// Protocol Buffers - Google's data interchange format // Copyright 2023 Google LLC. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file or at // https://developers.google.com/open-source/licenses/bsd // Rust Protobuf runtime using the C++ kernel. use crate::ProtoStr; use crate::__internal::{Enum, Private, PtrAndLen, RawArena, RawMap, RawMessage, RawRepeatedField}; use crate::{ Map, Mut, ProxiedInMapValue, ProxiedInRepeated, Repeated, RepeatedMut, RepeatedView, SettableValue, View, }; use core::fmt::Debug; use paste::paste; use std::alloc::Layout; use std::cell::UnsafeCell; use std::convert::identity; use std::ffi::c_int; use std::fmt; use std::marker::PhantomData; use std::mem::MaybeUninit; use std::ops::Deref; use std::ptr::{self, NonNull}; /// A wrapper over a `proto2::Arena`. /// /// This is not a safe wrapper per se, because the allocation functions still /// have sharp edges (see their safety docs for more info). /// /// This is an owning type and will automatically free the arena when /// dropped. /// /// Note that this type is neither `Sync` nor `Send`. #[derive(Debug)] pub struct Arena { #[allow(dead_code)] ptr: RawArena, _not_sync: PhantomData>, } impl Arena { /// Allocates a fresh arena. #[inline] #[allow(clippy::new_without_default)] pub fn new() -> Self { Self { ptr: NonNull::dangling(), _not_sync: PhantomData } } /// Returns the raw, C++-managed pointer to the arena. #[inline] pub fn raw(&self) -> ! { unimplemented!() } /// Allocates some memory on the arena. /// /// # Safety /// /// TODO alignment requirement for layout #[inline] pub unsafe fn alloc(&self, _layout: Layout) -> &mut [MaybeUninit] { unimplemented!() } /// Resizes some memory on the arena. /// /// # Safety /// /// After calling this function, `ptr` is essentially zapped. `old` must /// be the layout `ptr` was allocated with via [`Arena::alloc()`]. /// TODO alignment for layout #[inline] pub unsafe fn resize(&self, _ptr: *mut u8, _old: Layout, _new: Layout) -> &[MaybeUninit] { unimplemented!() } } impl Drop for Arena { #[inline] fn drop(&mut self) { // unimplemented } } /// Serialized Protobuf wire format data. It's typically produced by /// `.serialize()`. /// /// This struct is ABI-compatible with the equivalent struct on the C++ side. It /// owns (and drops) its data. #[repr(C)] pub struct SerializedData { /// Owns the memory. data: NonNull, len: usize, } impl SerializedData { /// Constructs owned serialized data from raw components. /// /// # Safety /// - `data` must be readable for `len` bytes. /// - `data` must be an owned pointer and valid until deallocated. /// - `data` must have been allocated by the Rust global allocator with a /// size of `len` and align of 1. pub unsafe fn from_raw_parts(data: NonNull, len: usize) -> Self { Self { data, len } } /// Gets a raw slice pointer. pub fn as_ptr(&self) -> *const [u8] { ptr::slice_from_raw_parts(self.data.as_ptr(), self.len) } /// Gets a mutable raw slice pointer. fn as_mut_ptr(&mut self) -> *mut [u8] { ptr::slice_from_raw_parts_mut(self.data.as_ptr(), self.len) } } impl Deref for SerializedData { type Target = [u8]; fn deref(&self) -> &Self::Target { // SAFETY: `data` is valid for `len` bytes until deallocated as promised by // `from_raw_parts`. unsafe { &*self.as_ptr() } } } impl Drop for SerializedData { fn drop(&mut self) { // SAFETY: `data` was allocated by the Rust global allocator with a // size of `len` and align of 1 as promised by `from_raw_parts`. unsafe { drop(Box::from_raw(self.as_mut_ptr())) } } } impl fmt::Debug for SerializedData { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(self.deref(), f) } } impl SettableValue<[u8]> for SerializedData { fn set_on<'msg>(self, _private: Private, mut mutator: Mut<'msg, [u8]>) where [u8]: 'msg, { mutator.set(self.as_ref()) } } pub type BytesPresentMutData<'msg> = crate::vtable::RawVTableOptionalMutatorData<'msg, [u8]>; pub type BytesAbsentMutData<'msg> = crate::vtable::RawVTableOptionalMutatorData<'msg, [u8]>; pub type InnerBytesMut<'msg> = crate::vtable::RawVTableMutator<'msg, [u8]>; pub type InnerPrimitiveMut<'msg, T> = crate::vtable::RawVTableMutator<'msg, T>; /// The raw contents of every generated message. #[derive(Debug)] pub struct MessageInner { pub msg: RawMessage, } /// Mutators that point to their original message use this to do so. /// /// Since C++ messages manage their own memory, this can just copy the /// `RawMessage` instead of referencing an arena like UPB must. /// /// Note: even though this type is `Copy`, it should only be copied by /// protobuf internals that can maintain mutation invariants: /// /// - No concurrent mutation for any two fields in a message: this means /// mutators cannot be `Send` but are `Sync`. /// - If there are multiple accessible `Mut` to a single message at a time, they /// must be different fields, and not be in the same oneof. As such, a `Mut` /// cannot be `Clone` but *can* reborrow itself with `.as_mut()`, which /// converts `&'b mut Mut<'a, T>` to `Mut<'b, T>`. #[derive(Clone, Copy, Debug)] pub struct MutatorMessageRef<'msg> { msg: RawMessage, _phantom: PhantomData<&'msg mut ()>, } impl<'msg> MutatorMessageRef<'msg> { #[allow(clippy::needless_pass_by_ref_mut)] // Sound construction requires mutable access. pub fn new(_private: Private, msg: &'msg mut MessageInner) -> Self { MutatorMessageRef { msg: msg.msg, _phantom: PhantomData } } pub fn from_parent( _private: Private, _parent_msg: MutatorMessageRef<'msg>, message_field_ptr: RawMessage, ) -> Self { MutatorMessageRef { msg: message_field_ptr, _phantom: PhantomData } } pub fn msg(&self) -> RawMessage { self.msg } } pub fn copy_bytes_in_arena_if_needed_by_runtime<'msg>( _msg_ref: MutatorMessageRef<'msg>, val: &'msg [u8], ) -> &'msg [u8] { // Nothing to do, the message manages its own string memory for C++. val } /// The raw type-erased pointer version of `RepeatedMut`. /// /// Contains a `proto2::RepeatedField*` or `proto2::RepeatedPtrField*`. #[derive(Clone, Copy, Debug)] pub struct InnerRepeatedMut<'msg> { pub(crate) raw: RawRepeatedField, _phantom: PhantomData<&'msg ()>, } impl<'msg> InnerRepeatedMut<'msg> { #[doc(hidden)] pub fn new(_private: Private, raw: RawRepeatedField) -> Self { InnerRepeatedMut { raw, _phantom: PhantomData } } } macro_rules! impl_repeated_primitives { (@impl $($t:ty => [ $new_thunk:ident, $free_thunk:ident, $add_thunk:ident, $size_thunk:ident, $get_thunk:ident, $set_thunk:ident, $clear_thunk:ident, $copy_from_thunk:ident $(,)? ]),* $(,)?) => { $( extern "C" { fn $new_thunk() -> RawRepeatedField; fn $free_thunk(f: RawRepeatedField); fn $add_thunk(f: RawRepeatedField, v: $t); fn $size_thunk(f: RawRepeatedField) -> usize; fn $get_thunk(f: RawRepeatedField, i: usize) -> $t; fn $set_thunk(f: RawRepeatedField, i: usize, v: $t); fn $clear_thunk(f: RawRepeatedField); fn $copy_from_thunk(src: RawRepeatedField, dst: RawRepeatedField); } unsafe impl