/* Amalgamated source file */ #include "upb.h" /* * This is where we define macros used across upb. * * All of these macros are undef'd in port_undef.inc to avoid leaking them to * users. * * The correct usage is: * * #include "upb/foobar.h" * #include "upb/baz.h" * * // MUST be last included header. * #include "upb/port_def.inc" * * // Code for this file. * // <...> * * // Can be omitted for .c files, required for .h. * #include "upb/port_undef.inc" * * This file is private and must not be included by users! */ #ifndef UINTPTR_MAX #error must include stdint.h first #endif #if UINTPTR_MAX == 0xffffffff #define UPB_SIZE(size32, size64) size32 #else #define UPB_SIZE(size32, size64) size64 #endif #define UPB_FIELD_AT(msg, fieldtype, offset) \ *(fieldtype*)((const char*)(msg) + offset) #define UPB_READ_ONEOF(msg, fieldtype, offset, case_offset, case_val, default) \ UPB_FIELD_AT(msg, int, case_offset) == case_val \ ? UPB_FIELD_AT(msg, fieldtype, offset) \ : default #define UPB_WRITE_ONEOF(msg, fieldtype, offset, value, case_offset, case_val) \ UPB_FIELD_AT(msg, int, case_offset) = case_val; \ UPB_FIELD_AT(msg, fieldtype, offset) = value; /* UPB_INLINE: inline if possible, emit standalone code if required. */ #ifdef __cplusplus #define UPB_INLINE inline #elif defined (__GNUC__) || defined(__clang__) #define UPB_INLINE static __inline__ #else #define UPB_INLINE static #endif /* Hints to the compiler about likely/unlikely branches. */ #if defined (__GNUC__) || defined(__clang__) #define UPB_LIKELY(x) __builtin_expect((x),1) #define UPB_UNLIKELY(x) __builtin_expect((x),0) #else #define UPB_LIKELY(x) (x) #define UPB_UNLIKELY(x) (x) #endif /* Define UPB_BIG_ENDIAN manually if you're on big endian and your compiler * doesn't provide these preprocessor symbols. */ #if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) #define UPB_BIG_ENDIAN #endif /* Macros for function attributes on compilers that support them. */ #ifdef __GNUC__ #define UPB_FORCEINLINE __inline__ __attribute__((always_inline)) #define UPB_NOINLINE __attribute__((noinline)) #define UPB_NORETURN __attribute__((__noreturn__)) #else /* !defined(__GNUC__) */ #define UPB_FORCEINLINE #define UPB_NOINLINE #define UPB_NORETURN #endif #if __STDC_VERSION__ >= 199901L || __cplusplus >= 201103L /* C99/C++11 versions. */ #include #define _upb_snprintf snprintf #define _upb_vsnprintf vsnprintf #define _upb_va_copy(a, b) va_copy(a, b) #elif defined(_MSC_VER) /* Microsoft C/C++ versions. */ #include #include #if _MSC_VER < 1900 int msvc_snprintf(char* s, size_t n, const char* format, ...); int msvc_vsnprintf(char* s, size_t n, const char* format, va_list arg); #define UPB_MSVC_VSNPRINTF #define _upb_snprintf msvc_snprintf #define _upb_vsnprintf msvc_vsnprintf #else #define _upb_snprintf snprintf #define _upb_vsnprintf vsnprintf #endif #define _upb_va_copy(a, b) va_copy(a, b) #elif defined __GNUC__ /* A few hacky workarounds for functions not in C89. * For internal use only! * TODO(haberman): fix these by including our own implementations, or finding * another workaround. */ #define _upb_snprintf __builtin_snprintf #define _upb_vsnprintf __builtin_vsnprintf #define _upb_va_copy(a, b) __va_copy(a, b) #else #error Need implementations of [v]snprintf and va_copy #endif #ifdef __cplusplus #if __cplusplus >= 201103L || defined(__GXX_EXPERIMENTAL_CXX0X__) || \ (defined(_MSC_VER) && _MSC_VER >= 1900) // C++11 is present #else #error upb requires C++11 for C++ support #endif #endif #define UPB_MAX(x, y) ((x) > (y) ? (x) : (y)) #define UPB_MIN(x, y) ((x) < (y) ? (x) : (y)) #define UPB_UNUSED(var) (void)var /* UPB_ASSERT(): in release mode, we use the expression without letting it be * evaluated. This prevents "unused variable" warnings. */ #ifdef NDEBUG #define UPB_ASSERT(expr) do {} while (false && (expr)) #else #define UPB_ASSERT(expr) assert(expr) #endif /* UPB_ASSERT_DEBUGVAR(): assert that uses functions or variables that only * exist in debug mode. This turns into regular assert. */ #define UPB_ASSERT_DEBUGVAR(expr) assert(expr) #if defined(__GNUC__) || defined(__clang__) #define UPB_UNREACHABLE() do { assert(0); __builtin_unreachable(); } while(0) #else #define UPB_UNREACHABLE() do { assert(0); } while(0) #endif /* UPB_INFINITY representing floating-point positive infinity. */ #include #ifdef INFINITY #define UPB_INFINITY INFINITY #else #define UPB_INFINITY (1.0 / 0.0) #endif #include /* Maps descriptor type -> upb field type. */ const uint8_t upb_desctype_to_fieldtype[] = { UPB_WIRE_TYPE_END_GROUP, /* ENDGROUP */ UPB_TYPE_DOUBLE, /* DOUBLE */ UPB_TYPE_FLOAT, /* FLOAT */ UPB_TYPE_INT64, /* INT64 */ UPB_TYPE_UINT64, /* UINT64 */ UPB_TYPE_INT32, /* INT32 */ UPB_TYPE_UINT64, /* FIXED64 */ UPB_TYPE_UINT32, /* FIXED32 */ UPB_TYPE_BOOL, /* BOOL */ UPB_TYPE_STRING, /* STRING */ UPB_TYPE_MESSAGE, /* GROUP */ UPB_TYPE_MESSAGE, /* MESSAGE */ UPB_TYPE_BYTES, /* BYTES */ UPB_TYPE_UINT32, /* UINT32 */ UPB_TYPE_ENUM, /* ENUM */ UPB_TYPE_INT32, /* SFIXED32 */ UPB_TYPE_INT64, /* SFIXED64 */ UPB_TYPE_INT32, /* SINT32 */ UPB_TYPE_INT64, /* SINT64 */ }; /* Data pertaining to the parse. */ typedef struct { const char *ptr; /* Current parsing position. */ const char *field_start; /* Start of this field. */ const char *limit; /* End of delimited region or end of buffer. */ upb_arena *arena; int depth; uint32_t end_group; /* Set to field number of END_GROUP tag, if any. */ } upb_decstate; /* Data passed by value to each parsing function. */ typedef struct { char *msg; const upb_msglayout *layout; upb_decstate *state; } upb_decframe; #define CHK(x) if (!(x)) { return 0; } static bool upb_skip_unknowngroup(upb_decstate *d, int field_number); static bool upb_decode_message(upb_decstate *d, char *msg, const upb_msglayout *l); static bool upb_decode_varint(const char **ptr, const char *limit, uint64_t *val) { uint8_t byte; int bitpos = 0; const char *p = *ptr; *val = 0; do { CHK(bitpos < 70 && p < limit); byte = *p; *val |= (uint64_t)(byte & 0x7F) << bitpos; p++; bitpos += 7; } while (byte & 0x80); *ptr = p; return true; } static bool upb_decode_varint32(const char **ptr, const char *limit, uint32_t *val) { uint64_t u64; CHK(upb_decode_varint(ptr, limit, &u64) && u64 <= UINT32_MAX); *val = (uint32_t)u64; return true; } static bool upb_decode_64bit(const char **ptr, const char *limit, uint64_t *val) { CHK(limit - *ptr >= 8); memcpy(val, *ptr, 8); *ptr += 8; return true; } static bool upb_decode_32bit(const char **ptr, const char *limit, uint32_t *val) { CHK(limit - *ptr >= 4); memcpy(val, *ptr, 4); *ptr += 4; return true; } static int32_t upb_zzdecode_32(uint32_t n) { return (n >> 1) ^ -(int32_t)(n & 1); } static int64_t upb_zzdecode_64(uint64_t n) { return (n >> 1) ^ -(int64_t)(n & 1); } static bool upb_decode_string(const char **ptr, const char *limit, int *outlen) { uint32_t len; CHK(upb_decode_varint32(ptr, limit, &len) && len < INT32_MAX && limit - *ptr >= (int32_t)len); *outlen = len; return true; } static void upb_set32(void *msg, size_t ofs, uint32_t val) { memcpy((char*)msg + ofs, &val, sizeof(val)); } static bool upb_append_unknown(upb_decstate *d, upb_decframe *frame) { upb_msg_addunknown(frame->msg, d->field_start, d->ptr - d->field_start, d->arena); return true; } static bool upb_skip_unknownfielddata(upb_decstate *d, uint32_t tag, uint32_t group_fieldnum) { switch (tag & 7) { case UPB_WIRE_TYPE_VARINT: { uint64_t val; return upb_decode_varint(&d->ptr, d->limit, &val); } case UPB_WIRE_TYPE_32BIT: { uint32_t val; return upb_decode_32bit(&d->ptr, d->limit, &val); } case UPB_WIRE_TYPE_64BIT: { uint64_t val; return upb_decode_64bit(&d->ptr, d->limit, &val); } case UPB_WIRE_TYPE_DELIMITED: { int len; CHK(upb_decode_string(&d->ptr, d->limit, &len)); d->ptr += len; return true; } case UPB_WIRE_TYPE_START_GROUP: return upb_skip_unknowngroup(d, tag >> 3); case UPB_WIRE_TYPE_END_GROUP: return (tag >> 3) == group_fieldnum; } return false; } static bool upb_skip_unknowngroup(upb_decstate *d, int field_number) { while (d->ptr < d->limit && d->end_group == 0) { uint32_t tag = 0; CHK(upb_decode_varint32(&d->ptr, d->limit, &tag)); CHK(upb_skip_unknownfielddata(d, tag, field_number)); } CHK(d->end_group == field_number); d->end_group = 0; return true; } static bool upb_array_grow(upb_array *arr, size_t elements, size_t elem_size, upb_arena *arena) { size_t needed = arr->len + elements; size_t new_size = UPB_MAX(arr->size, 8); size_t new_bytes; size_t old_bytes; void *new_data; upb_alloc *alloc = upb_arena_alloc(arena); while (new_size < needed) { new_size *= 2; } old_bytes = arr->len * elem_size; new_bytes = new_size * elem_size; new_data = upb_realloc(alloc, arr->data, old_bytes, new_bytes); CHK(new_data); arr->data = new_data; arr->size = new_size; return true; } static void *upb_array_reserve(upb_array *arr, size_t elements, size_t elem_size, upb_arena *arena) { if (arr->size - arr->len < elements) { CHK(upb_array_grow(arr, elements, elem_size, arena)); } return (char*)arr->data + (arr->len * elem_size); } bool upb_array_add(upb_array *arr, size_t elements, size_t elem_size, const void *data, upb_arena *arena) { void *dest = upb_array_reserve(arr, elements, elem_size, arena); CHK(dest); arr->len += elements; memcpy(dest, data, elements * elem_size); return true; } static upb_array *upb_getarr(upb_decframe *frame, const upb_msglayout_field *field) { UPB_ASSERT(field->label == UPB_LABEL_REPEATED); return *(upb_array**)&frame->msg[field->offset]; } static upb_array *upb_getorcreatearr(upb_decframe *frame, const upb_msglayout_field *field) { upb_array *arr = upb_getarr(frame, field); if (!arr) { arr = upb_array_new(frame->state->arena); CHK(arr); *(upb_array**)&frame->msg[field->offset] = arr; } return arr; } static upb_msg *upb_getorcreatemsg(upb_decframe *frame, const upb_msglayout_field *field, const upb_msglayout **subm) { upb_msg **submsg = (void*)(frame->msg + field->offset); *subm = frame->layout->submsgs[field->submsg_index]; UPB_ASSERT(field->label != UPB_LABEL_REPEATED); if (!