// Protocol Buffers - Google's data interchange format // Copyright 2014 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "protobuf.h" // ----------------------------------------------------------------------------- // Class/module creation from msgdefs and enumdefs, respectively. // ----------------------------------------------------------------------------- void* Message_data(void* msg) { return ((uint8_t *)msg) + sizeof(MessageHeader); } void Message_mark(void* _self) { MessageHeader* self = (MessageHeader *)_self; layout_mark(self->descriptor->layout, Message_data(self)); } void Message_free(void* self) { stringsink* unknown = ((MessageHeader *)self)->unknown_fields; if (unknown != NULL) { stringsink_uninit(unknown); free(unknown); } xfree(self); } rb_data_type_t Message_type = { "Message", { Message_mark, Message_free, NULL }, }; VALUE Message_alloc(VALUE klass) { VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); Descriptor* desc = ruby_to_Descriptor(descriptor); MessageHeader* msg; VALUE ret; if (desc->layout == NULL) { desc->layout = create_layout(desc); } msg = (MessageHeader*)ALLOC_N(uint8_t, sizeof(MessageHeader) + desc->layout->size); memset(Message_data(msg), 0, desc->layout->size); // We wrap first so that everything in the message object is GC-rooted in case // a collection happens during object creation in layout_init(). ret = TypedData_Wrap_Struct(klass, &Message_type, msg); msg->descriptor = desc; rb_ivar_set(ret, descriptor_instancevar_interned, descriptor); msg->unknown_fields = NULL; layout_init(desc->layout, Message_data(msg)); return ret; } static const upb_fielddef* which_oneof_field(MessageHeader* self, const upb_oneofdef* o) { uint32_t oneof_case; const upb_fielddef* f; oneof_case = slot_read_oneof_case(self->descriptor->layout, Message_data(self), o); if (oneof_case == ONEOF_CASE_NONE) { return NULL; } // oneof_case is a field index, so find that field. f = upb_oneofdef_itof(o, oneof_case); assert(f != NULL); return f; } enum { METHOD_UNKNOWN = 0, METHOD_GETTER = 1, METHOD_SETTER = 2, METHOD_CLEAR = 3, METHOD_PRESENCE = 4, METHOD_ENUM_GETTER = 5, METHOD_WRAPPER_GETTER = 6, METHOD_WRAPPER_SETTER = 7 }; // Check if the field is a well known wrapper type static bool is_wrapper_type_field(const MessageLayout* layout, const upb_fielddef* field) { const char* field_type_name = rb_class2name(field_type_class(layout, field)); return strcmp(field_type_name, "Google::Protobuf::DoubleValue") == 0 || strcmp(field_type_name, "Google::Protobuf::FloatValue") == 0 || strcmp(field_type_name, "Google::Protobuf::Int32Value") == 0 || strcmp(field_type_name, "Google::Protobuf::Int64Value") == 0 || strcmp(field_type_name, "Google::Protobuf::UInt32Value") == 0 || strcmp(field_type_name, "Google::Protobuf::UInt64Value") == 0 || strcmp(field_type_name, "Google::Protobuf::BoolValue") == 0 || strcmp(field_type_name, "Google::Protobuf::StringValue") == 0 || strcmp(field_type_name, "Google::Protobuf::BytesValue") == 0; } // Get a new Ruby wrapper type and set the initial value static VALUE ruby_wrapper_type(const MessageLayout* layout, const upb_fielddef* field, const VALUE value) { if (is_wrapper_type_field(layout, field) && value != Qnil) { VALUE hash = rb_hash_new(); rb_hash_aset(hash, rb_str_new2("value"), value); { VALUE args[1] = {hash}; return rb_class_new_instance(1, args, field_type_class(layout, field)); } } return Qnil; } static int extract_method_call(VALUE method_name, MessageHeader* self, const upb_fielddef **f, const upb_oneofdef **o) { VALUE method_str; char* name; size_t name_len; int accessor_type; const upb_oneofdef* test_o; const upb_fielddef* test_f; bool has_field; Check_Type(method_name, T_SYMBOL); method_str = rb_id2str(SYM2ID(method_name)); name = RSTRING_PTR(method_str); name_len = RSTRING_LEN(method_str); if (name[name_len - 1] == '=') { accessor_type = METHOD_SETTER; name_len--; // We want to ensure if the proto has something named clear_foo or has_foo?, // we don't strip the prefix. } else if (strncmp("clear_", name, 