#!/usr/bin/ruby # basic_test_pb.rb is in the same directory as this test. $LOAD_PATH.unshift(File.expand_path(File.dirname(__FILE__))) require 'basic_test_pb' require 'common_tests' require 'google/protobuf' require 'json' require 'test/unit' module BasicTest TestMessage = BasicTest::TestMessage Outer = BasicTest::Outer class MessageContainerTest < Test::Unit::TestCase # Required by CommonTests module to resolve proto3 proto classes used in tests. def proto_module ::BasicTest end include CommonTests def test_issue_8311_crash BasicTest::Outer8311.new( inners: [] )['inners'].to_s assert_raises Google::Protobuf::TypeError do BasicTest::Outer8311.new( inners: [nil] ).to_s end end def test_issue_8559_crash msg = TestMessage.new msg.repeated_int32 = ::Google::Protobuf::RepeatedField.new(:int32, [1, 2, 3]) # https://github.com/jruby/jruby/issues/6818 was fixed in JRuby 9.3.0.0 if cruby_or_jruby_9_3_or_higher? GC.start(full_mark: true, immediate_sweep: true) end TestMessage.encode(msg) end def test_issue_9440 msg = HelloRequest.new msg.id = 8 assert_equal 8, msg.id msg.version = '1' assert_equal 8, msg.id end def test_issue_9507 m = BasicTest::NpeMessage.new( other: "foo" # must be set, but can be blank ) begin encoded = BasicTest::NpeMessage.encode(m) rescue java.lang.NullPointerException flunk "NPE rescued" end decoded = BasicTest::NpeMessage.decode(encoded) decoded.inspect decoded.to_proto end def test_has_field m = TestSingularFields.new refute m.has_singular_msg? m.singular_msg = TestMessage2.new assert m.has_singular_msg? assert TestSingularFields.descriptor.lookup('singular_msg').has?(m) m = OneofMessage.new refute m.has_my_oneof? refute m.has_a? m.a = "foo" assert m.has_my_oneof? assert m.has_a? assert_true OneofMessage.descriptor.lookup('a').has?(m) m = TestSingularFields.new assert_raises NoMethodError do m.has_singular_int32? end assert_raises ArgumentError do TestSingularFields.descriptor.lookup('singular_int32').has?(m) end assert_raises NoMethodError do m.has_singular_string? end assert_raises ArgumentError do TestSingularFields.descriptor.lookup('singular_string').has?(m) end assert_raises NoMethodError do m.has_singular_bool? end assert_raises ArgumentError do TestSingularFields.descriptor.lookup('singular_bool').has?(m) end m = TestMessage.new assert_raises NoMethodError do m.has_repeated_msg? end assert_raises ArgumentError do TestMessage.descriptor.lookup('repeated_msg').has?(m) end end def test_no_presence m = TestSingularFields.new # Explicitly setting to zero does not cause anything to be serialized. m.singular_int32 = 0 assert_empty TestSingularFields.encode(m) # Explicitly setting to a non-zero value *does* cause serialization. m.singular_int32 = 1 refute_empty TestSingularFields.encode(m) m.singular_int32 = 0 assert_empty TestSingularFields.encode(m) end def test_set_clear_defaults m = TestSingularFields.new m.singular_int32 = -42 assert_equal( -42, m.singular_int32 ) m.clear_singular_int32 assert_equal 0, m.singular_int32 m.singular_int32 = 50 assert_equal 50, m.singular_int32 TestSingularFields.descriptor.lookup('singular_int32').clear(m) assert_equal 0, m.singular_int32 m.singular_string = "foo bar" assert_equal "foo bar", m.singular_string m.clear_singular_string assert_empty m.singular_string m.singular_string = "foo" assert_equal "foo", m.singular_string TestSingularFields.descriptor.lookup('singular_string').clear(m) assert_empty m.singular_string m.singular_msg = TestMessage2.new(:foo => 42) assert_equal TestMessage2.new(:foo => 42), m.singular_msg assert m.has_singular_msg? m.clear_singular_msg assert_nil m.singular_msg refute m.has_singular_msg? m.singular_msg = TestMessage2.new(:foo => 42) assert_equal TestMessage2.new(:foo => 42), m.singular_msg TestSingularFields.descriptor.lookup('singular_msg').clear(m) assert_nil m.singular_msg end def test_import_proto2 m = TestMessage.new refute m.has_optional_proto2_submessage? m.optional_proto2_submessage = ::FooBar::Proto2::TestImportedMessage.new assert m.has_optional_proto2_submessage? assert TestMessage.descriptor.lookup('optional_proto2_submessage').has?