*submsg) { *submsg = upb_msg_new(*subm, frame->state->arena); CHK(*submsg); } return *submsg; } static upb_msg *upb_addmsg(upb_decframe *frame, const upb_msglayout_field *field, const upb_msglayout **subm) { upb_msg *submsg; upb_array *arr = upb_getorcreatearr(frame, field); *subm = frame->layout->submsgs[field->submsg_index]; submsg = upb_msg_new(*subm, frame->state->arena); CHK(submsg); upb_array_add(arr, 1, sizeof(submsg), &submsg, frame->state->arena); return submsg; } static void upb_sethasbit(upb_decframe *frame, const upb_msglayout_field *field) { int32_t hasbit = field->presence; UPB_ASSERT(field->presence > 0); frame->msg[hasbit / 8] |= (1 << (hasbit % 8)); } static void upb_setoneofcase(upb_decframe *frame, const upb_msglayout_field *field) { UPB_ASSERT(field->presence < 0); upb_set32(frame->msg, ~field->presence, field->number); } static bool upb_decode_addval(upb_decframe *frame, const upb_msglayout_field *field, void *val, size_t size) { char *field_mem = frame->msg + field->offset; upb_array *arr; if (field->label == UPB_LABEL_REPEATED) { arr = upb_getorcreatearr(frame, field); CHK(arr); field_mem = upb_array_reserve(arr, 1, size, frame->state->arena); CHK(field_mem); } memcpy(field_mem, val, size); return true; } static void upb_decode_setpresent(upb_decframe *frame, const upb_msglayout_field *field) { if (field->label == UPB_LABEL_REPEATED) { upb_array *arr = upb_getarr(frame, field); UPB_ASSERT(arr->len < arr->size); arr->len++; } else if (field->presence < 0) { upb_setoneofcase(frame, field); } else if (field->presence > 0) { upb_sethasbit(frame, field); } } static bool upb_decode_msgfield(upb_decstate *d, upb_msg *msg, const upb_msglayout *layout, int limit) { const char* saved_limit = d->limit; d->limit = d->ptr + limit; CHK(--d->depth >= 0); upb_decode_message(d, msg, layout); d->depth++; d->limit = saved_limit; CHK(d->end_group == 0); return true; } static bool upb_decode_groupfield(upb_decstate *d, upb_msg *msg, const upb_msglayout *layout, int field_number) { CHK(--d->depth >= 0); upb_decode_message(d, msg, layout); d->depth++; CHK(d->end_group == field_number); d->end_group = 0; return true; } static bool upb_decode_varintfield(upb_decstate *d, upb_decframe *frame, const upb_msglayout_field *field) { uint64_t val; CHK(upb_decode_varint(&d->ptr, d->limit, &val)); switch (field->descriptortype) { case UPB_DESCRIPTOR_TYPE_INT64: case UPB_DESCRIPTOR_TYPE_UINT64: CHK(upb_decode_addval(frame, field, &val, sizeof(val))); break; case UPB_DESCRIPTOR_TYPE_INT32: case UPB_DESCRIPTOR_TYPE_UINT32: case UPB_DESCRIPTOR_TYPE_ENUM: { uint32_t val32 = (uint32_t)val; CHK(upb_decode_addval(frame, field, &val32, sizeof(val32))); break; } case UPB_DESCRIPTOR_TYPE_BOOL: { bool valbool = val != 0; CHK(upb_decode_addval(frame, field, &valbool, sizeof(valbool))); break; } case UPB_DESCRIPTOR_TYPE_SINT32: { int32_t decoded = upb_zzdecode_32((uint32_t)val); CHK(upb_decode_addval(frame, field, &decoded, sizeof(decoded))); break; } case UPB_DESCRIPTOR_TYPE_SINT64: { int64_t decoded = upb_zzdecode_64(val); CHK(upb_decode_addval(frame, field, &decoded, sizeof(decoded))); break; } default: return upb_append_unknown(d, frame); } upb_decode_setpresent(frame, field); return true; } static bool upb_decode_64bitfield(upb_decstate *d, upb_decframe *frame, const upb_msglayout_field *field) { uint64_t val; CHK(upb_decode_64bit(&d->ptr, d->limit, &val)); switch (field->descriptortype) { case UPB_DESCRIPTOR_TYPE_DOUBLE: case UPB_DESCRIPTOR_TYPE_FIXED64: case UPB_DESCRIPTOR_TYPE_SFIXED64: CHK(upb_decode_addval(frame, field, &val, sizeof(val))); break; default: return upb_append_unknown(d, frame); } upb_decode_setpresent(frame, field); return true; } static bool upb_decode_32bitfield(upb_decstate *d, upb_decframe *frame, const upb_msglayout_field *field) { uint32_t val; CHK(upb_decode_32bit(&d->ptr, d->limit, &val)); switch (field->descriptortype) { case UPB_DESCRIPTOR_TYPE_FLOAT: case UPB_DESCRIPTOR_TYPE_FIXED32: case UPB_DESCRIPTOR_TYPE_SFIXED32: CHK(upb_decode_addval(frame, field, &val, sizeof(val))); break; default: return upb_append_unknown(d, frame); } upb_decode_setpresent(frame, field); return true; } static bool upb_decode_fixedpacked(upb_decstate *d, upb_array *arr, uint32_t len, int elem_size) { size_t elements = len / elem_size; CHK((size_t)(elements * elem_size) == len); CHK(upb_array_add(arr, elements, elem_size, d->ptr, d->arena)); d->ptr += len; return true; } static upb_strview upb_decode_strfield(upb_decstate *d, uint32_t len) { upb_strview ret; ret.data = d->ptr; ret.size = len; d->ptr += len; return ret; } static bool upb_decode_toarray(upb_decstate *d, upb_decframe *frame, const upb_msglayout_field *field, int len) { upb_array *arr = upb_getorcreatearr(frame, field); CHK(arr); #define VARINT_CASE(ctype, decode) \ VARINT_CASE_EX(ctype, decode, decode) #define VARINT_CASE_EX(ctype, decode, dtype) \ { \ const char *ptr = d->ptr; \ const char *limit = ptr + len; \ while (ptr < limit) { \ uint64_t val; \ ctype decoded; \ CHK(upb_decode_varint(&ptr, limit, &val)); \ decoded = (decode)((dtype)val); \ CHK(upb_array_add(arr, 1, sizeof(decoded), &decoded, d->arena)); \ } \ d->ptr = ptr; \ return true; \ } switch (field->descriptortype) { case UPB_DESCRIPTOR_TYPE_STRING: case UPB_DESCRIPTOR_TYPE_BYTES: { upb_strview str = upb_decode_strfield(d, len); return upb_array_add(arr, 1, sizeof(str), &str, d->arena); } case UPB_DESCRIPTOR_TYPE_FLOAT: case UPB_DESCRIPTOR_TYPE_FIXED32: case UPB_DESCRIPTOR_TYPE_SFIXED32: return upb_decode_fixedpacked(d, arr, len, sizeof(int32_t)); case UPB_DESCRIPTOR_TYPE_DOUBLE: case UPB_DESCRIPTOR_TYPE_FIXED64: case UPB_DESCRIPTOR_TYPE_SFIXED64: return upb_decode_fixedpacked(d, arr, len, sizeof(int64_t)); case UPB_DESCRIPTOR_TYPE_INT32: case UPB_DESCRIPTOR_TYPE_UINT32: case UPB_DESCRIPTOR_TYPE_ENUM: VARINT_CASE(uint32_t, uint32_t); case UPB_DESCRIPTOR_TYPE_INT64: case UPB_DESCRIPTOR_TYPE_UINT64: VARINT_CASE(uint64_t, uint64_t); case UPB_DESCRIPTOR_TYPE_BOOL: VARINT_CASE(bool, bool); case UPB_DESCRIPTOR_TYPE_SINT32: VARINT_CASE_EX(int32_t, upb_zzdecode_32, uint32_t); case UPB_DESCRIPTOR_TYPE_SINT64: VARINT_CASE_EX(int64_t, upb_zzdecode_64, uint64_t); case UPB_DESCRIPTOR_TYPE_MESSAGE: { const upb_msglayout *subm; upb_msg *submsg = upb_addmsg(frame, field, &subm); CHK(submsg); return upb_decode_msgfield(d, submsg, subm, len); } case UPB_DESCRIPTOR_TYPE_GROUP: return upb_append_unknown(d, frame); } #undef VARINT_CASE UPB_UNREACHABLE(); } static bool upb_decode_delimitedfield(upb_decstate *d, upb_decframe *frame, const upb_msglayout_field *field) { int len; CHK(upb_decode_string(&d->ptr, d->limit, &len)); if (field->label == UPB_LABEL_REPEATED) { return upb_decode_toarray(d, frame, field, len); } else { switch (field->descriptortype) { case UPB_DESCRIPTOR_TYPE_STRING: case UPB_DESCRIPTOR_TYPE_BYTES: { upb_strview str = upb_decode_strfield(d, len); CHK(upb_decode_addval(frame, field, &str, sizeof(str))); break; } case UPB_DESCRIPTOR_TYPE_MESSAGE: { const upb_msglayout *subm; upb_msg *submsg = upb_getorcreatemsg(frame, field, &subm); CHK(submsg); CHK(upb_decode_msgfield(d, submsg, subm, len)); break; } default: /* TODO(haberman): should we accept the last element of a packed? */ d->ptr += len; return upb_append_unknown(d, frame); } upb_decode_setpresent(frame, field); return true; } } static const upb_msglayout_field *upb_find_field(const upb_msglayout *l, uint32_t field_number) { /* Lots of optimization opportunities here. */ int i; for (i = 0; i < l->field_count; i++) { if (l->fields[i].number == field_number) { return &l->fields[i]; } } return NULL; /* Unknown field. */ } static bool upb_decode_field(upb_decstate *d, upb_decframe *frame) { uint32_t tag; const upb_msglayout_field *field; int field_number; d->field_start = d->ptr; CHK(upb_decode_varint32(&d->ptr, d->limit, &tag)); field_number = tag >> 3; field = upb_find_field(frame->layout, field_number); if (field) { switch (tag & 7) { case UPB_WIRE_TYPE_VARINT: return upb_decode_varintfield(d, frame, field); case UPB_WIRE_TYPE_32BIT: return upb_decode_32bitfield(d, frame, field); case UPB_WIRE_TYPE_64BIT: return upb_decode_64bitfield(d, frame, field); case UPB_WIRE_TYPE_DELIMITED: return upb_decode_delimitedfield(d, frame, field); case UPB_WIRE_TYPE_START_GROUP: { const upb_msglayout *layout; upb_msg *group; if (field->label == UPB_LABEL_REPEATED) { group = upb_addmsg(frame, field, &layout); } else { group = upb_getorcreatemsg(frame, field, &layout); } return upb_decode_groupfield(d, group, layout, field_number); } case UPB_WIRE_TYPE_END_GROUP: d->end_group = field_number; return true; default: CHK(false); } } else { CHK(field_number != 0); CHK(upb_skip_unknownfielddata(d, tag, -1)); CHK(upb_append_unknown(d, frame)); return true; } } static bool upb_decode_message(upb_decstate *d, char *msg, const upb_msglayout *l) { upb_decframe frame; frame.msg = msg; frame.layout = l; frame.state = d; while (d->ptr < d->limit) { CHK(upb_decode_field(d, &frame)); } return true; } bool upb_decode(const char *buf, size_t size, void *msg, const upb_msglayout *l, upb_arena *arena) { upb_decstate state; state.ptr = buf; state.limit = buf + size; state.arena = arena; state.depth = 64; state.end_group = 0; CHK(upb_decode_message(&state, msg, l)); return state.end_group == 0; } #undef CHK /* We encode backwards, to avoid pre-computing lengths (one-pass encode). */ #include #define UPB_PB_VARINT_MAX_LEN 10 #define CHK(x) do { if (!