6) == 0 && !upb_msgdef_lookupname(self->descriptor->msgdef, name, name_len, &test_f, &test_o)) { accessor_type = METHOD_CLEAR; name = name + 6; name_len = name_len - 6; } else if (strncmp("has_", name, 4) == 0 && name[name_len - 1] == '?' && !upb_msgdef_lookupname(self->descriptor->msgdef, name, name_len, &test_f, &test_o)) { accessor_type = METHOD_PRESENCE; name = name + 4; name_len = name_len - 5; } else { accessor_type = METHOD_GETTER; } has_field = upb_msgdef_lookupname(self->descriptor->msgdef, name, name_len, &test_f, &test_o); // Look for wrapper type accessor of the form _as_value if (!has_field && (accessor_type == METHOD_GETTER || accessor_type == METHOD_SETTER) && name_len > 9 && strncmp(name + name_len - 9, "_as_value", 9) == 0) { const upb_oneofdef* test_o_wrapper; const upb_fielddef* test_f_wrapper; char wrapper_field_name[name_len - 8]; // Find the field name strncpy(wrapper_field_name, name, name_len - 9); wrapper_field_name[name_len - 9] = '\0'; // Check if field exists and is a wrapper type if (upb_msgdef_lookupname(self->descriptor->msgdef, wrapper_field_name, name_len - 9, &test_f_wrapper, &test_o_wrapper) && upb_fielddef_type(test_f_wrapper) == UPB_TYPE_MESSAGE && is_wrapper_type_field(self->descriptor->layout, test_f_wrapper)) { // It does exist! has_field = true; if (accessor_type == METHOD_SETTER) { accessor_type = METHOD_WRAPPER_SETTER; } else { accessor_type = METHOD_WRAPPER_GETTER; } test_o = test_o_wrapper; test_f = test_f_wrapper; } } // Look for enum accessor of the form _const if (!has_field && accessor_type == METHOD_GETTER && name_len > 6 && strncmp(name + name_len - 6, "_const", 6) == 0) { const upb_oneofdef* test_o_enum; const upb_fielddef* test_f_enum; char enum_name[name_len - 5]; // Find enum field name strncpy(enum_name, name, name_len - 6); enum_name[name_len - 6] = '\0'; // Check if enum field exists if (upb_msgdef_lookupname(self->descriptor->msgdef, enum_name, name_len - 6, &test_f_enum, &test_o_enum) && upb_fielddef_type(test_f_enum) == UPB_TYPE_ENUM) { // It does exist! has_field = true; accessor_type = METHOD_ENUM_GETTER; test_o = test_o_enum; test_f = test_f_enum; } } // Verify the name corresponds to a oneof or field in this message. if (!has_field) { return METHOD_UNKNOWN; } // Method calls like 'has_foo?' are not allowed if field "foo" does not have // a hasbit (e.g. repeated fields or non-message type fields for proto3 // syntax). if (accessor_type == METHOD_PRESENCE && test_f != NULL && !upb_fielddef_haspresence(test_f)) { return METHOD_UNKNOWN; } *o = test_o; *f = test_f; return accessor_type; } /* * call-seq: * Message.method_missing(*args) * * Provides accessors and setters and methods to clear and check for presence of * message fields according to their field names. * * For any field whose name does not conflict with a built-in method, an * accessor is provided with the same name as the field, and a setter is * provided with the name of the field plus the '=' suffix. Thus, given a * message instance 'msg' with field 'foo', the following code is valid: * * msg.foo = 42 * puts msg.foo * * This method also provides read-only accessors for oneofs. If a oneof exists * with name 'my_oneof', then msg.my_oneof will return a Ruby symbol equal to * the name of the field in that oneof that is currently set, or nil if none. * * It also provides methods of the form 'clear_fieldname' to clear the value * of the field 'fieldname'. For basic data types, this will set the default * value of the field. * * Additionally, it provides methods of the form 'has_fieldname?', which returns * true if the field 'fieldname' is set in the message object, else false. For * 'proto3' syntax, calling this for a basic type field will result in an error. */ VALUE Message_method_missing(int argc, VALUE* argv, VALUE _self) { MessageHeader* self; const upb_oneofdef* o; const upb_fielddef* f; int accessor_type; TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); if (argc < 1) { rb_raise(rb_eArgError, "Expected method name as first