(m) m.clear_optional_proto2_submessage refute m.has_optional_proto2_submessage? end def test_clear_repeated_fields m = TestMessage.new m.repeated_int32.push(1) assert_equal [1], m.repeated_int32 m.clear_repeated_int32 assert_empty m.repeated_int32 m.repeated_int32.push(1) assert_equal [1], m.repeated_int32 TestMessage.descriptor.lookup('repeated_int32').clear(m) assert_empty m.repeated_int32 m = OneofMessage.new m.a = "foo" assert_equal "foo", m.a assert m.has_my_oneof? assert_equal :a, m.my_oneof m.clear_a refute m.has_my_oneof? m.a = "foobar" assert m.has_my_oneof? m.clear_my_oneof refute m.has_my_oneof? m.a = "bar" assert_equal "bar", m.a assert m.has_my_oneof? OneofMessage.descriptor.lookup('a').clear(m) refute m.has_my_oneof? end def test_initialization_map_errors e = assert_raises ArgumentError do TestMessage.new(:hello => "world") end assert_match(/hello/, e.message) e = assert_raises ArgumentError do MapMessage.new(:map_string_int32 => "hello") end assert_equal "Expected Hash object as initializer value for map field 'map_string_int32' (given String).", e.message e = assert_raises ArgumentError do TestMessage.new(:repeated_uint32 => "hello") end assert_equal "Expected array as initializer value for repeated field 'repeated_uint32' (given String).", e.message end def test_map_field m = MapMessage.new assert_empty m.map_string_int32.to_h assert_empty m.map_string_msg.to_h m = MapMessage.new( :map_string_int32 => {"a" => 1, "b" => 2}, :map_string_msg => {"a" => TestMessage2.new(:foo => 1), "b" => TestMessage2.new(:foo => 2)}, :map_string_enum => {"a" => :A, "b" => :B}) assert_equal ["a", "b"], m.map_string_int32.keys.sort assert_equal 1, m.map_string_int32["a"] assert_equal 2, m.map_string_msg["b"].foo assert_equal :A, m.map_string_enum["a"] m.map_string_int32["c"] = 3 assert_equal 3, m.map_string_int32["c"] m.map_string_msg["c"] = TestMessage2.new(:foo => 3) assert_equal TestMessage2.new(:foo => 3), m.map_string_msg["c"] m.map_string_msg.delete("b") m.map_string_msg.delete("c") assert_equal({ "a" => TestMessage2.new(:foo => 1).to_h }, m.map_string_msg.to_h) assert_raises Google::Protobuf::TypeError do m.map_string_msg["e"] = TestMessage.new # wrong value type end # ensure nothing was added by the above assert_equal({ "a" => TestMessage2.new(:foo => 1).to_h }, m.map_string_msg.to_h) m.map_string_int32 = Google::Protobuf::Map.new(:string, :int32) assert_raises Google::Protobuf::TypeError do m.map_string_int32 = Google::Protobuf::Map.new(:string, :int64) end assert_raises Google::Protobuf::TypeError do m.map_string_int32 = {} end assert_raises Google::Protobuf::TypeError do m = MapMessage.new(:map_string_int32 => { 1 => "I am not a number" }) end end def test_map_field_with_symbol m = MapMessage.new assert_empty m.map_string_int32.to_h assert_empty m.map_string_msg.to_h m = MapMessage.new( :map_string_int32 => {a: 1, "b" => 2}, :map_string_msg => {a: TestMessage2.new(:foo => 1), b: TestMessage2.new(:foo => 10)}) assert_equal 1, m.map_string_int32[:a] assert_equal 2, m.map_string_int32[:b] assert_equal 10, m.map_string_msg[:b].foo end def test_map_inspect m = MapMessage.new( :map_string_int32 => {"a" => 1, "b" => 2}, :map_string_msg => {"a" => TestMessage2.new(:foo => 1), "b" => TestMessage2.new(:foo => 2)}, :map_string_enum => {"a" => :A, "b" => :B}) # JRuby