(x)) { return false; } } while(0) static size_t upb_encode_varint(uint64_t val, char *buf) { size_t i; if (val < 128) { buf[0] = val; return 1; } i = 0; while (val) { uint8_t byte = val & 0x7fU; val >>= 7; if (val) byte |= 0x80U; buf[i++] = byte; } return i; } static uint32_t upb_zzencode_32(int32_t n) { return ((uint32_t)n << 1) ^ (n >> 31); } static uint64_t upb_zzencode_64(int64_t n) { return ((uint64_t)n << 1) ^ (n >> 63); } typedef struct { upb_alloc *alloc; char *buf, *ptr, *limit; } upb_encstate; static size_t upb_roundup_pow2(size_t bytes) { size_t ret = 128; while (ret < bytes) { ret *= 2; } return ret; } static bool upb_encode_growbuffer(upb_encstate *e, size_t bytes) { size_t old_size = e->limit - e->buf; size_t new_size = upb_roundup_pow2(bytes + (e->limit - e->ptr)); char *new_buf = upb_realloc(e->alloc, e->buf, old_size, new_size); CHK(new_buf); /* We want previous data at the end, realloc() put it at the beginning. */ if (old_size > 0) { memmove(new_buf + new_size - old_size, e->buf, old_size); } e->ptr = new_buf + new_size - (e->limit - e->ptr); e->limit = new_buf + new_size; e->buf = new_buf; return true; } /* Call to ensure that at least "bytes" bytes are available for writing at * e->ptr. Returns false if the bytes could not be allocated. */ static bool upb_encode_reserve(upb_encstate *e, size_t bytes) { CHK(UPB_LIKELY((size_t)(e->ptr - e->buf) >= bytes) || upb_encode_growbuffer(e, bytes)); e->ptr -= bytes; return true; } /* Writes the given bytes to the buffer, handling reserve/advance. */ static bool upb_put_bytes(upb_encstate *e, const void *data, size_t len) { CHK(upb_encode_reserve(e, len)); memcpy(e->ptr, data, len); return true; } static bool upb_put_fixed64(upb_encstate *e, uint64_t val) { /* TODO(haberman): byte-swap for big endian. */ return upb_put_bytes(e, &val, sizeof(uint64_t)); } static bool upb_put_fixed32(upb_encstate *e, uint32_t val) { /* TODO(haberman): byte-swap for big endian. */ return upb_put_bytes(e, &val, sizeof(uint32_t)); } static bool upb_put_varint(upb_encstate *e, uint64_t val) { size_t len; char *start; CHK(upb_encode_reserve(e, UPB_PB_VARINT_MAX_LEN)); len = upb_encode_varint(val, e->ptr); start = e->ptr + UPB_PB_VARINT_MAX_LEN - len; memmove(start, e->ptr, len); e->ptr = start; return true; } static bool upb_put_double(upb_encstate *e, double d) { uint64_t u64; UPB_ASSERT(sizeof(double) == sizeof(uint64_t)); memcpy(&u64, &d, sizeof(uint64_t)); return upb_put_fixed64(e, u64); } static bool upb_put_float(upb_encstate *e, float d) { uint32_t u32; UPB_ASSERT(sizeof(float) == sizeof(uint32_t)); memcpy(&u32, &d, sizeof(uint32_t)); return upb_put_fixed32(e, u32); } static uint32_t upb_readcase(const char *msg, const upb_msglayout_field *f) { uint32_t ret; uint32_t offset = ~f->presence; memcpy(&ret, msg + offset, sizeof(ret)); return ret; } static bool upb_readhasbit(const char *msg, const upb_msglayout_field *f) { uint32_t hasbit = f->presence; UPB_ASSERT(f->presence > 0); return msg[hasbit / 8] & (1 << (hasbit % 8)); } static bool upb_put_tag(upb_encstate *e, int field_number, int wire_type) { return upb_put_varint(e, (field_number << 3) | wire_type); } static bool upb_put_fixedarray(upb_encstate *e, const upb_array *arr, size_t size) { size_t bytes = arr->len * size; return upb_put_bytes(e, arr->data, bytes) && upb_put_varint(e, bytes); } bool upb_encode_message(upb_encstate *e, const char *msg, const upb_msglayout *m, size_t *size); static bool upb_encode_array(upb_encstate *e, const char *field_mem, const upb_msglayout *m, const upb_msglayout_field *f) { const upb_array *arr = *(const upb_array**)field_mem; if (arr == NULL || arr->len == 0) { return true; } #define VARINT_CASE(ctype, encode) { \ ctype *start = arr->data; \ ctype *ptr = start + arr->len; \ size_t pre_len = e->limit - e->ptr; \ do { \ ptr--; \ CHK(upb_put_varint(e, encode)); \ } while (ptr != start); \ CHK(upb_put_varint(e, e->limit - e->ptr - pre_len)); \ } \ break; \ do { ; } while(0) switch (f->descriptortype) { case UPB_DESCRIPTOR_TYPE_DOUBLE: CHK(upb_put_fixedarray(e, arr, sizeof(double))); break; case UPB_DESCRIPTOR_TYPE_FLOAT: CHK(upb_put_fixedarray(e, arr, sizeof(float))); break; case UPB_DESCRIPTOR_TYPE_SFIXED64: case UPB_DESCRIPTOR_TYPE_FIXED64: CHK(upb_put_fixedarray(e, arr, sizeof(uint64_t))); break; case UPB_DESCRIPTOR_TYPE_FIXED32: case UPB_DESCRIPTOR_TYPE_SFIXED32: CHK(upb_put_fixedarray(e, arr, sizeof(uint32_t))); break; case UPB_DESCRIPTOR_TYPE_INT64: case UPB_DESCRIPTOR_TYPE_UINT64: VARINT_CASE(uint64_t, *ptr); case UPB_DESCRIPTOR_TYPE_UINT32: VARINT_CASE(uint32_t, *ptr); case UPB_DESCRIPTOR_TYPE_INT32: case UPB_DESCRIPTOR_TYPE_ENUM: VARINT_CASE(int32_t, (int64_t)*ptr); case UPB_DESCRIPTOR_TYPE_BOOL: VARINT_CASE(bool, *ptr); case UPB_DESCRIPTOR_TYPE_SINT32: VARINT_CASE(int32_t, upb_zzencode_32(*ptr)); case UPB_DESCRIPTOR_TYPE_SINT64: VARINT_CASE(int64_t, upb_zzencode_64(*ptr)); case UPB_DESCRIPTOR_TYPE_STRING: case UPB_DESCRIPTOR_TYPE_BYTES: { upb_strview *start = arr->data; upb_strview *ptr = start + arr->len; do { ptr--; CHK(upb_put_bytes(e, ptr->data, ptr->size) && upb_put_varint(e, ptr->size) && upb_put_tag(e, f->number, UPB_WIRE_TYPE_DELIMITED)); } while (ptr != start); return true; } case UPB_DESCRIPTOR_TYPE_GROUP: { void **start = arr->data; void **ptr = start + arr->len; const upb_msglayout *subm = m->submsgs[f->submsg_index]; do { size_t size; ptr--; CHK(upb_put_tag(e, f->number, UPB_WIRE_TYPE_END_GROUP) && upb_encode_message(e, *ptr, subm, &size) && upb_put_tag(e, f->number, UPB_WIRE_TYPE_START_GROUP)); } while (ptr != start); return true; } case UPB_DESCRIPTOR_TYPE_MESSAGE: { void **start = arr->data; void **ptr = start + arr->len; const upb_msglayout *subm = m->submsgs[f->submsg_index]; do { size_t size; ptr--; CHK(upb_encode_message(e, *ptr, subm, &size) && upb_put_varint(e, size) && upb_put_tag(e, f->number, UPB_WIRE_TYPE_DELIMITED)); } while (ptr != start); return true; } } #undef VARINT_CASE /* We encode all primitive arrays as packed, regardless of what was specified * in the .proto file. Could special case 1-sized arrays. */ CHK(upb_put_tag(e, f->number, UPB_WIRE_TYPE_DELIMITED)); return true; } static bool upb_encode_scalarfield(upb_encstate *e, const char *field_mem, const upb_msglayout *m, const upb_msglayout_field *f, bool skip_zero_value) { #define CASE(ctype, type, wire_type, encodeval) do { \ ctype val = *(ctype*)field_mem; \ if (skip_zero_value && val == 0) { \ return true; \ } \ return upb_put_ ## type(e, encodeval) && \ upb_put_tag(e, f->number, wire_type); \ } while(0) switch (f->descriptortype) { case UPB_DESCRIPTOR_TYPE_DOUBLE: CASE(double, double, UPB_WIRE_TYPE_64BIT, val); case UPB_DESCRIPTOR_TYPE_FLOAT: CASE(float, float, UPB_WIRE_TYPE_32BIT, val); case UPB_DESCRIPTOR_TYPE_INT64: case UPB_DESCRIPTOR_TYPE_UINT64: CASE(uint64_t, varint, UPB_WIRE_TYPE_VARINT, val); case UPB_DESCRIPTOR_TYPE_UINT32: CASE(uint32_t, varint, UPB_WIRE_TYPE_VARINT, val); case UPB_DESCRIPTOR_TYPE_INT32: case UPB_DESCRIPTOR_TYPE_ENUM: CASE(int32_t, varint, UPB_WIRE_TYPE_VARINT, (int64_t)val); case UPB_DESCRIPTOR_TYPE_SFIXED64: case UPB_DESCRIPTOR_TYPE_FIXED64: CASE(uint64_t, fixed64, UPB_WIRE_TYPE_64BIT, val); case UPB_DESCRIPTOR_TYPE_FIXED32: case UPB_DESCRIPTOR_TYPE_SFIXED32: CASE(uint32_t, fixed32, UPB_WIRE_TYPE_32BIT, val); case UPB_DESCRIPTOR_TYPE_BOOL: CASE(bool, varint, UPB_WIRE_TYPE_VARINT, val); case UPB_DESCRIPTOR_TYPE_SINT32: CASE(int32_t, varint, UPB_WIRE_TYPE_VARINT, upb_zzencode_32(val)); case UPB_DESCRIPTOR_TYPE_SINT64: CASE(int64_t, varint, UPB_WIRE_TYPE_VARINT, upb_zzencode_64(val)); case UPB_DESCRIPTOR_TYPE_STRING: case UPB_DESCRIPTOR_TYPE_BYTES: { upb_strview view = *(upb_strview*)field_mem; if (skip_zero_value && view.size == 0) { return true; } return upb_put_bytes(e, view.data, view.size) && upb_put_varint(e, view.size) && upb_put_tag(e, f->number, UPB_WIRE_TYPE_DELIMITED); } case UPB_DESCRIPTOR_TYPE_GROUP: { size_t size; void *submsg = *(void **)field_mem; const upb_msglayout *subm = m->submsgs[f->submsg_index]; if (submsg == NULL) { return true; } return upb_put_tag(e, f->number, UPB_WIRE_TYPE_END_GROUP) && upb_encode_message(e, submsg, subm, &size) && upb_put_tag(e, f->number, UPB_WIRE_TYPE_START_GROUP); } case UPB_DESCRIPTOR_TYPE_MESSAGE: { size_t size; void *submsg = *(void **)field_mem; const upb_msglayout *subm = m->submsgs[f->submsg_index]; if (submsg == NULL) { return true; } return upb_encode_message(e, submsg, subm, &size) && upb_put_varint(e, size) && upb_put_tag(e, f->number, UPB_WIRE_TYPE_DELIMITED); } } #undef CASE UPB_UNREACHABLE(); } bool upb_encode_message(upb_encstate *e, const char *msg, const upb_msglayout *m, size_t *size) { int i; size_t pre_len = e->limit - e->ptr; const char *unknown; size_t unknown_size; for (i = m->field_count - 1; i >= 0; i--) { const upb_msglayout_field *f = &m->fields[i]; if (f->label == UPB_LABEL_REPEATED) { CHK(upb_encode_array(e, msg + f->offset, m, f)); } else { bool skip_empty = false; if (f->presence == 0) { /* Proto3 presence. */ skip_empty = true; } else if (f->presence > 0) { /* Proto2 presence: hasbit. */ if (!upb_readhasbit(msg, f)) { continue; } } else { /* Field is in a oneof. */ if (upb_readcase(msg, f) != f->number) { continue; } } CHK(upb_encode_scalarfield(e, msg + f->offset, m, f, skip_empty)); } } unknown = upb_msg_getunknown(msg, &unknown_size); if (unknown) { upb_put_bytes(e, unknown, unknown_size); } *size = (e->limit - e->ptr) - pre_len; return true; } char *upb_encode(const void *msg, const upb_msglayout *m, upb_arena *arena, size_t *size) { upb_encstate e; e.alloc = upb_arena_alloc(arena); e.buf = NULL; e.limit = NULL; e.ptr = NULL; if (!upb_encode_message(&e, msg, m, size)) { *size = 0; return NULL; } *size = e.limit - e.ptr; if (*size == 0) { static char ch; return &ch; } else { UPB_ASSERT(e.ptr); return e.ptr; } } #undef CHK #define VOIDPTR_AT(msg, ofs) (void*)((char*)msg + (int)ofs) /* Internal members of a upb_msg. We can change this without breaking binary * compatibility. We put these before the user's data. The user's upb_msg* * points after the upb_msg_internal. */ /* Used when a message is not extendable. */ typedef struct { char *unknown; size_t unknown_len; size_t unknown_size; } upb_msg_internal; /* Used when a message is extendable. */ typedef struct { upb_inttable *extdict; upb_msg_internal base; } upb_msg_internal_withext; static int upb_msg_internalsize(const upb_msglayout *l) { return sizeof(upb_msg_internal) - l->extendable * sizeof(void *); } static size_t upb_msg_sizeof(const upb_msglayout *l) { return l->size + upb_msg_internalsize(l); } static upb_msg_internal *upb_msg_getinternal(upb_msg *msg) { return VOIDPTR_AT(msg, -sizeof(upb_msg_internal)); } static const upb_msg_internal *upb_msg_getinternal_const(const upb_msg *msg) { return VOIDPTR_AT(msg, -sizeof(upb_msg_internal)); } static upb_msg_internal_withext *upb_msg_getinternalwithext( upb_msg *msg, const upb_msglayout *l) { UPB_ASSERT(l->extendable); return VOIDPTR_AT(msg, -sizeof(upb_msg_internal_withext)); } upb_msg *upb_msg_new(const upb_msglayout *l, upb_arena *a) { upb_alloc *alloc = upb_arena_alloc(a); void *mem = upb_malloc(alloc, upb_msg_sizeof(l)); upb_msg_internal *in; upb_msg *msg; if (!mem) { return NULL; } msg = VOIDPTR_AT(mem, upb_msg_internalsize(l)); /* Initialize normal members. */ memset(msg, 0, l->size); /* Initialize internal members. */ in = upb_msg_getinternal(msg); in->unknown = NULL; in->unknown_len = 