argument."); } accessor_type = extract_method_call(argv[0], self, &f, &o); if (accessor_type == METHOD_UNKNOWN || (o == NULL && f == NULL) ) { return rb_call_super(argc, argv); } else if (accessor_type == METHOD_SETTER || accessor_type == METHOD_WRAPPER_SETTER) { if (argc != 2) { rb_raise(rb_eArgError, "Expected 2 arguments, received %d", argc); } rb_check_frozen(_self); } else if (argc != 1) { rb_raise(rb_eArgError, "Expected 1 argument, received %d", argc); } // Return which of the oneof fields are set if (o != NULL) { const upb_fielddef* oneof_field = which_oneof_field(self, o); if (accessor_type == METHOD_SETTER) { rb_raise(rb_eRuntimeError, "Oneof accessors are read-only."); } if (accessor_type == METHOD_PRESENCE) { return oneof_field == NULL ? Qfalse : Qtrue; } else if (accessor_type == METHOD_CLEAR) { if (oneof_field != NULL) { layout_clear(self->descriptor->layout, Message_data(self), oneof_field); } return Qnil; } else { // METHOD_ACCESSOR return oneof_field == NULL ? Qnil : ID2SYM(rb_intern(upb_fielddef_name(oneof_field))); } // Otherwise we're operating on a single proto field } else if (accessor_type == METHOD_SETTER) { layout_set(self->descriptor->layout, Message_data(self), f, argv[1]); return Qnil; } else if (accessor_type == METHOD_CLEAR) { layout_clear(self->descriptor->layout, Message_data(self), f); return Qnil; } else if (accessor_type == METHOD_PRESENCE) { return layout_has(self->descriptor->layout, Message_data(self), f); } else if (accessor_type == METHOD_WRAPPER_GETTER) { VALUE value = layout_get(self->descriptor->layout, Message_data(self), f); if (value != Qnil) { value = rb_funcall(value, rb_intern("value"), 0); } return value; } else if (accessor_type == METHOD_WRAPPER_SETTER) { VALUE wrapper = ruby_wrapper_type(self->descriptor->layout, f, argv[1]); layout_set(self->descriptor->layout, Message_data(self), f, wrapper); return Qnil; } else if (accessor_type == METHOD_ENUM_GETTER) { VALUE enum_type = field_type_class(self->descriptor->layout, f); VALUE method = rb_intern("const_get"); VALUE raw_value = layout_get(self->descriptor->layout, Message_data(self), f); // Map repeated fields to a new type with ints if (upb_fielddef_label(f) == UPB_LABEL_REPEATED) { int array_size = FIX2INT(rb_funcall(raw_value, rb_intern("length"), 0)); int i; VALUE array_args[1] = { ID2SYM(rb_intern("int64")) }; VALUE array = rb_class_new_instance(1, array_args, CLASS_OF(raw_value)); for (i = 0; i < array_size; i++) { VALUE entry = rb_funcall(enum_type, method, 1, rb_funcall(raw_value, rb_intern("at"), 1, INT2NUM(i))); rb_funcall(array, rb_intern("push"), 1, entry); } return array; } // Convert the value for singular fields return rb_funcall(enum_type, method, 1, raw_value); } else { return layout_get(self->descriptor->layout, Message_data(self), f); } } VALUE Message_respond_to_missing(int argc, VALUE* argv, VALUE _self) { MessageHeader* self; const upb_oneofdef* o; const upb_fielddef* f; int accessor_type; TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); if (argc < 1) { rb_raise(rb_eArgError, "Expected method name as first argument."); } accessor_type = extract_method_call(argv[0], self, &f, &o); if (accessor_type == METHOD_UNKNOWN) { return rb_call_super(argc, argv); } else if (o != NULL) { return accessor_type == METHOD_SETTER ? Qfalse : Qtrue; } else { return Qtrue; } } VALUE create_submsg_from_hash(const MessageLayout* layout, const upb_fielddef* f, VALUE hash) { VALUE args[1] = { hash }; return rb_class_new_instance(1, args, field_type_class(layout, f)); } int Message_initialize_kwarg(VALUE key, VALUE val, VALUE _self) { MessageHeader* self; char *name; const upb_fielddef* f; TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); if (TYPE(key) == T_STRING) { name = RSTRING_PTR(key); } else if (TYPE(key) == T_SYMBOL) { name = RSTRING_PTR(rb_id2str(SYM2ID(key))); } else { rb_raise(rb_eArgError, "Expected string or symbols as hash keys when initializing proto from hash."); } f = upb_msgdef_ntofz(self->descriptor->msgdef, name); if (f == NULL) { rb_raise(rb_eArgError, "Unknown field name '%s' in initialization map entry.", name); } if (TYPE(val) == T_NIL) { return 0; } if (is_map_field(f)) { VALUE map; if (TYPE(val) != T_HASH) { rb_raise(rb_eArgError, "Expected Hash object as initializer value for map field '%s' (given %s).", name, rb_class2name(CLASS_OF(val))); } map = layout_get(self->descriptor->layout, Message_data(self), f); Map_merge_into_self(map, val); } else if (upb_fielddef_label(f) == UPB_LABEL_REPEATED) { VALUE ary; int i; if (TYPE(val) != T_ARRAY) { rb_raise(rb_eArgError, "Expected array as initializer value for repeated field '%s' (given %s).", name, rb_class2name(CLASS_OF(val))); } ary = layout_get(self->descriptor->layout, Message_data(self), f); for (i = 0; i < RARRAY_LEN(val); i++) { VALUE entry = rb_ary_entry(val, i); if (TYPE(entry) == T_HASH && upb_fielddef_issubmsg(f)) { entry = create_submsg_from_hash(self->descriptor->layout, f, entry); } RepeatedField_push(ary, entry); } } else { if (TYPE(val) == T_HASH && upb_fielddef_issubmsg(f)) { val = create_submsg_from_hash(self->descriptor->layout, f, val); } layout_set(self->descriptor->layout, Message_data(self), f, val); } return 0; } /* * call-seq: * Message.new(kwargs) => new_message * * Creates a new instance of the given message class. Keyword arguments may be * provided with keywords corresponding to field names. * * Note that no literal Message class exists. Only concrete classes per message * type exist, as provided by the #msgclass method on Descriptors after they * have been added to a pool. The method definitions described here on the * Message class are provided on each concrete message class. */ VALUE Message_initialize(int argc, VALUE* argv, VALUE _self) { VALUE hash_args; if (argc == 0) { return Qnil; } if (argc != 1) { rb_raise(rb_eArgError, "Expected 0 or 1 arguments."); } hash_args = argv[0]; if (TYPE(hash_args) != T_HASH) { rb_raise(rb_eArgError, "Expected hash arguments."); } rb_hash_foreach(hash_args, Message_initialize_kwarg, _self); return Qnil; } /* * call-seq: * Message.dup => new_message * * Performs a shallow copy of this message and returns the new copy. */ VALUE Message_dup(VALUE _self) { MessageHeader* self; VALUE new_msg; MessageHeader* new_msg_self; TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); new_msg = rb_class_new_instance(0, NULL, CLASS_OF(_self)); TypedData_Get_Struct(new_msg, MessageHeader, &Message_type, new_msg_self); layout_dup(self->descriptor->layout, Message_data(new_msg_self), Message_data(self)); return new_msg; } // Internal only; used by Google::Protobuf.deep_copy. VALUE Message_deep_copy(VALUE _self) { MessageHeader* self; MessageHeader* new_msg_self; VALUE new_msg; TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); new_msg = rb_class_new_instance(0, NULL, CLASS_OF(_self)); TypedData_Get_Struct(new_msg, MessageHeader, &Message_type, new_msg_self); layout_deep_copy(self->descriptor->layout, Message_data(new_msg_self), Message_data(self)); return new_msg; } /* * call-seq: * Message.==(other) => boolean * * Performs a deep comparison of this message with another. Messages are equal * if they have the same type and if each field is equal according to the :== * method's semantics (a more efficient comparison may actually be done if the * field is of a primitive type). */ VALUE Message_eq(VALUE _self, VALUE _other) { MessageHeader* self; MessageHeader* other; if (TYPE(_self) != TYPE(_other)) { return Qfalse; } TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); TypedData_Get_Struct(_other, MessageHeader, &Message_type, other); if (self->descriptor != other->descriptor) { return Qfalse; } return layout_eq(self->descriptor->layout, Message_data(self), Message_data(other)); } /* * call-seq: * Message.hash => hash_value * * Returns a hash value that represents this message's field values. */ VALUE Message_hash(VALUE _self) { MessageHeader* self; TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); return layout_hash(self->descriptor->layout, Message_data(self)); } /* * call-seq: * Message.inspect => string * * Returns a human-readable string representing this message. It will be * formatted as "". Each * field's value is represented according to its own #inspect method. */ VALUE Message_inspect(VALUE _self) { MessageHeader* self; VALUE str; TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); str = rb_str_new2("<"); str = rb_str_append(str, rb_str_new2(rb_class2name(CLASS_OF(_self)))); str = rb_str_cat2(str, ": "); str = rb_str_append(str, layout_inspect( self->descriptor->layout, Message_data(self))); str = rb_str_cat2(str, ">"); return str; } /* * call-seq: * Message.to_h => {} * * Returns the message as a Ruby Hash object, with keys as symbols. */ VALUE Message_to_h(VALUE _self) { MessageHeader* self; VALUE hash; upb_msg_field_iter it; TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); hash = rb_hash_new(); for (upb_msg_field_begin(&it, self->descriptor->msgdef); !upb_msg_field_done(&it); upb_msg_field_next(&it)) { const upb_fielddef* field = upb_msg_iter_field(&it); VALUE msg_value; VALUE msg_key; // For proto2, do not include fields which are not set. if (upb_msgdef_syntax(self->descriptor->msgdef) == UPB_SYNTAX_PROTO2 && field_contains_hasbit(self->descriptor->layout, field) && !layout_has(self->descriptor->layout, Message_data(self), field)) { continue; } msg_value = layout_get(self->descriptor->layout, Message_data(self), field); msg_key = ID2SYM(rb_intern(upb_fielddef_name(field))); if (is_map_field(field)) { msg_value = Map_to_h(msg_value); } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { msg_value = RepeatedField_to_ary(msg_value); if (upb_msgdef_syntax(self->descriptor->msgdef) == UPB_SYNTAX_PROTO2 && RARRAY_LEN(msg_value) == 0) { continue; } if (upb_fielddef_type(field) == UPB_TYPE_MESSAGE) { int i; for (i = 0; i < RARRAY_LEN(msg_value); i++) { VALUE elem = rb_ary_entry(msg_value, i); rb_ary_store(msg_value, i, Message_to_h(elem)); } } } else if (msg_value != Qnil && upb_fielddef_type(field) == UPB_TYPE_MESSAGE) { msg_value = Message_to_h(msg_value); } rb_hash_aset(hash, msg_key, msg_value); } return hash; } /* * call-seq: * Message.[](index) => value * * Accesses a field's value by field name. The provided field name should be a * string. */ VALUE Message_index(VALUE _self, VALUE field_name) { MessageHeader* self; const upb_fielddef* field; TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); Check_Type(field_name, T_STRING); field = upb_msgdef_ntofz(self->descriptor->msgdef, RSTRING_PTR(field_name)); if (field == NULL) { return Qnil; } return layout_get(self->descriptor->layout, Message_data(self), field); } /* * call-seq: * Message.[]=(index, value) * * Sets a field's value by field name. The provided field name should be a * string. */ VALUE Message_index_set(VALUE _self, VALUE field_name, VALUE value) { MessageHeader* self; const upb_fielddef* field; TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); Check_Type(field_name, T_STRING); field = upb_msgdef_ntofz(self->descriptor->msgdef, RSTRING_PTR(field_name)); if (field == NULL) { rb_raise(rb_eArgError, "Unknown field: %s", RSTRING_PTR(field_name)); } layout_set(self->descriptor->layout, Message_data(self), field, value); return Qnil; } /* * call-seq: * Message.descriptor => descriptor * * Class method that returns the Descriptor instance corresponding to this * message class's type. */ VALUE Message_descriptor(VALUE klass) { return rb_ivar_get(klass, descriptor_instancevar_interned); } VALUE build_class_from_descriptor(VALUE descriptor) { Descriptor* desc = ruby_to_Descriptor(descriptor); const char *name; VALUE klass; name = upb_msgdef_fullname(desc->msgdef); if (name == NULL) { rb_raise(rb_eRuntimeError, "Descriptor does not have assigned name."); } klass = rb_define_class_id( // Docs say this parameter is ignored. User will assign return value to // their own toplevel constant class