doesn't keep consistent ordering so check for either version expected_a = "2, \"a\"=>1}, map_string_msg: {\"b\"=>, \"a\"=>}, map_string_enum: {\"b\"=>:B, \"a\"=>:A}>" expected_b = "1, \"b\"=>2}, map_string_msg: {\"a\"=>, \"b\"=>}, map_string_enum: {\"a\"=>:A, \"b\"=>:B}>" inspect_result = m.inspect assert_includes [expected_a, expected_b], inspect_result end def test_map_corruption # This pattern led to a crash in a previous version of upb/protobuf. m = MapMessage.new(map_string_int32: { "aaa" => 1 }) m.map_string_int32['podid'] = 2 m.map_string_int32['aaa'] = 3 end def test_map_wrappers run_asserts = ->(m) { assert_equal 2.0, m.map_double[0].value assert_equal 4.0, m.map_float[0].value assert_equal 3, m.map_int32[0].value assert_equal 4, m.map_int64[0].value assert_equal 5, m.map_uint32[0].value assert_equal 6, m.map_uint64[0].value assert m.map_bool[0].value assert_equal 'str', m.map_string[0].value assert_equal 'fun', m.map_bytes[0].value } m = proto_module::Wrapper.new( map_double: {0 => Google::Protobuf::DoubleValue.new(value: 2.0)}, map_float: {0 => Google::Protobuf::FloatValue.new(value: 4.0)}, map_int32: {0 => Google::Protobuf::Int32Value.new(value: 3)}, map_int64: {0 => Google::Protobuf::Int64Value.new(value: 4)}, map_uint32: {0 => Google::Protobuf::UInt32Value.new(value: 5)}, map_uint64: {0 => Google::Protobuf::UInt64Value.new(value: 6)}, map_bool: {0 => Google::Protobuf::BoolValue.new(value: true)}, map_string: {0 => Google::Protobuf::StringValue.new(value: 'str')}, map_bytes: {0 => Google::Protobuf::BytesValue.new(value: 'fun')}, ) run_asserts.call(m) serialized = proto_module::Wrapper::encode(m) m2 = proto_module::Wrapper::decode(serialized) run_asserts.call(m2) # Test the case where we are serializing directly from the parsed form # (before anything lazy is materialized). m3 = proto_module::Wrapper::decode(serialized) serialized2 = proto_module::Wrapper::encode(m3) m4 = proto_module::Wrapper::decode(serialized2) run_asserts.call(m4) # Test that the lazy form compares equal to the expanded form. m5 = proto_module::Wrapper::decode(serialized2) assert_equal m5, m end def test_map_wrappers_with_default_values run_asserts = ->(m) { assert_equal 0.0, m.map_double[0].value assert_equal 0.0, m.map_float[0].value assert_equal 0, m.map_int32[0].value assert_equal 0, m.map_int64[0].value assert_equal 0, m.map_uint32[0].value assert_equal 0, m.map_uint64[0].value refute m.map_bool[0].value assert_empty m.map_string[0].value assert_empty m.map_bytes[0].value } m = proto_module::Wrapper.new( map_double: {0 => Google::Protobuf::DoubleValue.new(value: 0.0)}, map_float: {0 => Google::Protobuf::FloatValue.new(value: 0.0)}, map_int32: {0 => Google::Protobuf::Int32Value.new(value: 0)}, map_int64: {0 => Google::Protobuf::Int64Value.new(value: 0)}, map_uint32: {0 => Google::Protobuf::UInt32Value.new(value: 0)}, map_uint64: {0 => Google::Protobuf::UInt64Value.new(value: 0)}, map_bool: {0 => Google::Protobuf::BoolValue.new(value: false)}, map_string: {0 => Google::Protobuf::StringValue.new(value: '')}, map_bytes: {0 => Google::Protobuf::BytesValue.new(value: '')}, ) run_asserts.call(m) serialized = proto_module::Wrapper::encode(m) m2 = proto_module::Wrapper::decode(serialized) run_asserts.call(m2) # Test the case where we are serializing directly from the parsed form # (before anything lazy is materialized). m3 = proto_module::Wrapper::decode(serialized) serialized2 = proto_module::Wrapper::encode(m3) m4 = proto_module::Wrapper::decode(serialized2) run_asserts.call(m4) # Test that the lazy form compares equal to the expanded form. m5 = proto_module::Wrapper::decode(serialized2) assert_equal m5, m end def test_map_wrappers_with_no_value run_asserts = ->(m) { assert_equal 0.0, m.map_double[0].value assert_equal 0.0, m.map_float[0].value assert_equal 0, m.map_int32[0].value assert_equal 0, m.map_int64[0].value assert_equal 0, m.map_uint32[0].value assert_equal 0, m.map_uint64[0].value refute m.map_bool[0].value assert_empty m.map_string[0].value assert_empty m.map_bytes[0].value } m = proto_module::Wrapper.new( map_double: {0 => Google::Protobuf::DoubleValue.new()}, map_float: {0 => Google::Protobuf::FloatValue.new()}, map_int32: {0 => Google::Protobuf::Int32Value.new()}, map_int64: {0 => Google::Protobuf::Int64Value.new()}, map_uint32: {0 => Google::Protobuf::UInt32Value.new()}, map_uint64: {0 => Google::Protobuf::UInt64Value.new()}, map_bool: {0 => Google::Protobuf::BoolValue.new()}, map_string: {0 => Google::Protobuf::StringValue.new()}, map_bytes: {0 => Google::Protobuf::BytesValue.new()}, ) run_asserts.call(m) serialized = proto_module::Wrapper::encode(m) m2 = proto_module::Wrapper::decode(serialized) run_asserts.call(m2) # Test the case where we are serializing directly from the parsed form # (before anything lazy is materialized). m3 = proto_module::Wrapper::decode(serialized) serialized2 = proto_module::Wrapper::encode(m3) m4 = proto_module::Wrapper::decode(serialized2) run_asserts.call(m4) end def test_concurrent_decoding o = Outer.new o.items[0] = Inner.new raw = Outer.encode(o) thds = 2.times.map do Thread.new do 100000.times do assert_equal o, Outer.decode(raw) end end end thds.map(&:join) end def test_map_encode_decode m = MapMessage.new( :map_string_int32 => {"a" => 1, "b" => 2}, :map_string_msg => {"a" => TestMessage2.new(:foo => 1), "b" => TestMessage2.new(:foo => 2)}, :map_string_enum => {"a" => :A, "b" => :B}) m2 = MapMessage.decode(MapMessage.encode(m)) assert_equal m, m2 m3 = MapMessageWireEquiv.decode(MapMessage.encode(m)) assert_equal 2, m3.map_string_int32.length kv = {} m3.map_string_int32.map { |msg| kv[msg.key] = msg.value } assert_equal({"a" => 1, "b" => 2}, kv) kv = {} m3.map_string_msg.map { |msg| kv[msg.key] = msg.value } assert_equal({"a" => TestMessage2.new(:foo => 1), "b" => TestMessage2.new(:foo => 2)}, kv) end def test_protobuf_decode_json_ignore_unknown_fields m = TestMessage.decode_json({ optional_string: "foo", not_in_message: "some_value" }.to_json, { ignore_unknown_fields: true }) assert_equal "foo", m.optional_string e = assert_raises Google::Protobuf::ParseError do TestMessage.decode_json({ not_in_message: "some_value" }.to_json) end assert_match(/No such field: not_in_message/, e.message) end #def test_json_quoted_string # m = TestMessage.decode_json(%q( # "optionalInt64": "1",, # })) # puts(m) # assert_equal 1, m.optional_int32 #end def test_to_h m = TestMessage.new( :optional_bool => true, :optional_double => -10.100001, :optional_string => 'foo', :repeated_string => ['bar1', 'bar2'], :repeated_msg => [TestMessage2.new(:foo => 100)] ) expected_result = { :optional_bool=>true, :optional_double=>-10.100001, :optional_string=>"foo", :repeated_string=>["bar1", "bar2"], :repeated_msg=>[{:foo => 100}], } assert_equal expected_result, m.to_h m = MapMessage.new( :map_string_int32 => {"a" => 1, "b" => 2}, :map_string_msg => {"a" => TestMessage2.new(:foo => 1), "b" => TestMessage2.new(:foo => 2)}, :map_string_enum => {"a" => :A, "b" => :B}) expected_result = { :map_string_int32 => {"a" => 1, "b" => 2}, :map_string_msg => {"a" => {:foo => 1}, "b" => {:foo => 2}}, :map_string_enum => {"a" => :A, "b" => :B} } assert_equal expected_result, m.to_h end def test_json_maps m = MapMessage.new(:map_string_int32 => {"a" => 1}) expected = {mapStringInt32: {a: 1}, mapStringMsg: {}, mapStringEnum: {}} expected_preserve = {map_string_int32: {a: 1}, map_string_msg: {}, map_string_enum: {}} assert_equal expected, JSON.parse(MapMessage.encode_json(m, :emit_defaults=>true), :symbolize_names => true) json = MapMessage.encode_json(m, :preserve_proto_fieldnames => true, :emit_defaults=>true) assert_equal expected_preserve, JSON.parse(json, :symbolize_names => true) m2 = MapMessage.decode_json(MapMessage.encode_json(m)) assert_equal m, m2 end def test_json_maps_emit_defaults_submsg m = MapMessage.new(:map_string_msg => {"a" => TestMessage2.new(foo: 0)}) expected = {mapStringInt32: {}, mapStringMsg: {a: {foo: 0}}, mapStringEnum: {}} actual = MapMessage.encode_json(m, :emit_defaults => true) assert_equal expected, JSON.parse(actual, :symbolize_names => true) end def test_json_emit_defaults_submsg m = TestSingularFields.new(singular_msg: proto_module::TestMessage2.new) expected = { singularInt32: 0, singularInt64: "0", singularUint32: 0, singularUint64: "0", singularBool: false, singularFloat: 0, singularDouble: 0, singularString: "", singularBytes: "", singularMsg: {}, singularEnum: "Default", } actual = proto_module::TestMessage.encode_json(m, :emit_defaults => true) assert_equal expected, JSON.parse(actual, :symbolize_names => true) end def test_respond_to msg = MapMessage.new assert_respond_to msg, :map_string_int32 refute_respond_to msg, :bacon end def test_file_descriptor file_descriptor = TestMessage.descriptor.file_descriptor refute_nil file_descriptor assert_equal "basic_test.proto", file_descriptor.name file_descriptor = TestEnum.descriptor.file_descriptor refute_nil file_descriptor assert_equal "basic_test.proto", file_descriptor.name end def test_map_freeze m = proto_module::MapMessage.new m.map_string_int32['a'] = 5 m.map_string_msg['b'] = proto_module::TestMessage2.new m.map_string_int32.freeze m.map_string_msg.freeze assert m.map_string_int32.frozen? assert m.map_string_msg.frozen? assert_raises(FrozenError) { m.map_string_int32['foo'] = 1 } assert_raises(FrozenError) { m.map_string_msg['bar'] = proto_module::TestMessage2.new } assert_raises(FrozenError) { m.map_string_int32.delete('a') } assert_raises(FrozenError) { m.map_string_int32.clear } end def test_map_length m = proto_module::MapMessage.new assert_equal 0, m.map_string_int32.length assert_equal 0, m.map_string_msg.length assert_equal 0, m.map_string_int32.size assert_equal 0, m.map_string_msg.size m.map_string_int32['a'] = 1 m.map_string_int32['b'] = 2 m.map_string_msg['a'] = proto_module::TestMessage2.new assert_equal 2, m.map_string_int32.length assert_equal 1, m.map_string_msg.length assert_equal 2, m.map_string_int32.size assert_equal 1, m.map_string_msg.size end def test_string_with_singleton_class_enabled str = 'foobar' # NOTE: Accessing a singleton class of an object changes its low level class representation # as far as the C API's CLASS_OF() method concerned, exposing the issue str.singleton_class m = proto_module::TestMessage.new( optional_string: str, optional_bytes: str ) assert_equal str, m.optional_string assert_equal str, m.optional_bytes end def test_utf8 m = proto_module::TestMessage.new( optional_string: "µpb", ) m2 = proto_module::TestMessage.decode(proto_module::TestMessage.encode(m)) assert_equal m2, m end def test_map_fields_respond_to? # regression test for issue 9202 msg = proto_module::MapMessage.new assert_respond_to msg, :map_string_int32= msg.map_string_int32 = Google::Protobuf::Map.new(:string, :int32) assert_respond_to msg, :map_string_int32 assert_equal( Google::Protobuf::Map.new(:string, :int32), msg.map_string_int32 ) assert_respond_to msg, :clear_map_string_int32 msg.clear_map_string_int32 refute_respond_to msg, :has_map_string_int32? assert_raises NoMethodError do msg.has_map_string_int32? end