0; in->unknown_size = 0; if (l->extendable) { upb_msg_getinternalwithext(msg, l)->extdict = NULL; } return msg; } upb_array *upb_array_new(upb_arena *a) { upb_array *ret = upb_arena_malloc(a, sizeof(upb_array)); if (!ret) { return NULL; } ret->data = NULL; ret->len = 0; ret->size = 0; return ret; } void upb_msg_addunknown(upb_msg *msg, const char *data, size_t len, upb_arena *arena) { upb_msg_internal *in = upb_msg_getinternal(msg); if (len > in->unknown_size - in->unknown_len) { upb_alloc *alloc = upb_arena_alloc(arena); size_t need = in->unknown_size + len; size_t newsize = UPB_MAX(in->unknown_size * 2, need); in->unknown = upb_realloc(alloc, in->unknown, in->unknown_size, newsize); in->unknown_size = newsize; } memcpy(in->unknown + in->unknown_len, data, len); in->unknown_len += len; } const char *upb_msg_getunknown(const upb_msg *msg, size_t *len) { const upb_msg_internal* in = upb_msg_getinternal_const(msg); *len = in->unknown_len; return in->unknown; } #undef VOIDPTR_AT #ifdef UPB_MSVC_VSNPRINTF /* Visual C++ earlier than 2015 doesn't have standard C99 snprintf and * vsnprintf. To support them, missing functions are manually implemented * using the existing secure functions. */ int msvc_vsnprintf(char* s, size_t n, const char* format, va_list arg) { if (!s) { return _vscprintf(format, arg); } int ret = _vsnprintf_s(s, n, _TRUNCATE, format, arg); if (ret < 0) { ret = _vscprintf(format, arg); } return ret; } int msvc_snprintf(char* s, size_t n, const char* format, ...) { va_list arg; va_start(arg, format); int ret = msvc_vsnprintf(s, n, format, arg); va_end(arg); return ret; } #endif /* ** upb_table Implementation ** ** Implementation is heavily inspired by Lua's ltable.c. */ #include #define UPB_MAXARRSIZE 16 /* 64k. */ /* From Chromium. */ #define ARRAY_SIZE(x) \ ((sizeof(x)/sizeof(0[x])) / ((size_t)(!(sizeof(x) % sizeof(0[x]))))) static void upb_check_alloc(upb_table *t, upb_alloc *a) { UPB_UNUSED(t); UPB_UNUSED(a); UPB_ASSERT_DEBUGVAR(t->alloc == a); } static const double MAX_LOAD = 0.85; /* The minimum utilization of the array part of a mixed hash/array table. This * is a speed/memory-usage tradeoff (though it's not straightforward because of * cache effects). The lower this is, the more memory we'll use. */ static const double MIN_DENSITY = 0.1; bool is_pow2(uint64_t v) { return v == 0 || (v & (v - 1)) == 0; } int log2ceil(uint64_t v) { int ret = 0; bool pow2 = is_pow2(v); while (v >>= 1) ret++; ret = pow2 ? ret : ret + 1; /* Ceiling. */ return UPB_MIN(UPB_MAXARRSIZE, ret); } char *upb_strdup(const char *s, upb_alloc *a) { return upb_strdup2(s, strlen(s), a); } char *upb_strdup2(const char *s, size_t len, upb_alloc *a) { size_t n; char *p; /* Prevent overflow errors. */ if (len == SIZE_MAX) return NULL; /* Always null-terminate, even if binary data; but don't rely on the input to * have a null-terminating byte since it may be a raw binary buffer. */ n = len + 1; p = upb_malloc(a, n); if (p) { memcpy(p, s, len); p[len] = 0; } return p; } /* A type to represent the lookup key of either a strtable or an inttable. */ typedef union { uintptr_t num; struct { const char *str; size_t len; } str; } lookupkey_t; static lookupkey_t strkey2(const char *str, size_t len) { lookupkey_t k; k.str.str = str; k.str.len = len; return k; } static lookupkey_t intkey(uintptr_t key) { lookupkey_t k; k.num = key; return k; } typedef uint32_t hashfunc_t(upb_tabkey key); typedef bool eqlfunc_t(upb_tabkey k1, lookupkey_t k2); /* Base table (shared code) ***************************************************/ /* For when we need to cast away const. */ static upb_tabent *mutable_entries(upb_table *t) { return (upb_tabent*)t->entries; } static bool isfull(upb_table *t) { if (upb_table_size(t) == 0) { return true; } else { return ((double)(t->count + 1) / upb_table_size(t)) > MAX_LOAD; } } static bool init(upb_table *t, upb_ctype_t ctype, uint8_t size_lg2, upb_alloc *a) { size_t bytes; t->count = 0; t->ctype = ctype; t->size_lg2 = size_lg2; t->mask = upb_table_size(t) ? upb_table_size(t) - 1 : 0; #ifndef NDEBUG t->alloc = a; #endif bytes = upb_table_size(t) * sizeof(upb_tabent); if (bytes > 0) { t->entries = upb_malloc(a, bytes); if (!t->entries) return false; memset(mutable_entries(t), 0, bytes); } else { t->entries = NULL; } return true; } static void uninit(upb_table *t, upb_alloc *a) { upb_check_alloc(t, a); upb_free(a, mutable_entries(t)); } static upb_tabent *emptyent(upb_table *t) { upb_tabent *e = mutable_entries(t) + upb_table_size(t); while (1) { if (upb_tabent_isempty(--e)) return e; UPB_ASSERT(e > t->entries); } } static upb_tabent *getentry_mutable(upb_table *t, uint32_t hash) { return (upb_tabent*)upb_getentry(t, hash); } static const upb_tabent *findentry(const upb_table *t, lookupkey_t key, uint32_t hash, eqlfunc_t *eql) { const upb_tabent *e; if (t->size_lg2 == 0) return NULL; e = upb_getentry(t, hash); if (upb_tabent_isempty(e)) return NULL; while (1) { if (eql(e->key, key)) return e; if ((e = e->next) == NULL) return NULL; } } static upb_tabent *findentry_mutable(upb_table *t, lookupkey_t key, uint32_t hash, eqlfunc_t *eql) { return (upb_tabent*)findentry(t, key, hash, eql); } static bool lookup(const upb_table *t, lookupkey_t key, upb_value *v, uint32_t hash, eqlfunc_t *eql) { const upb_tabent *e = findentry(t, key, hash, eql); if (e) { if (v) { _upb_value_setval(v, e->val.val, t->ctype); } return true; } else { return false; } } /* The given key must not already exist in the table. */ static void insert(upb_table *t, lookupkey_t key, upb_tabkey tabkey, upb_value val, uint32_t hash, hashfunc_t *hashfunc, eqlfunc_t *eql) { upb_tabent *mainpos_e; upb_tabent *our_e; UPB_ASSERT(findentry(t, key, hash, eql) == NULL); UPB_ASSERT_DEBUGVAR(val.ctype == t->ctype); t->count++; mainpos_e = getentry_mutable(t, hash); our_e = mainpos_e; if (upb_tabent_isempty(mainpos_e)) { /* Our main position is empty; use it. */ our_e->next = NULL; } else { /* Collision. */ upb_tabent *new_e = emptyent(t); /* Head of collider's chain. */ upb_tabent *chain = getentry_mutable(t, hashfunc(mainpos_e->key)); if (chain == mainpos_e) { /* Existing ent is in its main posisiton (it has the same hash as us, and * is the head of our chain). Insert to new ent and append to this chain. */ new_e->next = mainpos_e->next; mainpos_e->next = new_e; our_e = new_e; } else { /* Existing ent is not in its main position (it is a node in some other * chain). This implies that no existing ent in the table has our hash. * Evict it (updating its chain) and use its ent for head of our chain. */ *new_e = *mainpos_e; /* copies next. */ while (chain->next != mainpos_e) { chain = (upb_tabent*)chain->next; UPB_ASSERT(chain); } chain->next = new_e; our_e = mainpos_e; our_e->next = NULL; } } our_e->key = tabkey; our_e->val.val = val.val; UPB_ASSERT(findentry(t, key, hash, eql) == our_e); } static bool rm(upb_table *t, lookupkey_t key, upb_value *val, upb_tabkey *removed, uint32_t hash, eqlfunc_t *eql) { upb_tabent *chain = getentry_mutable(t, hash); if (upb_tabent_isempty(chain)) return false; if (eql(chain->key, key)) { /* Element to remove is at the head of its chain. */ t->count--; if (val) _upb_value_setval(val, chain->val.val, t->ctype); if (removed) *removed = chain->key; if (chain->next) { upb_tabent *move = (upb_tabent*)chain->next; *chain = *move; move->key = 0; /* Make the slot empty. */ } else { chain->key = 0; /* Make the slot empty. */ } return true; } else { /* Element to remove is either in a non-head position or not in the * table. */ while (chain->next && !eql(chain->next->key, key)) { chain = (upb_tabent*)chain->next; } if (chain->next) { /* Found element to remove. */ upb_tabent *rm = (upb_tabent*)chain->next; t->count--; if (val) _upb_value_setval(val, chain->next->val.val, t->ctype); if (removed) *removed = rm->key; rm->key = 0; /* Make the slot empty. */ chain->next = rm->next; return true; } else { /* Element to remove is not in the table. */ return false; } } } static size_t next(const upb_table *t, size_t i) { do { if (++i >= upb_table_size(t)) return SIZE_MAX; } while(upb_tabent_isempty(&t->entries[i])); return i; } static size_t begin(const upb_table *t) { return next(t, -1); } /* upb_strtable ***************************************************************/ /* A simple "subclass" of upb_table that only adds a hash function for strings. */ static upb_tabkey strcopy(lookupkey_t k2, upb_alloc *a) { uint32_t len = (uint32_t) k2.str.len; char *str = upb_malloc(a, k2.str.len + sizeof(uint32_t) + 1); if (str == NULL) return 0; memcpy(str, &len, sizeof(uint32_t)); memcpy(str + sizeof(uint32_t), k2.str.str, k2.str.len); str[sizeof(uint32_t) + k2.str.len] = '\0'; return (uintptr_t)str; } static uint32_t strhash(upb_tabkey key) { uint32_t len; char *str = upb_tabstr(key, &len); return upb_murmur_hash2(str, len, 0); } static bool streql(upb_tabkey k1, lookupkey_t k2) { uint32_t len; char *str = upb_tabstr(k1, &len); return len == k2.str.len && memcmp(str, k2.str.str, len) == 0; } bool upb_strtable_init2(upb_strtable *t, upb_ctype_t ctype, upb_alloc *a) { return init(&t->t, ctype, 2, a); } void upb_strtable_uninit2(upb_strtable *t, upb_alloc *a) { size_t i; for (i = 0; i < upb_table_size(&t->t); i++) upb_free(a, (void*)t->t.entries[i].key); uninit(&t->t, a); } bool upb_strtable_resize(upb_strtable *t, size_t size_lg2, upb_alloc *a) { upb_strtable new_table; upb_strtable_iter i; upb_check_alloc(&t->t, a); if (!init(&new_table.t, t->t.ctype, size_lg2, a)) return false; upb_strtable_begin(&i, t); for ( ; !upb_strtable_done(&i); upb_strtable_next(&i)) { upb_strtable_insert3( &new_table, upb_strtable_iter_key(&i), upb_strtable_iter_keylength(&i), upb_strtable_iter_value(&i), a); } upb_strtable_uninit2(t, a); *t = new_table; return true; } bool upb_strtable_insert3(upb_strtable *t, const char *k, size_t len, upb_value v, upb_alloc *a) { lookupkey_t key; upb_tabkey tabkey; uint32_t hash; upb_check_alloc(&t->t, a); if (isfull(&t->t)) { /* Need to resize. New table of double the size, add old elements to it. */ if (!upb_strtable_resize(t, t->t.size_lg2 + 1, a)) { return false; } } key = strkey2(k, len); tabkey = strcopy(key, a); if (tabkey == 0) return false; hash = upb_murmur_hash2(key.str.str, key.str.len, 0); insert(&t->t, key, tabkey, v, hash, &strhash, &streql); return true; } bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len, upb_value *v) { uint32_t hash = upb_murmur_hash2(key, len, 0); return lookup(&t->t, strkey2(key, len), v, hash, &streql); } bool upb_strtable_remove3(upb_strtable *t, const char *key, size_t len, upb_value *val, upb_alloc *alloc) { uint32_t hash = upb_murmur_hash2(key, len, 0); upb_tabkey tabkey; if (rm(&t->t, strkey2(key, len), val, &tabkey, hash, &streql)) { upb_free(alloc, (void*)tabkey); return true; } else { return false; } } /* Iteration */ static const upb_tabent *str_tabent(const upb_strtable_iter *i) { return &i->t->t.entries[i->index]; } void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t) { i->t = t; i->index = begin(&t->t); } void upb_strtable_next(upb_strtable_iter *i) { i->index = next(&i->t->t, i->index); } bool upb_strtable_done(const upb_strtable_iter *i) { if (!i->t) return true; return i->index >= upb_table_size(&i->t->t) || upb_tabent_isempty(str_tabent(i)); } const char *upb_strtable_iter_key(const upb_strtable_iter *i) { UPB_ASSERT(!upb_strtable_done(i)); return upb_tabstr(str_tabent(i)->key, NULL); } size_t upb_strtable_iter_keylength(const upb_strtable_iter *i) { uint32_t len; UPB_ASSERT(!upb_strtable_done(i)); upb_tabstr(str_tabent(i)->key, &len); return len; } upb_value upb_strtable_iter_value(const upb_strtable_iter *i) { UPB_ASSERT(!upb_strtable_done(i)); return _upb_value_val(str_tabent(i)->val.val, i->t->t.ctype); } void upb_strtable_iter_setdone(upb_strtable_iter *i) { i->t = NULL; i->index = SIZE_MAX; } bool upb_strtable_iter_isequal(const upb_strtable_iter *i1, const upb_strtable_iter *i2) { if (upb_strtable_done(i1) && upb_strtable_done(i2)) return true; return i1->t == i2->t && i1->index == i2->index; } /* upb_inttable ***************************************************************/ /* For inttables we use a hybrid structure where small keys are kept in an * array and large keys are put in the hash table. */ static uint32_t inthash(upb_tabkey key) { return upb_inthash(key); } static bool inteql(upb_tabkey k1, lookupkey_t k2) { return k1 == k2.num; } static upb_tabval *mutable_array(upb_inttable *t) { return (upb_tabval*)t->array; } static upb_tabval *inttable_val(upb_inttable *t, uintptr_t key) { if (key < t->array_size) { return upb_arrhas(t->array[key]) ? &(mutable_array(t)[key]) : NULL; } else { upb_tabent *e = findentry_mutable(&t->t, intkey(key), upb_inthash(key), &inteql); return e ? &e->val : NULL; } } static const upb_tabval *inttable_val_const(const upb_inttable *t, uintptr_t key) { return inttable_val((upb_inttable*)t, key); } size_t upb_inttable_count(const upb_inttable *t) { return t->t.count + t->array_count; } static void check(upb_inttable *t) { UPB_UNUSED(t); #if defined(UPB_DEBUG_TABLE) && !defined(NDEBUG) { /* This check is very expensive (makes inserts/deletes O(N)). */ size_t count = 0; upb_inttable_iter i; upb_inttable_begin(&i, t); for(; !upb_inttable_done(&i); upb_inttable_next(&i), count++) { UPB_ASSERT(upb_inttable_lookup(t, upb_inttable_iter_key(&i), NULL)); } UPB_ASSERT(count == upb_inttable_count(t)); } #endif } bool upb_inttable_sizedinit(upb_inttable *t, upb_ctype_t ctype, size_t asize, int hsize_lg2, upb_alloc *a) { size_t array_bytes; if (!init(&t->t, ctype, hsize_lg2, a)) return false; /* Always make the array part at least 1 long, so that we know key 0 * won't be in the hash part, which simplifies things. */ t->array_size = UPB_MAX(1, asize); t->array_count = 0; array_bytes = t->array_size * sizeof(upb_value); t->array = upb_malloc(a, array_bytes); if (!t->array) { uninit(&t->t, a); return false; } memset(mutable_array(t), 0xff, array_bytes); check(t); return true; } bool upb_inttable_init2(upb_inttable *t, upb_ctype_t ctype, upb_alloc *a) { return upb_inttable_sizedinit(t, ctype, 0, 4, a); } void upb_inttable_uninit2(upb_inttable *t, upb_alloc *a) { uninit(&t->t, a); upb_free(a, mutable_array(t)); } bool upb_inttable_insert2(upb_inttable *t, uintptr_t key, upb_value val, upb_alloc *a) { upb_tabval tabval; tabval.val = val.val; UPB_ASSERT(upb_arrhas(tabval)); /* This will reject (uint64_t)-1. Fix this. */ upb_check_alloc(&t->t, a); if (key < t->array_size) { UPB_ASSERT(!upb_arrhas(t->array[key])); t->array_count++; mutable_array(t)[key].val = val.val; } else { if (isfull(&t->t)) { /* Need to resize the hash part, but we re-use the array part. */ size_t i; upb_table new_table; if (!init(&new_table, t->t.ctype, t->t.size_lg2 + 1, a)) { return false; } for (i = begin(&t->t); i < upb_table_size(&t->t); i = next(&t->t, i)) { const upb_tabent *e = &t->t.entries[i]; uint32_t hash; upb_value v; _upb_value_setval(&v, e->val.val, t->t.ctype); hash = upb_inthash(e->key); insert(&new_table, intkey(e->key), e->key, v, hash, &inthash, &inteql); } UPB_ASSERT(t->t.count == new_table.count); uninit(&t->t, a); t->t = new_table; } insert(&t->t, intkey(key), key, val, upb_inthash(key), &inthash, &inteql); } check(t); return true; } bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v) { const upb_tabval *table_v = inttable_val_const(t, key); if (!table_v) return false; if (v) _upb_value_setval(v, table_v->val, t->t.ctype); return true; } bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val) { upb_tabval *table_v = inttable_val(t, key); if (!table_v) return false; table_v->val = val.val; return true; } bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val) { bool success; if (key < t->array_size) { if (upb_arrhas(t->array[key])) { upb_tabval empty = UPB_TABVALUE_EMPTY_INIT; t->array_count--; if (val) { _upb_value_setval(val, t->array[key].val, t->t.ctype); } mutable_array(t)[key] = empty; success = true; } else { success = false; } } else { success = rm(&t->t, intkey(key), val, NULL, upb_inthash(key), &inteql); } check(t); return success; } bool upb_inttable_push2(upb_inttable *t, upb_value val, upb_alloc *a) { upb_check_alloc(&t->t, a); return upb_inttable_insert2(t, upb_inttable_count(t), val, a); } upb_value upb_inttable_pop(upb_inttable *t) { upb_value val; bool ok = upb_inttable_remove(t, upb_inttable_count(t) - 1, &val); UPB_ASSERT(ok); return val; } bool upb_inttable_insertptr2(upb_inttable *t, const void *key, upb_value val, upb_alloc *a) { upb_check_alloc(&t->t, a); return upb_inttable_insert2(t, (uintptr_t)key, val, a); } bool upb_inttable_lookupptr(const upb_inttable *t, const void *key, upb_value *v) { return upb_inttable_lookup(t, (uintptr_t)key, v); } bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val) { return upb_inttable_remove(t, (uintptr_t)key, val); } void upb_inttable_compact2(upb_inttable *t, upb_alloc *a) { /* A power-of-two histogram of the table keys. */ size_t counts[UPB_MAXARRSIZE + 1] = {0}; /* The max key in each bucket. */ uintptr_t max[UPB_MAXARRSIZE + 1] = {0}; upb_inttable_iter i; size_t arr_count; int size_lg2; upb_inttable new_t; upb_check_alloc(&t->t, a); upb_inttable_begin(&i, t); for (; !upb_inttable_done(&i); upb_inttable_next(&i)) { uintptr_t key = upb_inttable_iter_key(&i); int bucket = log2ceil(key); max[bucket] = UPB_MAX(max[bucket], key); counts[bucket]++; } /* Find the largest power of two that satisfies the MIN_DENSITY * definition (while actually having some keys). */ arr_count = upb_inttable_count(t); for (size_lg2 = ARRAY_SIZE(counts) - 1; size_lg2 > 0; size_lg2--) { if (counts[size_lg2] == 0) { /* We can halve again without losing any entries. */ continue; } else if (arr_count >= (1 << size_lg2) * MIN_DENSITY) { break; } arr_count -= counts[size_lg2]; } UPB_ASSERT(arr_count <= upb_inttable_count(t)); { /* Insert all elements into new, perfectly-sized table. */ size_t arr_size = max[size_lg2] + 1; /* +1 so arr[max] will fit. */ size_t hash_count = upb_inttable_count(t) - arr_count; size_t hash_size = hash_count ? (hash_count / MAX_LOAD) + 1 : 0; int hashsize_lg2 = log2ceil(hash_size); upb_inttable_sizedinit(&new_t, t->t.ctype, arr_size, hashsize_lg2, a); upb_inttable_begin(&i, t); for (; !upb_inttable_done(&i); upb_inttable_next(&i)) { uintptr_t k = upb_inttable_iter_key(&i); upb_inttable_insert2(&new_t, k, upb_inttable_iter_value(&i), a); } UPB_ASSERT(new_t.array_size == arr_size); UPB_ASSERT(new_t.t.size_lg2 == hashsize_lg2); } upb_inttable_uninit2(t, a); *t = new_t; } /* Iteration. */ static const upb_tabent *int_tabent(const upb_inttable_iter *i) { UPB_ASSERT(!i->array_part); return &i->t->t.entries[i->index]; } static upb_tabval int_arrent(const upb_inttable_iter *i) { UPB_ASSERT(i->array_part); return i->t->array[i->index]; } void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t) { i->t = t; i->index = -1; i->array_part = true; upb_inttable_next(i); } void upb_inttable_next(upb_inttable_iter *iter) { const upb_inttable *t = iter->t; if (iter->array_part) { while (++iter->index < t->array_size) { if (upb_arrhas(int_arrent(iter))) { return; } } iter->array_part = false; iter->index = begin(&t->t); } else { iter->index = next(&t->t, iter->index); } } bool upb_inttable_done(const upb_inttable_iter *i) { if (!i->t) return true; if (i->array_part) { return i->index >= i->t->array_size || !upb_arrhas(int_arrent(i)); } else { return i->index >= upb_table_size(&i->t->t) || upb_tabent_isempty(int_tabent(i)); } } uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i) { UPB_ASSERT(!upb_inttable_done(i)); return i->array_part ? i->index : int_tabent(i)->key; } upb_value upb_inttable_iter_value(const upb_inttable_iter *i) { UPB_ASSERT(!upb_inttable_done(i)); return _upb_value_val( i->array_part ? i->t->array[i->index].val : int_tabent(i)->val.val, i->t->t.ctype); } void upb_inttable_iter_setdone(upb_inttable_iter *i) { i->t = NULL; i->index = SIZE_MAX; i->array_part = false; } bool upb_inttable_iter_isequal(const upb_inttable_iter *i1, const upb_inttable_iter *i2) { if (upb_inttable_done(i1) && upb_inttable_done(i2)) return true; return i1->t == i2->t && i1->index == i2->index && i1->array_part == i2->array_part; } #if defined(UPB_UNALIGNED_READS_OK) || defined(__s390x__) /* ----------------------------------------------------------------------------- * MurmurHash2, by Austin Appleby (released as public domain). * Reformatted and C99-ified by Joshua Haberman. * Note - This code makes a few assumptions about how your machine behaves - * 1. We can read a 4-byte value from any address without crashing * 