name. rb_intern("Message"), rb_cObject); rb_ivar_set(klass, descriptor_instancevar_interned, descriptor); rb_define_alloc_func(klass, Message_alloc); rb_require("google/protobuf/message_exts"); rb_include_module(klass, rb_eval_string("::Google::Protobuf::MessageExts")); rb_extend_object( klass, rb_eval_string("::Google::Protobuf::MessageExts::ClassMethods")); rb_define_method(klass, "method_missing", Message_method_missing, -1); rb_define_method(klass, "respond_to_missing?", Message_respond_to_missing, -1); rb_define_method(klass, "initialize", Message_initialize, -1); rb_define_method(klass, "dup", Message_dup, 0); // Also define #clone so that we don't inherit Object#clone. rb_define_method(klass, "clone", Message_dup, 0); rb_define_method(klass, "==", Message_eq, 1); rb_define_method(klass, "eql?", Message_eq, 1); rb_define_method(klass, "hash", Message_hash, 0); rb_define_method(klass, "to_h", Message_to_h, 0); rb_define_method(klass, "inspect", Message_inspect, 0); rb_define_method(klass, "to_s", Message_inspect, 0); rb_define_method(klass, "[]", Message_index, 1); rb_define_method(klass, "[]=", Message_index_set, 2); rb_define_singleton_method(klass, "decode", Message_decode, 1); rb_define_singleton_method(klass, "encode", Message_encode, 1); rb_define_singleton_method(klass, "decode_json", Message_decode_json, -1); rb_define_singleton_method(klass, "encode_json", Message_encode_json, -1); rb_define_singleton_method(klass, "descriptor", Message_descriptor, 0); return klass; } /* * call-seq: * Enum.lookup(number) => name * * This module method, provided on each generated enum module, looks up an enum * value by number and returns its name as a Ruby symbol, or nil if not found. */ VALUE enum_lookup(VALUE self, VALUE number) { int32_t num = NUM2INT(number); VALUE desc = rb_ivar_get(self, descriptor_instancevar_interned); EnumDescriptor* enumdesc = ruby_to_EnumDescriptor(desc); const char* name = upb_enumdef_iton(enumdesc->enumdef, num); if (name == NULL) { return Qnil; } else { return ID2SYM(rb_intern(name)); } } /* * call-seq: * Enum.resolve(name) => number * * This module method, provided on each generated enum module, looks up an enum * value by name (as a Ruby symbol) and returns its name, or nil if not found. */ VALUE enum_resolve(VALUE self, VALUE sym) { const char* name = rb_id2name(SYM2ID(sym)); VALUE desc = rb_ivar_get(self, descriptor_instancevar_interned); EnumDescriptor* enumdesc = ruby_to_EnumDescriptor(desc); int32_t num = 0; bool found = upb_enumdef_ntoiz(enumdesc->enumdef, name, &num); if (!found) { return Qnil; } else { return INT2NUM(num); } } /* * call-seq: * Enum.descriptor * * This module method, provided on each generated enum module, returns the * EnumDescriptor corresponding to this enum type. */ VALUE enum_descriptor(VALUE self) { return rb_ivar_get(self, descriptor_instancevar_interned); } VALUE build_module_from_enumdesc(VALUE _enumdesc) { EnumDescriptor* enumdesc = ruby_to_EnumDescriptor(_enumdesc); VALUE mod = rb_define_module_id( rb_intern(upb_enumdef_fullname(enumdesc->enumdef))); upb_enum_iter it; for (upb_enum_begin(&it, enumdesc->enumdef); !upb_enum_done(&it); upb_enum_next(&it)) { const char* name = upb_enum_iter_name(&it); int32_t value = upb_enum_iter_number(&it); if (name[0] < 'A' || name[0] > 'Z') { rb_warn("Enum value '%s' does not start with an uppercase letter " "as is required for Ruby constants.", name); } rb_define_const(mod, name, INT2NUM(value)); } rb_define_singleton_method(mod, "lookup", enum_lookup, 1); rb_define_singleton_method(mod, "resolve", enum_resolve, 1); rb_define_singleton_method(mod, "descriptor", enum_descriptor, 0); rb_ivar_set(mod, descriptor_instancevar_interned, _enumdesc); return mod; } /* * call-seq: * Google::Protobuf.deep_copy(obj) => copy_of_obj * * Performs a deep copy of a RepeatedField instance, a Map instance, or a * message object, recursively copying its members. */ VALUE Google_Protobuf_deep_copy(VALUE self, VALUE obj) { VALUE klass = CLASS_OF(obj); if (klass == cRepeatedField) { return RepeatedField_deep_copy(obj); } else if (klass == cMap) { return Map_deep_copy(obj); } else { return Message_deep_copy(obj); } }