Descriptor(descriptor); VALUE msg_rb; VALUE preserve_proto_fieldnames = Qfalse; VALUE emit_defaults = Qfalse; stringsink sink; if (argc < 1 || argc > 2) { rb_raise(rb_eArgError, "Expected 1 or 2 arguments."); } msg_rb = argv[0]; if (argc == 2) { VALUE hash_args = argv[1]; if (TYPE(hash_args) != T_HASH) { rb_raise(rb_eArgError, "Expected hash arguments."); } preserve_proto_fieldnames = rb_hash_lookup2( hash_args, ID2SYM(rb_intern("preserve_proto_fieldnames")), Qfalse); emit_defaults = rb_hash_lookup2( hash_args, ID2SYM(rb_intern("emit_defaults")), Qfalse); } stringsink_init(&sink); { const upb_handlers* serialize_handlers = msgdef_json_serialize_handlers(desc, RTEST(preserve_proto_fieldnames)); upb_json_printer* printer; stackenv se; VALUE ret; stackenv_init(&se, "Error occurred during encoding: %s"); printer = upb_json_printer_create(&se.env, serialize_handlers, &sink.sink); putmsg(msg_rb, desc, upb_json_printer_input(printer), 0, RTEST(emit_defaults)); ret = rb_enc_str_new(sink.ptr, sink.len, rb_utf8_encoding()); stackenv_uninit(&se); stringsink_uninit(&sink); return ret; } } static void discard_unknown(VALUE msg_rb, const Descriptor* desc) { MessageHeader* msg; upb_msg_field_iter it; TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg); stringsink* unknown = msg->unknown_fields; if (unknown != NULL) { stringsink_uninit(unknown); msg->unknown_fields = NULL; } for (upb_msg_field_begin(&it, desc->msgdef); !upb_msg_field_done(&it); upb_msg_field_next(&it)) { upb_fielddef *f = upb_msg_iter_field(&it); uint32_t offset = desc->layout->fields[upb_fielddef_index(f)].offset + sizeof(MessageHeader); if (upb_fielddef_containingoneof(f)) { uint32_t oneof_case_offset = desc->layout->fields[upb_fielddef_index(f)].case_offset + sizeof(MessageHeader); // For a oneof, check that this field is actually present -- skip all the // below if not. if (DEREF(msg, oneof_case_offset, uint32_t) != upb_fielddef_number(f)) { continue; } // Otherwise, fall through to the appropriate singular-field handler // below. } if (!upb_fielddef_issubmsg(f)) { continue; } if (is_map_field(f)) { if (!upb_fielddef_issubmsg(map_field_value(f))) continue; VALUE map = DEREF(msg, offset, VALUE); if (map == Qnil) continue; Map_iter map_it; for (Map_begin(map, &map_it); !Map_done(&map_it); Map_next(&map_it)) { VALUE submsg = Map_iter_value(&map_it); VALUE descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned); const Descriptor* subdesc = ruby_to_Descriptor(descriptor); discard_unknown(submsg, subdesc); } } else if (upb_fielddef_isseq(f)) { VALUE ary = DEREF(msg, offset, VALUE); if (ary == Qnil) continue; int size = NUM2INT(RepeatedField_length(ary)); for (int i = 0; i < size; i++) { void* memory = RepeatedField_index_native(ary, i); VALUE submsg = *((VALUE *)memory); VALUE descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned); const Descriptor* subdesc = ruby_to_Descriptor(descriptor); discard_unknown(submsg, subdesc); } } else { VALUE submsg = DEREF(msg, offset, VALUE); if (submsg == Qnil) continue; VALUE descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned); const Descriptor* subdesc = ruby_to_Descriptor(descriptor); discard_unknown(submsg, subdesc); } } } /* * call-seq: * Google::Protobuf.discard_unknown(msg) * * Discard unknown fields in the given message object and recursively discard * unknown fields in submessages. */ VALUE Google_Protobuf_discard_unknown(VALUE self, VALUE msg_rb) { VALUE klass = CLASS_OF(msg_rb); VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); Descriptor* desc = ruby_to_Descriptor(descriptor); if (klass == cRepeatedField || klass == cMap) { rb_raise(rb_eArgError, "Expected proto msg for discard unknown."); } else { discard_unknown(msg_rb, desc); } return Qnil; }