2. sizeof(int) == 4 (in upb this limitation is removed by using uint32_t * And it has a few limitations - * 1. It will not work incrementally. * 2. It will not produce the same results on little-endian and big-endian * machines. */ uint32_t upb_murmur_hash2(const void *key, size_t len, uint32_t seed) { /* 'm' and 'r' are mixing constants generated offline. * They're not really 'magic', they just happen to work well. */ const uint32_t m = 0x5bd1e995; const int32_t r = 24; /* Initialize the hash to a 'random' value */ uint32_t h = seed ^ len; /* Mix 4 bytes at a time into the hash */ const uint8_t * data = (const uint8_t *)key; while(len >= 4) { uint32_t k = *(uint32_t *)data; k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; data += 4; len -= 4; } /* Handle the last few bytes of the input array */ switch(len) { case 3: h ^= data[2] << 16; case 2: h ^= data[1] << 8; case 1: h ^= data[0]; h *= m; }; /* Do a few final mixes of the hash to ensure the last few * bytes are well-incorporated. */ h ^= h >> 13; h *= m; h ^= h >> 15; return h; } #else /* !UPB_UNALIGNED_READS_OK */ /* ----------------------------------------------------------------------------- * MurmurHashAligned2, by Austin Appleby * Same algorithm as MurmurHash2, but only does aligned reads - should be safer * on certain platforms. * Performance will be lower than MurmurHash2 */ #define MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; } uint32_t upb_murmur_hash2(const void * key, size_t len, uint32_t seed) { const uint32_t m = 0x5bd1e995; const int32_t r = 24; const uint8_t * data = (const uint8_t *)key; uint32_t h = (uint32_t)(seed ^ len); uint8_t align = (uintptr_t)data & 3; if(align && (len >= 4)) { /* Pre-load the temp registers */ uint32_t t = 0, d = 0; int32_t sl; int32_t sr; switch(align) { case 1: t |= data[2] << 16; case 2: t |= data[1] << 8; case 3: t |= data[0]; } t <<= (8 * align); data += 4-align; len -= 4-align; sl = 8 * (4-align); sr = 8 * align; /* Mix */ while(len >= 4) { uint32_t k; d = *(uint32_t *)data; t = (t >> sr) | (d << sl); k = t; MIX(h,k,m); t = d; data += 4; len -= 4; } /* Handle leftover data in temp registers */ d = 0; if(len >= align) { uint32_t k; switch(align) { case 3: d |= data[2] << 16; case 2: d |= data[1] << 8; case 1: d |= data[0]; } k = (t >> sr) | (d << sl); MIX(h,k,m); data += align; len -= align; /* ---------- * Handle tail bytes */ switch(len) { case 3: h ^= data[2] << 16; case 2: h ^= data[1] << 8; case 1: h ^= data[0]; h *= m; }; } else { switch(len) { case 3: d |= data[2] << 16; case 2: d |= data[1] << 8; case 1: d |= data[0]; case 0: h ^= (t >> sr) | (d << sl); h *= m; } } h ^= h >> 13; h *= m; h ^= h >> 15; return h; } else { while(len >= 4) { uint32_t k = *(uint32_t *)data; MIX(h,k,m); data += 4; len -= 4; } /* ---------- * Handle tail bytes */ switch(len) { case 3: h ^= data[2] << 16; case 2: h ^= data[1] << 8; case 1: h ^= data[0]; h *= m; }; h ^= h >> 13; h *= m; h ^= h >> 15; return h; } } #undef MIX #endif /* UPB_UNALIGNED_READS_OK */ #include #include #include #include #include #include #include /* Guarantee null-termination and provide ellipsis truncation. * It may be tempting to "optimize" this by initializing these final * four bytes up-front and then being careful never to overwrite them, * this is safer and simpler. */ static void nullz(upb_status *status) { const char *ellipsis = "..."; size_t len = strlen(ellipsis); UPB_ASSERT(sizeof(status->msg) > len); memcpy(status->msg + sizeof(status->msg) - len, ellipsis, len); } /* upb_status *****************************************************************/ void upb_status_clear(upb_status *status) { if (!status) return; status->ok = true; status->msg[0] = '\0'; } bool upb_ok(const upb_status *status) { return status->ok; } const char *upb_status_errmsg(const upb_status *status) { return status->msg; } void upb_status_seterrmsg(upb_status *status, const char *msg) { if (!status) return; status->ok = false; strncpy(status->msg, msg, sizeof(status->msg)); nullz(status); } void upb_status_seterrf(upb_status *status, const char *fmt, ...) { va_list args; va_start(args, fmt); upb_status_vseterrf(status, fmt, args); va_end(args); } void upb_status_vseterrf(upb_status *status, const char *fmt, va_list args) { if (!status) return; status->ok = false; _upb_vsnprintf(status->msg, sizeof(status->msg), fmt, args); nullz(status); } /* upb_alloc ******************************************************************/ static void *upb_global_allocfunc(upb_alloc *alloc, void *ptr, size_t oldsize, size_t size) { UPB_UNUSED(alloc); UPB_UNUSED(oldsize); if (size == 0) { free(ptr); return NULL; } else { return realloc(ptr, size); } } upb_alloc upb_alloc_global = {&upb_global_allocfunc}; /* upb_arena ******************************************************************/ /* Be conservative and choose 16 in case anyone is using SSE. */ static const size_t maxalign = 16; static size_t align_up_max(size_t size) { return ((size + maxalign - 1) / maxalign) * maxalign; } struct upb_arena { /* We implement the allocator interface. * This must be the first member of upb_arena! */ upb_alloc alloc; /* Allocator to allocate arena blocks. We are responsible for freeing these * when we are destroyed. */ upb_alloc *block_alloc; size_t bytes_allocated; size_t next_block_size; size_t max_block_size; /* Linked list of blocks. Points to an arena_block, defined in env.c */ void *block_head; /* Cleanup entries. Pointer to a cleanup_ent, defined in env.c */ void *cleanup_head; }; typedef struct mem_block { struct mem_block *next; size_t size; size_t used; bool owned; /* Data follows. */ } mem_block; typedef struct cleanup_ent { struct cleanup_ent *next; upb_cleanup_func *cleanup; void *ud; } cleanup_ent; static void upb_arena_addblock(upb_arena *a, void *ptr, size_t size, bool owned) { mem_block *block = ptr; block->next = a->block_head; block->size = size; block->used = align_up_max(sizeof(mem_block)); block->owned = owned; a->block_head = block; /* TODO(haberman): ASAN poison. */ } static mem_block *upb_arena_allocblock(upb_arena *a, size_t size) { size_t block_size = UPB_MAX(size, a->next_block_size) + sizeof(mem_block); mem_block *block = upb_malloc(a->block_alloc, block_size); if (!block) { return NULL; } upb_arena_addblock(a, block, block_size, true); a->next_block_size = UPB_MIN(block_size * 2, a->max_block_size); return block; } static void *upb_arena_doalloc(upb_alloc *alloc, void *ptr, size_t oldsize, size_t size) { upb_arena *a = (upb_arena*)alloc; /* upb_alloc is initial member. */ mem_block *block = a->block_head; void *ret; if (size == 0) { return NULL; /* We are an arena, don't need individual frees. */ } size = align_up_max(size); /* TODO(haberman): special-case if this is a realloc of the last alloc? */ if (!block || block->size - block->used < size) { /* Slow path: have to allocate a new block. */ block = upb_arena_allocblock(a, size); if (!block) { return NULL; /* Out of memory. */ } } ret = (char*)block + block->used; block->used += size; if (oldsize > 0) { memcpy(ret, ptr, oldsize); /* Preserve existing data. */ } /* TODO(haberman): ASAN unpoison. */ a->bytes_allocated += size; return ret; } /* Public Arena API ***********************************************************/ #define upb_alignof(type) offsetof (struct { char c; type member; }, member) upb_arena *upb_arena_init(void *mem, size_t n, upb_alloc *alloc) { const size_t first_block_overhead = sizeof(upb_arena) + sizeof(mem_block); upb_arena *a; bool owned = false; /* Round block size down to alignof(*a) since we will allocate the arena * itself at the end. */ n &= ~(upb_alignof(upb_arena) - 1); if (n < first_block_overhead) { /* We need to malloc the initial block. */ n = first_block_overhead + 256; owned = true; if (!alloc || !(mem = upb_malloc(alloc, n))) { return NULL; } } a = (void*)((char*)mem + n - sizeof(*a)); n -= sizeof(*a); a->alloc.func = &upb_arena_doalloc; a->block_alloc = &upb_alloc_global; a->bytes_allocated = 0; a->next_block_size = 256; a->max_block_size = 16384; a->cleanup_head = NULL; a->block_head = NULL; a->block_alloc = alloc; upb_arena_addblock(a, mem, n, owned); return a; } #undef upb_alignof void upb_arena_free(upb_arena *a) { cleanup_ent *ent = a->cleanup_head; mem_block *block = a->block_head; while (ent) { ent->cleanup(ent->ud); ent = ent->next; } /* Must do this after running cleanup functions, because this will delete * the memory we store our cleanup entries in! */ while (block) { /* Load first since we are deleting block. */ mem_block *next = block->next; if (block->owned) { upb_free(a->block_alloc, block); } block = next; } } bool upb_arena_addcleanup(upb_arena *a, void *ud, upb_cleanup_func *func) { cleanup_ent *ent = upb_malloc(&a->alloc, sizeof(cleanup_ent)); if (!ent) { return false; /* Out of memory. */ } ent->cleanup = func; ent->ud = ud; ent->next = a->cleanup_head; a->cleanup_head = ent; return true; } size_t upb_arena_bytesallocated(const upb_arena *a) { return a->bytes_allocated; } /* This file was generated by upbc (the upb compiler) from the input * file: * * google/protobuf/descriptor.proto * * Do not edit -- your changes will be discarded when the file is * regenerated. */ #include static const upb_msglayout *const google_protobuf_FileDescriptorSet_submsgs[1] = { &google_protobuf_FileDescriptorProto_msginit, }; static const upb_msglayout_field google_protobuf_FileDescriptorSet__fields[1] = { {1, UPB_SIZE(0, 0), 0, 0, 11, 3}, }; const upb_msglayout google_protobuf_FileDescriptorSet_msginit = { &google_protobuf_FileDescriptorSet_submsgs[0], &google_protobuf_FileDescriptorSet__fields[0], UPB_SIZE(4, 8), 1, false, }; static const upb_msglayout *const google_protobuf_FileDescriptorProto_submsgs[6] = { &google_protobuf_DescriptorProto_msginit, &google_protobuf_EnumDescriptorProto_msginit, &google_protobuf_FieldDescriptorProto_msginit, &google_protobuf_FileOptions_msginit, &google_protobuf_ServiceDescriptorProto_msginit, &google_protobuf_SourceCodeInfo_msginit, }; static const upb_msglayout_field google_protobuf_FileDescriptorProto__fields[12] = { {1, UPB_SIZE(4, 8), 1, 0, 9, 1}, {2, UPB_SIZE(12, 24), 2, 0, 9, 1}, {3, UPB_SIZE(36, 72), 0, 0, 9, 3}, {4, UPB_SIZE(40, 80), 0, 0, 11, 3}, {5, UPB_SIZE(44, 88), 0, 1, 11, 3}, {6, UPB_SIZE(48, 96), 0, 4, 11, 