refute_respond_to msg, :map_string_int32_as_value assert_raises NoMethodError do msg.map_string_int32_as_value end refute_respond_to msg, :map_string_int32_as_value= assert_raises NoMethodError do msg.map_string_int32_as_value = :boom end end def test_has_presence assert_true TestMessage.descriptor.lookup("optional_int32").has_presence? assert_false TestMessage.descriptor.lookup("repeated_int32").has_presence? assert_false TestSingularFields.descriptor.lookup("singular_int32").has_presence? end def test_is_packed assert_false TestMessage.descriptor.lookup("optional_int32").is_packed? assert_true TestMessage.descriptor.lookup("repeated_int32").is_packed? end def test_file_descriptor_options file_descriptor = TestMessage.descriptor.file_descriptor assert_instance_of Google::Protobuf::FileOptions, file_descriptor.options assert file_descriptor.options.deprecated end def test_field_descriptor_options field_descriptor = TestDeprecatedMessage.descriptor.lookup("foo") assert_instance_of Google::Protobuf::FieldOptions, field_descriptor.options assert field_descriptor.options.deprecated end def test_descriptor_options descriptor = TestDeprecatedMessage.descriptor assert_instance_of Google::Protobuf::MessageOptions, descriptor.options assert descriptor.options.deprecated end def test_enum_descriptor_options enum_descriptor = TestDeprecatedEnum.descriptor assert_instance_of Google::Protobuf::EnumOptions, enum_descriptor.options assert enum_descriptor.options.deprecated end def test_oneof_descriptor_options descriptor = TestDeprecatedMessage.descriptor oneof_descriptor = descriptor.lookup_oneof("test_deprecated_message_oneof") assert_instance_of Google::Protobuf::OneofOptions, oneof_descriptor.options test_top_level_option = Google::Protobuf::DescriptorPool.generated_pool.lookup 'basic_test.test_top_level_option' assert_instance_of Google::Protobuf::FieldDescriptor, test_top_level_option assert_equal "Custom option value", test_top_level_option.get(oneof_descriptor.options) end def test_nested_extension descriptor = TestDeprecatedMessage.descriptor oneof_descriptor = descriptor.lookup_oneof("test_deprecated_message_oneof") assert_instance_of Google::Protobuf::OneofOptions, oneof_descriptor.options test_nested_option = Google::Protobuf::DescriptorPool.generated_pool.lookup 'basic_test.TestDeprecatedMessage.test_nested_option' assert_instance_of Google::Protobuf::FieldDescriptor, test_nested_option assert_equal "Another custom option value", test_nested_option.get(oneof_descriptor.options) end def test_options_deep_freeze descriptor = TestDeprecatedMessage.descriptor assert_raise FrozenError do descriptor.options.uninterpreted_option.push \ Google::Protobuf::UninterpretedOption.new end end def test_message_freeze message = TestDeprecatedMessage.new nested_message_2 = TestMessage2.new message.map_string_msg["message"] = TestMessage2.new message.repeated_msg.push(TestMessage2.new) message.freeze assert_raise FrozenError do message.map_string_msg["message"].foo = "bar" end assert_raise FrozenError do message.repeated_msg[0].foo = "bar" end end end def test_oneof_fields_respond_to? # regression test for issue 9202 msg = proto_module::OneofMessage.new # `has_` prefix + "?" suffix actions should work for oneofs fields and members. assert msg.has_my_oneof? assert msg.respond_to? :has_my_oneof? assert_respond_to msg, :has_a? refute msg.has_a? assert_respond_to msg, :has_b? refute msg.has_b? assert_respond_to msg, :has_c? refute msg.has_c? assert_respond_to msg, :has_d? refute msg.has_d? end def test_string_subclass str = "hello" myString = Class.new(String) m = proto_module::TestMessage.new( optional_string: myString.new(str), ) assert_equal str, m.optional_string end end