/* ** upb::Encoder ** ** Since we are implementing pure handlers (ie. without any out-of-band access ** to pre-computed lengths), we have to buffer all submessages before we can ** emit even their first byte. ** ** Not knowing the size of submessages also means we can't write a perfect ** zero-copy implementation, even with buffering. Lengths are stored as ** varints, which means that we don't know how many bytes to reserve for the ** length until we know what the length is. ** ** This leaves us with three main choices: ** ** 1. buffer all submessage data in a temporary buffer, then copy it exactly ** once into the output buffer. ** ** 2. attempt to buffer data directly into the output buffer, estimating how ** many bytes each length will take. When our guesses are wrong, use ** memmove() to grow or shrink the allotted space. ** ** 3. buffer directly into the output buffer, allocating a max length ** ahead-of-time for each submessage length. If we overallocated, we waste ** space, but no memcpy() or memmove() is required. This approach requires ** defining a maximum size for submessages and rejecting submessages that ** exceed that size. ** ** (2) and (3) have the potential to have better performance, but they are more ** complicated and subtle to implement: ** ** (3) requires making an arbitrary choice of the maximum message size; it ** wastes space when submessages are shorter than this and fails ** completely when they are longer. This makes it more finicky and ** requires configuration based on the input. It also makes it impossible ** to perfectly match the output of reference encoders that always use the ** optimal amount of space for each length. ** ** (2) requires guessing the the size upfront, and if multiple lengths are ** guessed wrong the minimum required number of memmove() operations may ** be complicated to compute correctly. Implemented properly, it may have ** a useful amortized or average cost, but more investigation is required ** to determine this and what the optimal algorithm is to achieve it. ** ** (1) makes you always pay for exactly one copy, but its implementation is ** the simplest and its performance is predictable. ** ** So for now, we implement (1) only. If we wish to optimize later, we should ** be able to do it without affecting users. ** ** The strategy is to buffer the segments of data that do *not* depend on ** unknown lengths in one buffer, and keep a separate buffer of segment pointers ** and lengths. When the top-level submessage ends, we can go beginning to end, ** alternating the writing of lengths with memcpy() of the rest of the data. ** At the top level though, no buffering is required. */ #include "upb/pb/encoder.h" #include "upb/pb/varint.int.h" #include "upb/port_def.inc" /* The output buffer is divided into segments; a segment is a string of data * that is "ready to go" -- it does not need any varint lengths inserted into * the middle. The seams between segments are where varints will be inserted * once they are known. * * We also use the concept of a "run", which is a range of encoded bytes that * occur at a single submessage level. Every segment contains one or more runs. * * A segment can span messages. Consider: * * .--Submessage lengths---------. * | | | * | V V * V | |--------------- | |----------------- * Submessages: | |----------------------------------------------- * Top-level msg: ------------------------------------------------------------ * * Segments: ----- ------------------- ----------------- * Runs: *---- *--------------*--- *---------------- * (* marks the start) * * Note that the top-level menssage is not in any segment because it does not * have any length preceding it. * * A segment is only interrupted when another length needs to be inserted. So * observe how the second segment spans both the inner submessage and part of * the next enclosing message. */ typedef struct { uint32_t msglen; /* The length to varint-encode before this segment. */ uint32_t seglen; /* Length of the segment. */ } upb_pb_encoder_segment; struct upb_pb_encoder { upb_arena *arena; /* Our input and output. */ upb_sink input_; upb_bytessink output_; /* The "subclosure" -- used as the inner closure as part of the bytessink * protocol. */ void *subc; /* The output buffer and limit, and our current write position. "buf" * initially points to "initbuf", but is dynamically allocated if we need to * grow beyond the initial size. */ char *buf, *ptr, *limit; /* The beginning of the current run, or undefined if we are at the top * level. */ char *runbegin; /* The list of segments we are accumulating. */ upb_pb_encoder_segment *segbuf, *segptr, *seglimit; /* The stack of enclosing submessages. Each entry in the stack points to the * segment where this submessage's length is being accumulated. */ int *stack, *top, *stacklimit; /* Depth of startmsg/endmsg calls. */ int depth; }; /* low-level buffering ********************************************************/ /* Low-level functions for interacting with the output buffer. */ /* TODO(haberman): handle pushback */ static void putbuf(upb_pb_encoder *e, const char *buf, size_t len) { size_t n = upb_bytessink_putbuf(e->output_, e->subc, buf, len, NULL); UPB_ASSERT(n == len); } static upb_pb_encoder_segment *top(upb_pb_encoder *e) { return &e->segbuf[*e->top]; } /* Call to ensure that at least "bytes" bytes are available for writing at * e->ptr. Returns false if the bytes could not be allocated. */ static bool reserve(upb_pb_encoder *e, size_t bytes) { if ((size_t)(e->limit - e->ptr) < bytes) { /* Grow buffer. */ char *new_buf; size_t needed = bytes + (e->ptr - e->buf); size_t old_size = e->limit - e->buf; size_t new_size = old_size; while (new_size < needed) { new_size *= 2; } new_buf = upb_arena_realloc(e->arena, e->buf, old_size, new_size); if (new_buf == NULL) { return false; } e->ptr = new_buf + (e->ptr - e->buf); e->runbegin = new_buf + (e->runbegin - e->buf); e->limit = new_buf + new_size; e->buf = new_buf; } return true; } /* Call when "bytes" bytes have been writte at e->ptr. The caller *must* have * previously called reserve() with at least this many bytes. */ static void encoder_advance(upb_pb_encoder *e, size_t bytes) { UPB_ASSERT((size_t)(e->limit - e->ptr) >= bytes); e->ptr += bytes; } /* Call when all of the bytes for a handler have been written. Flushes the * bytes if possible and necessary, returning false if this failed. */ static bool commit(upb_pb_encoder *e) { if (!e->top) { /* We aren't inside a delimited region. Flush our accumulated bytes to * the output. * * TODO(haberman): in the future we may want to delay flushing for * efficiency reasons. */ putbuf(e, e->buf, e->ptr - e->buf); e->ptr = e->buf; } return true; } /* Writes the given bytes to the buffer, handling reserve/advance. */ static bool encode_bytesval(upb_pb_encoder *e, const void *data, size_t len) { if (!reserve(e, len)) { return false; } memcpy(e->ptr, data, len); encoder_advance(e, len); return true; } /* Finish the current run by adding the run totals to the segment and message * length. */ static void accumulate(upb_pb_encoder *e) { size_t run_len; UPB_ASSERT(e->ptr >= e->runbegin); run_len = e->ptr - e->runbegin; e->segptr->seglen += run_len; top(e)->msglen += run_len; e->runbegin = e->ptr; } /* Call to indicate the start of delimited region for which the full length is * not yet known. All data will be buffered until the length is known. * Delimited regions may be nested; their lengths will all be tracked properly. */ static bool start_delim(upb_pb_encoder *e) { if (e->top) { /* We are already buffering, advance to the next segment and push it on the * stack. */ accumulate(e); if (++e->top == e->stacklimit) { /* TODO(haberman): grow stack? */ return false; } if (++e->segptr == e->seglimit) { /* Grow segment buffer. */ size_t old_size = (e->seglimit - e->segbuf) * sizeof(upb_pb_encoder_segment); size_t new_size = old_size * 2; upb_pb_encoder_segment *new_buf = upb_arena_realloc(e->arena, e->segbuf, old_size, new_size); if (new_buf == NULL) { return false; } e->segptr = new_buf + (e->segptr - e->segbuf); e->seglimit = new_buf + (new_size / sizeof(upb_pb_encoder_segment)); e->segbuf = new_buf; } } else { /* We were previously at the top level, start buffering. */ e->segptr = e->segbuf; e->top = e->stack; e->runbegin = e->ptr; } *e->top = (int)(e->segptr - e->segbuf); e->segptr->seglen = 0; e->segptr->msglen = 0; return true; } /* Call to indicate the end of a delimited region. We now know the length of * the delimited region. If we are not nested inside any other delimited * regions, we can now emit all of the buffered data we accumulated. */ static bool end_delim(upb_pb_encoder *e) { size_t msglen; accumulate(e); msglen = top(e)->msglen; if (e->top == e->stack) { /* All lengths are now available, emit all buffered data. */ char buf[UPB_PB_VARINT_MAX_LEN]; upb_pb_encoder_segment *s; const char *ptr = e->buf; for (s = e->segbuf; s <= e->segptr; s++) { size_t lenbytes = upb_vencode64(s->msglen, buf); putbuf(e, buf, lenbytes); putbuf(e, ptr, s->seglen); ptr += s->seglen; } e->ptr = e->buf; e->top = NULL; } else { /* Need to keep buffering; propagate length info into enclosing * submessages. */ --e->top; top(e)->msglen += msglen + upb_varint_size(msglen); } return true; } /* tag_t **********************************************************************/ /* A precomputed (pre-encoded) tag and length. */ typedef struct { uint8_t bytes; char tag[7]; } tag_t; /* Allocates a new tag for this field, and sets it in these handlerattr. */ static void new_tag(upb_handlers *h, const upb_fielddef *f, upb_wiretype_t wt, upb_handlerattr *attr) { uint32_t n = upb_fielddef_number(f); tag_t *tag = upb_gmalloc(sizeof(tag_t)); tag->bytes = upb_vencode64((n << 3) | wt, tag->tag); attr->handler_data = tag; upb_handlers_addcleanup(h, tag, upb_gfree); } static bool encode_tagval(upb_pb_encoder *e, const tag_t *tag) { return encode_bytesval(e, tag->tag, tag->bytes); } /* encoding of wire types *****************************************************/ static bool doencode_fixed64(upb_pb_encoder *e, uint64_t val) { /* TODO(haberman): byte-swap for big endian. */ return encode_bytesval(e, &val, sizeof(uint64_t)); } static bool doencode_fixed32(upb_pb_encoder *e, uint32_t val) { /* TODO(haberman): byte-swap for big endian. */ return encode_bytesval(e, &val, sizeof(uint32_t)); } static bool doencode_varint(upb_pb_encoder *e, uint64_t val) { if (!reserve(e, UPB_PB_VARINT_MAX_LEN)) { return false; } encoder_advance(e, upb_vencode64(val, e->ptr)); return true; } static uint64_t dbl2uint64(double d) { uint64_t ret; memcpy(&ret, &d, sizeof(uint64_t)); return ret; } static uint32_t flt2uint32(float d) { uint32_t ret; memcpy(&ret, &d, sizeof(uint32_t)); return ret; } /* encoding of proto types ****************************************************/ static bool startmsg(void *c, const void *hd) { upb_pb_encoder *e = c; UPB_UNUSED(hd); if (e->depth++ == 0) { upb_bytessink_start(e->output_, 0, &e->subc); } return true; } static bool endmsg(void *c, const void *hd, upb_status *status) { upb_pb_encoder *e = c; UPB_UNUSED(hd); UPB_UNUSED(status); if (--e->depth == 0) { upb_bytessink_end(e->output_); } return true; } static void *encode_startdelimfield(void *c, const void *hd) { bool ok = encode_tagval(c, hd) && commit(c) && start_delim(c); return ok ? c : UPB_BREAK; } static bool encode_unknown(void *c, const void *hd, const char *buf, size_t len) { UPB_UNUSED(hd); return encode_bytesval(c, buf, len) && commit(c); } static bool encode_enddelimfield(void *c, const void *hd) { UPB_UNUSED(hd); return end_delim(c); } static void *encode_startgroup(void *c, const void *hd) { return (encode_tagval(c, hd) && commit(c)) ? c : UPB_BREAK; } static bool encode_endgroup(void *c, const void *hd) { return encode_tagval(c, hd) && commit(c); } static void *encode_startstr(void *c, const void *hd, size_t size_hint) { UPB_UNUSED(size_hint); return encode_startdelimfield(c, hd); } static size_t encode_strbuf(void *c, const void *hd, const char *buf, size_t len, const upb_bufhandle *h) { UPB_UNUSED(hd); UPB_UNUSED(h); return encode_bytesval(c, buf, len) ? len : 0; } #define T(type, ctype, convert, encode) \ static bool encode_scalar_##type(void *e, const void *hd, ctype val) { \ return encode_tagval(e, hd) && encode(e, (convert)(val)) && commit(e); \ } \ static bool encode_packed_##type(void *e, const void *hd, ctype val) { \ UPB_UNUSED(hd); \ return encode(e, (convert)(val)); \ } T(double, double, dbl2uint64, doencode_fixed64) T(float, float, flt2uint32, doencode_fixed32) T(int64, int64_t, uint64_t, doencode_varint) T(int32, int32_t, int64_t, doencode_varint) T(fixed64, uint64_t, uint64_t, doencode_fixed64) T(fixed32, uint32_t, uint32_t, doencode_fixed32) T(bool, bool, bool, doencode_varint) T(uint32, uint32_t, uint32_t, doencode_varint) T(uint64, uint64_t, uint64_t, doencode_varint) T(enum, int32_t, uint32_t, doencode_varint) T(sfixed32, int32_t, uint32_t, doencode_fixed32) T(sfixed64, int64_t, uint64_t, doencode_fixed64) T(sint32, int32_t, upb_zzenc_32, doencode_varint) T(sint64, int64_t, upb_zzenc_64, doencode_varint) #undef T /* code to build the handlers *************************************************/ #include static void newhandlers_callback(const void *closure, upb_handlers *h) { const upb_msgdef *m; int i, n; UPB_UNUSED(closure); upb_handlers_setstartmsg(h, startmsg, NULL); upb_handlers_setendmsg(h, endmsg, NULL); upb_handlers_setunknown(h, encode_unknown, NULL); m = upb_handlers_msgdef(h); n = upb_msgdef_fieldcount(m); for(i = 0; i < n; i++) { const upb_fielddef *f = upb_msgdef_field(m, i); bool packed = upb_fielddef_isseq(f) && upb_fielddef_isprimitive(f) && upb_fielddef_packed(f); upb_handlerattr attr = UPB_HANDLERATTR_INIT; upb_wiretype_t wt = packed ? UPB_WIRE_TYPE_DELIMITED : upb_pb_native_wire_types[upb_fielddef_descriptortype(f)]; /* Pre-encode the tag for this field. */ new_tag(h, f, wt, &attr); if (packed) { upb_handlers_setstartseq(h, f, encode_startdelimfield, &attr); upb_handlers_setendseq(h, f, encode_enddelimfield, &attr); } #define T(upper, lower, upbtype) \ case UPB_DESCRIPTOR_TYPE_##upper: \ if (packed) { \ upb_handlers_set##upbtype(h, f, encode_packed_##lower, &attr); \ } else { \ upb_handlers_set##upbtype(h, f, encode_scalar_##lower, &attr); \ } \ break; switch (upb_fielddef_descriptortype(f)) { T(DOUBLE, double, double); T(FLOAT, float, float); T(INT64, int64, int64); T(INT32, int32, int32); T(FIXED64, fixed64, uint64); T(FIXED32, fixed32, uint32); T(BOOL, bool, bool); T(UINT32, uint32, uint32); T(UINT64, uint64, uint64); T(ENUM, enum, int32); T(SFIXED32, sfixed32, int32); T(SFIXED64, sfixed64, int64); T(SINT32, sint32, int32); T(SINT64, sint64, int64); case UPB_DESCRIPTOR_TYPE_STRING: case UPB_DESCRIPTOR_TYPE_BYTES: upb_handlers_setstartstr(h, f, encode_startstr, &attr); upb_handlers_setendstr(h, f, encode_enddelimfield, &attr); upb_handlers_setstring(h, f, encode_strbuf, &attr); break; case UPB_DESCRIPTOR_TYPE_MESSAGE: upb_handlers_setstartsubmsg(h, f, encode_startdelimfield, &attr); upb_handlers_setendsubmsg(h, f, encode_enddelimfield, &attr); break; case UPB_DESCRIPTOR_TYPE_GROUP: { /* Endgroup takes a different tag (wire_type = END_GROUP). */ upb_handlerattr attr2 = UPB_HANDLERATTR_INIT; new_tag(h, f, UPB_WIRE_TYPE_END_GROUP, &attr2); upb_handlers_setstartsubmsg(h, f, encode_startgroup, &attr); upb_handlers_setendsubmsg(h, f, encode_endgroup, &attr2); break; } } #undef T } } void upb_pb_encoder_reset(upb_pb_encoder *e) { e->segptr = NULL; e->top = NULL; e->depth = 0; } /* public API *****************************************************************/ upb_handlercache *upb_pb_encoder_newcache(void) { return upb_handlercache_new(newhandlers_callback, NULL); } upb_pb_encoder *upb_pb_encoder_create(upb_arena *arena, const upb_handlers *h, upb_bytessink output) { const size_t initial_bufsize = 256; const size_t initial_segbufsize = 16; /* TODO(haberman): make this configurable. */ const size_t stack_size = 64; upb_pb_encoder *e = upb_arena_malloc(arena, sizeof(upb_pb_encoder)); if (!e) return NULL; e->buf = upb_arena_malloc(arena, initial_bufsize); e->segbuf = upb_arena_malloc(arena, initial_segbufsize * sizeof(*e->segbuf)); e->stack = upb_arena_malloc(arena, stack_size * sizeof(*e->stack)); if (!e->buf || !e->segbuf || !e->stack) { return NULL; } e->limit = e->buf + initial_bufsize; e->seglimit = e->segbuf + initial_segbufsize; e->stacklimit = e->stack + stack_size; upb_pb_encoder_reset(e); upb_sink_reset(&e->input_, h, e); e->arena = arena; e->output_ = output; e->subc = output.closure; e->ptr = e->buf; return e; } upb_sink upb_pb_encoder_input(upb_pb_encoder *e) { return e->input_; }