3}, {7, UPB_SIZE(52, 104), 0, 2, 11, 3}, {8, UPB_SIZE(28, 56), 4, 3, 11, 1}, {9, UPB_SIZE(32, 64), 5, 5, 11, 1}, {10, UPB_SIZE(56, 112), 0, 0, 5, 3}, {11, UPB_SIZE(60, 120), 0, 0, 5, 3}, {12, UPB_SIZE(20, 40), 3, 0, 9, 1}, }; const upb_msglayout google_protobuf_FileDescriptorProto_msginit = { &google_protobuf_FileDescriptorProto_submsgs[0], &google_protobuf_FileDescriptorProto__fields[0], UPB_SIZE(64, 128), 12, false, }; static const upb_msglayout *const google_protobuf_DescriptorProto_submsgs[8] = { &google_protobuf_DescriptorProto_msginit, &google_protobuf_DescriptorProto_ExtensionRange_msginit, &google_protobuf_DescriptorProto_ReservedRange_msginit, &google_protobuf_EnumDescriptorProto_msginit, &google_protobuf_FieldDescriptorProto_msginit, &google_protobuf_MessageOptions_msginit, &google_protobuf_OneofDescriptorProto_msginit, }; static const upb_msglayout_field google_protobuf_DescriptorProto__fields[10] = { {1, UPB_SIZE(4, 8), 1, 0, 9, 1}, {2, UPB_SIZE(16, 32), 0, 4, 11, 3}, {3, UPB_SIZE(20, 40), 0, 0, 11, 3}, {4, UPB_SIZE(24, 48), 0, 3, 11, 3}, {5, UPB_SIZE(28, 56), 0, 1, 11, 3}, {6, UPB_SIZE(32, 64), 0, 4, 11, 3}, {7, UPB_SIZE(12, 24), 2, 5, 11, 1}, {8, UPB_SIZE(36, 72), 0, 6, 11, 3}, {9, UPB_SIZE(40, 80), 0, 2, 11, 3}, {10, UPB_SIZE(44, 88), 0, 0, 9, 3}, }; const upb_msglayout google_protobuf_DescriptorProto_msginit = { &google_protobuf_DescriptorProto_submsgs[0], &google_protobuf_DescriptorProto__fields[0], UPB_SIZE(48, 96), 10, false, }; static const upb_msglayout *const google_protobuf_DescriptorProto_ExtensionRange_submsgs[1] = { &google_protobuf_ExtensionRangeOptions_msginit, }; static const upb_msglayout_field google_protobuf_DescriptorProto_ExtensionRange__fields[3] = { {1, UPB_SIZE(4, 4), 1, 0, 5, 1}, {2, UPB_SIZE(8, 8), 2, 0, 5, 1}, {3, UPB_SIZE(12, 16), 3, 0, 11, 1}, }; const upb_msglayout google_protobuf_DescriptorProto_ExtensionRange_msginit = { &google_protobuf_DescriptorProto_ExtensionRange_submsgs[0], &google_protobuf_DescriptorProto_ExtensionRange__fields[0], UPB_SIZE(16, 24), 3, false, }; static const upb_msglayout_field google_protobuf_DescriptorProto_ReservedRange__fields[2] = { {1, UPB_SIZE(4, 4), 1, 0, 5, 1}, {2, UPB_SIZE(8, 8), 2, 0, 5, 1}, }; const upb_msglayout google_protobuf_DescriptorProto_ReservedRange_msginit = { NULL, &google_protobuf_DescriptorProto_ReservedRange__fields[0], UPB_SIZE(12, 12), 2, false, }; static const upb_msglayout *const google_protobuf_ExtensionRangeOptions_submsgs[1] = { &google_protobuf_UninterpretedOption_msginit, }; static const upb_msglayout_field google_protobuf_ExtensionRangeOptions__fields[1] = { {999, UPB_SIZE(0, 0), 0, 0, 11, 3}, }; const upb_msglayout google_protobuf_ExtensionRangeOptions_msginit = { &google_protobuf_ExtensionRangeOptions_submsgs[0], &google_protobuf_ExtensionRangeOptions__fields[0], UPB_SIZE(4, 8), 1, false, }; static const upb_msglayout *const google_protobuf_FieldDescriptorProto_submsgs[1] = { &google_protobuf_FieldOptions_msginit, }; static const upb_msglayout_field google_protobuf_FieldDescriptorProto__fields[10] = { {1, UPB_SIZE(32, 32), 5, 0, 9, 1}, {2, UPB_SIZE(40, 48), 6, 0, 9, 1}, {3, UPB_SIZE(24, 24), 3, 0, 5, 1}, {4, UPB_SIZE(8, 8), 1, 0, 14, 1}, {5, UPB_SIZE(16, 16), 2, 0, 14, 1}, {6, UPB_SIZE(48, 64), 7, 0, 9, 1}, {7, UPB_SIZE(56, 80), 8, 0, 9, 1}, {8, UPB_SIZE(72, 112), 10, 0, 11, 1}, {9, UPB_SIZE(28, 28), 4, 0, 5, 1}, {10, UPB_SIZE(64, 96), 9, 0, 9, 1}, }; const upb_msglayout google_protobuf_FieldDescriptorProto_msginit = { &google_protobuf_FieldDescriptorProto_submsgs[0], &google_protobuf_FieldDescriptorProto__fields[0], UPB_SIZE(80, 128), 10, false, }; static const upb_msglayout *const google_protobuf_OneofDescriptorProto_submsgs[1] = { &google_protobuf_OneofOptions_msginit, }; static const upb_msglayout_field google_protobuf_OneofDescriptorProto__fields[2] = { {1, UPB_SIZE(4, 8), 1, 0, 9, 1}, {2, UPB_SIZE(12, 24), 2, 0, 11, 1}, }; const upb_msglayout google_protobuf_OneofDescriptorProto_msginit = { &google_protobuf_OneofDescriptorProto_submsgs[0], &google_protobuf_OneofDescriptorProto__fields[0], UPB_SIZE(16, 32), 2, false, }; static const upb_msglayout *const google_protobuf_EnumDescriptorProto_submsgs[3] = { &google_protobuf_EnumDescriptorProto_EnumReservedRange_msginit, &google_protobuf_EnumOptions_msginit, &google_protobuf_EnumValueDescriptorProto_msginit, }; static const upb_msglayout_field google_protobuf_EnumDescriptorProto__fields[5] = { {1, UPB_SIZE(4, 8), 1, 0, 9, 1}, {2, UPB_SIZE(16, 32), 0, 2, 11, 3}, {3, UPB_SIZE(12, 24), 2, 1, 11, 1}, {4, UPB_SIZE(20, 40), 0, 0, 11, 3}, {5, UPB_SIZE(24, 48), 0, 0, 9, 3}, }; const upb_msglayout google_protobuf_EnumDescriptorProto_msginit = { &google_protobuf_EnumDescriptorProto_submsgs[0], &google_protobuf_EnumDescriptorProto__fields[0], UPB_SIZE(32, 64), 5, false, }; static const upb_msglayout_field google_protobuf_EnumDescriptorProto_EnumReservedRange__fields[2] = { {1, UPB_SIZE(4, 4), 1, 0, 5, 1}, {2, UPB_SIZE(8, 8), 2, 0, 5, 1}, }; const upb_msglayout google_protobuf_EnumDescriptorProto_EnumReservedRange_msginit = { NULL, &google_protobuf_EnumDescriptorProto_EnumReservedRange__fields[0], UPB_SIZE(12, 12), 2, false, }; static const upb_msglayout *const google_protobuf_EnumValueDescriptorProto_submsgs[1] = { &google_protobuf_EnumValueOptions_msginit, }; static const upb_msglayout_field google_protobuf_EnumValueDescriptorProto__fields[3] = { {1, UPB_SIZE(8, 8), 2, 0, 9, 1}, {2, UPB_SIZE(4, 4), 1, 0, 5, 1}, {3, UPB_SIZE(16, 24), 3, 0, 11, 1}, }; const upb_msglayout google_protobuf_EnumValueDescriptorProto_msginit = { &google_protobuf_EnumValueDescriptorProto_submsgs[0], &google_protobuf_EnumValueDescriptorProto__fields[0], UPB_SIZE(24, 32), 3, false, }; static const upb_msglayout *const google_protobuf_ServiceDescriptorProto_submsgs[2] = { &google_protobuf_MethodDescriptorProto_msginit, &google_protobuf_ServiceOptions_msginit, }; static const upb_msglayout_field google_protobuf_ServiceDescriptorProto__fields[3] = { {1, UPB_SIZE(4, 8), 1, 0, 9, 1}, {2, UPB_SIZE(16, 32), 0, 0, 11, 3}, {3, UPB_SIZE(12, 24), 2, 1, 11, 1}, }; const upb_msglayout google_protobuf_ServiceDescriptorProto_msginit = { &google_protobuf_ServiceDescriptorProto_submsgs[0], &google_protobuf_ServiceDescriptorProto__fields[0], UPB_SIZE(24, 48), 3, false, }; static const upb_msglayout *const google_protobuf_MethodDescriptorProto_submsgs[1] = { &google_protobuf_MethodOptions_msginit, }; static const upb_msglayout_field google_protobuf_MethodDescriptorProto__fields[6] = { {1, UPB_SIZE(4, 8), 3, 0, 9, 1}, {2, UPB_SIZE(12, 24), 4, 0, 9, 1}, {3, UPB_SIZE(20, 40), 5, 0, 9, 1}, {4, UPB_SIZE(28, 56), 6, 0, 11, 1}, {5, UPB_SIZE(1, 1), 1, 0, 8, 1}, {6, UPB_SIZE(2, 2), 2, 0, 8, 1}, }; const upb_msglayout google_protobuf_MethodDescriptorProto_msginit = { &google_protobuf_MethodDescriptorProto_submsgs[0], &google_protobuf_MethodDescriptorProto__fields[0], UPB_SIZE(32, 64), 6, false, }; static const upb_msglayout *const google_protobuf_FileOptions_submsgs[1] = { &google_protobuf_UninterpretedOption_msginit, }; static const upb_msglayout_field google_protobuf_FileOptions__fields[21] = { {1, UPB_SIZE(28, 32), 11, 0, 9, 1}, {8, UPB_SIZE(36, 48), 12, 0, 9, 1}, {9, UPB_SIZE(8, 8), 1, 0, 14, 1}, {10, UPB_SIZE(16, 16), 2, 0, 8, 1}, {11, UPB_SIZE(44, 64), 13, 0, 9, 1}, {16, UPB_SIZE(17, 17), 3, 0, 8, 1}, {17, UPB_SIZE(18, 18), 4, 0, 8, 1}, {18, UPB_SIZE(19, 19), 5, 0, 8, 1}, {20, UPB_SIZE(20, 20), 6, 0, 8, 1}, {23, UPB_SIZE(21, 21), 7, 0, 8, 1}, {27, UPB_SIZE(22, 22), 8, 0, 8, 1}, {31, UPB_SIZE(23, 23), 9, 0, 8, 1}, {36, UPB_SIZE(52, 80), 14, 0, 9, 1}, {37, UPB_SIZE(60, 96), 15, 0, 9, 1}, {39, UPB_SIZE(68, 112), 16, 0, 9, 1}, {40, UPB_SIZE(76, 128), 17, 0, 9, 1}, {41, UPB_SIZE(84, 144), 18, 0, 9, 1}, {42, UPB_SIZE(24, 24), 10, 0, 8, 1}, {44, UPB_SIZE(92, 160), 19, 0, 9, 1}, {45, UPB_SIZE(100, 176), 20, 0, 9, 1}, {999, UPB_SIZE(108, 192), 0, 0, 11, 3}, }; const upb_msglayout google_protobuf_FileOptions_msginit = { &google_protobuf_FileOptions_submsgs[0], &google_protobuf_FileOptions__fields[0], UPB_SIZE(112, 208), 21, false, }; static const upb_msglayout *const google_protobuf_MessageOptions_submsgs[1] = { &google_protobuf_UninterpretedOption_msginit, }; static const upb_msglayout_field google_protobuf_MessageOptions__fields[5] = { {1, UPB_SIZE(1, 1), 1, 0, 8, 1}, {2, UPB_SIZE(2, 2), 2, 0, 8, 1}, {3, UPB_SIZE(3, 3), 3, 0, 8, 1}, {7, UPB_SIZE(4, 4), 4, 0, 8, 1}, {999, UPB_SIZE(8, 8), 0, 0, 11, 3}, }; const upb_msglayout google_protobuf_MessageOptions_msginit = { &google_protobuf_MessageOptions_submsgs[0], &google_protobuf_MessageOptions__fields[0], UPB_SIZE(12, 16), 5, false, }; static const upb_msglayout *const google_protobuf_FieldOptions_submsgs[1] = { &google_protobuf_UninterpretedOption_msginit, }; static const upb_msglayout_field google_protobuf_FieldOptions__fields[7] = { {1, UPB_SIZE(8, 8), 1, 0, 14, 1}, {2, UPB_SIZE(24, 24), 3, 0, 8, 1}, {3, UPB_SIZE(25, 25), 4, 0, 8, 1}, {5, UPB_SIZE(26, 26), 5, 0, 8, 1}, {6, UPB_SIZE(16, 16), 2, 0, 14, 1}, {10, UPB_SIZE(27, 27), 6, 0, 8, 1}, {999, UPB_SIZE(28, 32), 0, 0, 11, 3}, }; const upb_msglayout google_protobuf_FieldOptions_msginit = { &google_protobuf_FieldOptions_submsgs[0], &google_protobuf_FieldOptions__fields[0], UPB_SIZE(32, 40), 7, false, }; static const upb_msglayout *const google_protobuf_OneofOptions_submsgs[1] = { &google_protobuf_UninterpretedOption_msginit, }; static const upb_msglayout_field google_protobuf_OneofOptions__fields[1] = { {999, UPB_SIZE(0, 0), 0, 0, 11, 3}, }; const upb_msglayout google_protobuf_OneofOptions_msginit = { &google_protobuf_OneofOptions_submsgs[0], &google_protobuf_OneofOptions__fields[0], UPB_SIZE(4, 8), 1, false, }; static const upb_msglayout *const google_protobuf_EnumOptions_submsgs[1] = { &google_protobuf_UninterpretedOption_msginit, }; static const upb_msglayout_field google_protobuf_EnumOptions__fields[3] = { {2, UPB_SIZE(1, 1), 1, 0, 8, 1}, {3, UPB_SIZE(2, 2), 2, 0, 8, 1}, {999, UPB_SIZE(4, 8), 0, 0, 11, 3}, }; const upb_msglayout google_protobuf_EnumOptions_msginit = { &google_protobuf_EnumOptions_submsgs[0], &google_protobuf_EnumOptions__fields[0], UPB_SIZE(8, 16), 3, false, }; static const upb_msglayout *const google_protobuf_EnumValueOptions_submsgs[1] = { &google_protobuf_UninterpretedOption_msginit, }; static const