ProxiedInRepeated for $t { #[allow(dead_code)] fn repeated_new(_: Private) -> Repeated<$t> { unsafe { Repeated::from_inner(InnerRepeatedMut::new(Private, $new_thunk())) } } #[allow(dead_code)] unsafe fn repeated_free(_: Private, f: &mut Repeated<$t>) { unsafe { $free_thunk(f.as_mut().as_raw(Private)) } } fn repeated_len(f: View>) -> usize { unsafe { $size_thunk(f.as_raw(Private)) } } fn repeated_push(mut f: Mut>, v: View<$t>) { unsafe { $add_thunk(f.as_raw(Private), v) } } fn repeated_clear(mut f: Mut>) { unsafe { $clear_thunk(f.as_raw(Private)) } } unsafe fn repeated_get_unchecked(f: View>, i: usize) -> View<$t> { unsafe { $get_thunk(f.as_raw(Private), i) } } unsafe fn repeated_set_unchecked(mut f: Mut>, i: usize, v: View<$t>) { unsafe { $set_thunk(f.as_raw(Private), i, v) } } fn repeated_copy_from(src: View>, mut dest: Mut>) { unsafe { $copy_from_thunk(src.as_raw(Private), dest.as_raw(Private)) } } } )* }; ($($t:ty),* $(,)?) => { paste!{ impl_repeated_primitives!(@impl $( $t => [ [< __pb_rust_RepeatedField_ $t _new >], [< __pb_rust_RepeatedField_ $t _free >], [< __pb_rust_RepeatedField_ $t _add >], [< __pb_rust_RepeatedField_ $t _size >], [< __pb_rust_RepeatedField_ $t _get >], [< __pb_rust_RepeatedField_ $t _set >], [< __pb_rust_RepeatedField_ $t _clear >], [< __pb_rust_RepeatedField_ $t _copy_from >], ], )*); } }; } impl_repeated_primitives!(i32, u32, i64, u64, f32, f64, bool); /// Cast a `RepeatedView` to `RepeatedView`. pub fn cast_enum_repeated_view( private: Private, repeated: RepeatedView, ) -> RepeatedView { // SAFETY: the implementer of `Enum` has promised that this // raw repeated is a type-erased `proto2::RepeatedField*`. unsafe { RepeatedView::from_raw(private, repeated.as_raw(Private)) } } /// Cast a `RepeatedMut` to `RepeatedMut`. /// /// Writing an unknown value is sound because all enums /// are representationally open. pub fn cast_enum_repeated_mut( private: Private, mut repeated: RepeatedMut, ) -> RepeatedMut { // SAFETY: the implementer of `Enum` has promised that this // raw repeated is a type-erased `proto2::RepeatedField*`. unsafe { RepeatedMut::from_inner( private, InnerRepeatedMut { raw: repeated.as_raw(Private), _phantom: PhantomData }, ) } } #[derive(Clone, Copy, Debug)] pub struct InnerMapMut<'msg> { pub(crate) raw: RawMap, _phantom: PhantomData<&'msg ()>, } impl<'msg> InnerMapMut<'msg> { pub fn new(_private: Private, raw: RawMap) -> Self { InnerMapMut { raw, _phantom: PhantomData } } } macro_rules! impl_ProxiedInMapValue_for_non_generated_value_types { ($key_t:ty, $ffi_key_t:ty, $to_ffi_key:expr, for $($t:ty, $ffi_t:ty, $to_ffi_value:expr, $from_ffi_value:expr, $zero_val:literal;)*) => { paste! { $( extern "C" { fn [< __pb_rust_Map_ $key_t _ $t _new >]() -> RawMap; fn [< __pb_rust_Map_ $key_t _ $t _free >](m: RawMap); fn [< __pb_rust_Map_ $key_t _ $t _clear >](m: RawMap); fn [< __pb_rust_Map_ $key_t _ $t _size >](m: RawMap) -> usize; fn [< __pb_rust_Map_ $key_t _ $t _insert >](m: RawMap, key: $ffi_key_t, value: $ffi_t); fn [< __pb_rust_Map_ $key_t _ $t _get >](m: RawMap, key: $ffi_key_t, value: *mut $ffi_t) -> bool; fn [< __pb_rust_Map_ $key_t _ $t _remove >](m: RawMap, key: $ffi_key_t, value: *mut $ffi_t) -> bool; } impl ProxiedInMapValue<$key_t> for $t { fn map_new(_private: Private) -> Map<$key_t, Self> { unsafe { Map::from_inner( Private, InnerMapMut { raw: [< __pb_rust_Map_ $key_t _ $t _new >](), _phantom: PhantomData } ) } } unsafe fn map_free(_private: Private, map: &mut Map<$key_t, Self>) { // SAFETY: // - `map.inner.raw` is a live `RawMap` // - This function is only called once for `map` in `Drop`. unsafe { [< __pb_rust_Map_ $key_t _ $t _free >](map.inner.raw); } } fn map_clear(map: Mut<'_, Map<$key_t, Self>>) { unsafe { [< __pb_rust_Map_ $key_t _ $t _clear >](map.inner.raw); } } fn map_len(map: View<'_, Map<$key_t, Self>>) -> usize { unsafe { [< __pb_rust_Map_ $key_t _ $t _size >](map.raw) } } fn map_insert(map: Mut<'_, Map<$key_t, Self>>, key: View<'_, $key_t>, value: View<'_, Self>) -> bool { let ffi_key = $to_ffi_key(key); let ffi_value = $to_ffi_value(value); unsafe { [< __pb_rust_Map_ $key_t _ $t _insert >](map.inner.raw, ffi_key, ffi_value) } true } fn map_get<'a>(map: View<'a, Map<$key_t, Self>>, key: View<'_, $key_t>) -> Option> { let ffi_key = $to_ffi_key(key); let mut ffi_value = $to_ffi_value($zero_val); let found = unsafe { [< __pb_rust_Map_ $key_t _ $t _get >](map.raw, ffi_key, &mut ffi_value) }; if !found { return None; } Some($from_ffi_value(ffi_value)) } fn map_remove(map: Mut<'_, Map<$key_t, Self>>, key: View<'_, $key_t>) -> bool { let ffi_key = $to_ffi_key(key); let mut ffi_value = $to_ffi_value($zero_val); unsafe { [< __pb_rust_Map_ $key_t _ $t _remove >](map.inner.raw, ffi_key, &mut ffi_value) } } } )* } } } fn str_to_ptrlen<'msg>(val: impl Into<&'msg ProtoStr>) -> PtrAndLen { val.into().as_bytes().into() } // Warning: this function is unsound on its own! `val.as_ref()` must be safe to // call. fn ptrlen_to_str<'msg>(val: PtrAndLen) -> &'msg ProtoStr { unsafe { ProtoStr::from_utf8_unchecked(val.as_ref()) } } fn bytes_to_ptrlen(val: &[u8]) -> PtrAndLen { val.into() } // Warning: this function is unsound on its own! `val.as_ref()` must be safe to // call. fn ptrlen_to_bytes<'msg>(val: PtrAndLen) -> &'msg [u8] { unsafe { val.as_ref() } } // This type alias is used so the macro // `impl_ProxiedInMapValue_for_non_generated_value_types` can generate // valid extern "C" symbol names for functions working with [u8] types. type Bytes = [u8]; macro_rules! impl_ProxiedInMapValue_for_key_types { ($($t:ty, $ffi_t:ty, $to_ffi_key:expr;)*) => { paste! { $( impl_ProxiedInMapValue_for_non_generated_value_types!($t, $ffi_t, $to_ffi_key, for f32, f32, identity, identity, 0f32; f64, f64, identity, identity, 0f64; i32, i32, identity, identity, 0i32; u32, u32, identity, identity, 0u32; i64, i64, identity, identity, 0i64; u64, u64, identity, identity, 0u64; bool, bool, identity, identity, false; ProtoStr, PtrAndLen, str_to_ptrlen, ptrlen_to_str, ""; Bytes, PtrAndLen, bytes_to_ptrlen, ptrlen_to_bytes, b""; ); )* } } } impl_ProxiedInMapValue_for_key_types!( i32, i32, identity; u32, u32, identity; i64, i64, identity; u64, u64, identity; bool, bool, identity; ProtoStr, PtrAndLen, str_to_ptrlen; ); #[cfg(test)] mod tests { use super::*; use googletest::prelude::*; use std::boxed::Box; // We need to allocate the byte array so SerializedData can own it and // deallocate it in its drop. This function makes it easier to do so for our // tests. fn allocate_byte_array(content: &'static [u8]) -> (*mut u8, usize) { let content: &mut [u8] = Box::leak(content.into()); (content.as_mut_ptr(), content.len()) } #[test] fn test_serialized_data_roundtrip() { let (ptr, len) = allocate_byte_array(b"Hello world"); let serialized_data = SerializedData { data: NonNull::new(ptr).unwrap(), len }; assert_that!(&*serialized_data, eq(b"Hello world")); } }