upb_msglayout_field google_protobuf_EnumValueOptions__fields[2] = { {1, UPB_SIZE(1, 1), 1, 0, 8, 1}, {999, UPB_SIZE(4, 8), 0, 0, 11, 3}, }; const upb_msglayout google_protobuf_EnumValueOptions_msginit = { &google_protobuf_EnumValueOptions_submsgs[0], &google_protobuf_EnumValueOptions__fields[0], UPB_SIZE(8, 16), 2, false, }; static const upb_msglayout *const google_protobuf_ServiceOptions_submsgs[1] = { &google_protobuf_UninterpretedOption_msginit, }; static const upb_msglayout_field google_protobuf_ServiceOptions__fields[2] = { {33, UPB_SIZE(1, 1), 1, 0, 8, 1}, {999, UPB_SIZE(4, 8), 0, 0, 11, 3}, }; const upb_msglayout google_protobuf_ServiceOptions_msginit = { &google_protobuf_ServiceOptions_submsgs[0], &google_protobuf_ServiceOptions__fields[0], UPB_SIZE(8, 16), 2, false, }; static const upb_msglayout *const google_protobuf_MethodOptions_submsgs[1] = { &google_protobuf_UninterpretedOption_msginit, }; static const upb_msglayout_field google_protobuf_MethodOptions__fields[3] = { {33, UPB_SIZE(16, 16), 2, 0, 8, 1}, {34, UPB_SIZE(8, 8), 1, 0, 14, 1}, {999, UPB_SIZE(20, 24), 0, 0, 11, 3}, }; const upb_msglayout google_protobuf_MethodOptions_msginit = { &google_protobuf_MethodOptions_submsgs[0], &google_protobuf_MethodOptions__fields[0], UPB_SIZE(24, 32), 3, false, }; static const upb_msglayout *const google_protobuf_UninterpretedOption_submsgs[1] = { &google_protobuf_UninterpretedOption_NamePart_msginit, }; static const upb_msglayout_field google_protobuf_UninterpretedOption__fields[7] = { {2, UPB_SIZE(56, 80), 0, 0, 11, 3}, {3, UPB_SIZE(32, 32), 4, 0, 9, 1}, {4, UPB_SIZE(8, 8), 1, 0, 4, 1}, {5, UPB_SIZE(16, 16), 2, 0, 3, 1}, {6, UPB_SIZE(24, 24), 3, 0, 1, 1}, {7, UPB_SIZE(40, 48), 5, 0, 12, 1}, {8, UPB_SIZE(48, 64), 6, 0, 9, 1}, }; const upb_msglayout google_protobuf_UninterpretedOption_msginit = { &google_protobuf_UninterpretedOption_submsgs[0], &google_protobuf_UninterpretedOption__fields[0], UPB_SIZE(64, 96), 7, false, }; static const upb_msglayout_field google_protobuf_UninterpretedOption_NamePart__fields[2] = { {1, UPB_SIZE(4, 8), 2, 0, 9, 2}, {2, UPB_SIZE(1, 1), 1, 0, 8, 2}, }; const upb_msglayout google_protobuf_UninterpretedOption_NamePart_msginit = { NULL, &google_protobuf_UninterpretedOption_NamePart__fields[0], UPB_SIZE(16, 32), 2, false, }; static const upb_msglayout *const google_protobuf_SourceCodeInfo_submsgs[1] = { &google_protobuf_SourceCodeInfo_Location_msginit, }; static const upb_msglayout_field google_protobuf_SourceCodeInfo__fields[1] = { {1, UPB_SIZE(0, 0), 0, 0, 11, 3}, }; const upb_msglayout google_protobuf_SourceCodeInfo_msginit = { &google_protobuf_SourceCodeInfo_submsgs[0], &google_protobuf_SourceCodeInfo__fields[0], UPB_SIZE(4, 8), 1, false, }; static const upb_msglayout_field google_protobuf_SourceCodeInfo_Location__fields[5] = { {1, UPB_SIZE(20, 40), 0, 0, 5, 3}, {2, UPB_SIZE(24, 48), 0, 0, 5, 3}, {3, UPB_SIZE(4, 8), 1, 0, 9, 1}, {4, UPB_SIZE(12, 24), 2, 0, 9, 1}, {6, UPB_SIZE(28, 56), 0, 0, 9, 3}, }; const upb_msglayout google_protobuf_SourceCodeInfo_Location_msginit = { NULL, &google_protobuf_SourceCodeInfo_Location__fields[0], UPB_SIZE(32, 64), 5, false, }; static const upb_msglayout *const google_protobuf_GeneratedCodeInfo_submsgs[1] = { &google_protobuf_GeneratedCodeInfo_Annotation_msginit, }; static const upb_msglayout_field google_protobuf_GeneratedCodeInfo__fields[1] = { {1, UPB_SIZE(0, 0), 0, 0, 11, 3}, }; const upb_msglayout google_protobuf_GeneratedCodeInfo_msginit = { &google_protobuf_GeneratedCodeInfo_submsgs[0], &google_protobuf_GeneratedCodeInfo__fields[0], UPB_SIZE(4, 8), 1, false, }; static const upb_msglayout_field google_protobuf_GeneratedCodeInfo_Annotation__fields[4] = { {1, UPB_SIZE(20, 32), 0, 0, 5, 3}, {2, UPB_SIZE(12, 16), 3, 0, 9, 1}, {3, UPB_SIZE(4, 4), 1, 0, 5, 1}, {4, UPB_SIZE(8, 8), 2, 0, 5, 1}, }; const upb_msglayout google_protobuf_GeneratedCodeInfo_Annotation_msginit = { NULL, &google_protobuf_GeneratedCodeInfo_Annotation__fields[0], UPB_SIZE(24, 48), 4, false, }; #include #include #include #include typedef struct { size_t len; char str[1]; /* Null-terminated string data follows. */ } str_t; static str_t *newstr(upb_alloc *alloc, const char *data, size_t len) { str_t *ret = upb_malloc(alloc, sizeof(*ret) + len); if (!ret) return NULL; ret->len = len; memcpy(ret->str, data, len); ret->str[len] = '\0'; return ret; } struct upb_fielddef { const upb_filedef *file; const upb_msgdef *msgdef; const char *full_name; union { int64_t sint; uint64_t uint; double dbl; float flt; bool boolean; str_t *str; } defaultval; const upb_oneofdef *oneof; union { const upb_msgdef *msgdef; const upb_enumdef *enumdef; const google_protobuf_FieldDescriptorProto *unresolved; } sub; uint32_t number_; uint32_t index_; uint32_t selector_base; /* Used to index into a upb::Handlers table. */ bool is_extension_; bool lazy_; bool packed_; upb_descriptortype_t type_; upb_label_t label_; }; struct upb_msgdef { const upb_filedef *file; const char *full_name; uint32_t selector_count; uint32_t submsg_field_count; /* Tables for looking up fields by number and name. */ upb_inttable itof; upb_strtable ntof; const upb_fielddef *fields; const upb_oneofdef *oneofs; int field_count; int oneof_count; /* Is this a map-entry message? */ bool map_entry; upb_wellknowntype_t well_known_type; /* TODO(haberman): proper extension ranges (there can be multiple). */ }; struct upb_enumdef { const upb_filedef *file; const char *full_name; upb_strtable ntoi; upb_inttable iton; int32_t defaultval; }; struct upb_oneofdef { const upb_msgdef *parent; const char *full_name; uint32_t index; upb_strtable ntof; upb_inttable itof; }; struct upb_filedef { const char *name; const char *package; const char *phpprefix; const char *phpnamespace; upb_syntax_t syntax; const upb_filedef **deps; const upb_msgdef *msgs; const upb_enumdef *enums; const upb_fielddef *exts; int dep_count; int msg_count; int enum_count; int ext_count; }; struct upb_symtab { upb_arena *arena; upb_strtable syms; /* full_name -> packed def ptr */ upb_strtable files; /* file_name -> upb_filedef* */ }; /* Inside a symtab we store tagged pointers to specific def types. */ typedef enum { UPB_DEFTYPE_MSG = 0, UPB_DEFTYPE_ENUM = 1, UPB_DEFTYPE_FIELD = 2, UPB_DEFTYPE_ONEOF = 3 } upb_deftype_t; static const void *unpack_def(upb_value v, upb_deftype_t type) { uintptr_t num = (uintptr_t)upb_value_getconstptr(v); return (num & 3) == type ? (const void*)(num & ~3) : NULL; } static upb_value pack_def(const void *ptr, upb_deftype_t type) { uintptr_t num = (uintptr_t)ptr | type; return upb_value_constptr((const void*)num); } /* isalpha() etc. from are locale-dependent, which we don't want. */ static bool upb_isbetween(char c, char low, char high) { return c >= low && c <= high; } static bool upb_isletter(char c) { return upb_isbetween(c, 'A', 'Z') || upb_isbetween(c, 'a', 'z') || c == '_'; } static bool upb_isalphanum(char c) { return upb_isletter(c) || upb_isbetween(c, '0', '9'); } static bool upb_isident(upb_strview name, bool full, upb_status *s) { const char *str = name.data; size_t len = name.size; bool start = true; size_t i; for (i = 0; i < len; i++) { char c = str[i]; if (c == '.') { if (start || !full) { upb_status_seterrf(s, "invalid name: unexpected '.' (%s)", str); return false; } start = true; } else if (start) { if (!upb_isletter(c)) { upb_status_seterrf( s, "invalid name: path components must start with a letter (%s)", str); return false; } start = false; } else { if (!upb_isalphanum(c)) { upb_status_seterrf(s, "invalid name: non-alphanumeric character (%s)", str); return false; } } } return !start; } static const char *shortdefname(const char *fullname) { const char *p; if (fullname == NULL) { return NULL; } else if ((p = strrchr(fullname, '.')) == NULL) { /* No '.' in the name, return the full string. */ return fullname; } else { /* Return one past the last '.'. */ return p + 1; } } /* All submessage fields are lower than all other fields. * Secondly, fields are increasing in order. */ uint32_t field_rank(const upb_fielddef *f) { uint32_t ret = upb_fielddef_number(f); const uint32_t high_bit = 1 << 30; UPB_ASSERT(ret < high_bit); if (!upb_fielddef_issubmsg(f)) ret |= high_bit; return ret; } int cmp_fields(const void *p1, const void *p2) { const upb_fielddef *f1 = *(upb_fielddef*const*)p1; const upb_fielddef *f2 = *(upb_fielddef*const*)p2; return field_rank(f1) - field_rank(f2); } /* A few implementation details of handlers. We put these here to avoid * a def -> handlers dependency. */ #define UPB_STATIC_SELECTOR_COUNT 3 /* Warning: also in upb/handlers.h. */ static uint32_t upb_handlers_selectorbaseoffset(const upb_fielddef *f) { return upb_fielddef_isseq(f) ? 2 : 0; } static uint32_t upb_handlers_selectorcount(const upb_fielddef *f) { uint32_t ret = 1; if (upb_fielddef_isseq(f)) ret += 2; /* STARTSEQ/ENDSEQ */ if (upb_fielddef_isstring(f)) ret += 2; /* [STRING]/STARTSTR/ENDSTR */ if (upb_fielddef_issubmsg(f)) { /* ENDSUBMSG (STARTSUBMSG is at table beginning) */ ret += 0; if (upb_fielddef_lazy(f)) { /* STARTSTR/ENDSTR/STRING (for lazy) */ ret += 3; } } return ret; } static bool assign_msg_indices(upb_msgdef *m, upb_status *s) { /* Sort fields. upb internally relies on UPB_TYPE_MESSAGE fields having the * lowest indexes, but we do not publicly guarantee this. */ upb_msg_field_iter j; upb_msg_oneof_iter k; int i; uint32_t selector; int n = upb_msgdef_numfields(m); upb_fielddef **fields; if (n == 0) { m->selector_count = UPB_STATIC_SELECTOR_COUNT; m->submsg_field_count = 0; return true; } fields = upb_gmalloc(n * sizeof(*fields)); if (!fields) { upb_status_setoom(s); return false; } m->submsg_field_count = 0; for(i = 0, upb_msg_field_begin(&j, m); !upb_msg_field_done(&j); upb_msg_field_next(&j), i++) { upb_fielddef *f = upb_msg_iter_field(&j); UPB_ASSERT(f->msgdef == m); if (upb_fielddef_issubmsg(f)) { m->submsg_field_count++; } fields[i] = f; } qsort(fields, n, sizeof(*fields), cmp_fields); selector = UPB_STATIC_SELECTOR_COUNT + m->submsg_field_count; for (i = 0; i < n; i++) { upb_fielddef *f = fields[i]; f->index_ = i; f->selector_base = selector + upb_handlers_selectorbaseoffset(f); selector += upb_handlers_selectorcount(f); } m->selector_count = selector; for(upb_msg_oneof_begin(&k, m), i = 0; !upb_msg_oneof_done(&k); upb_msg_oneof_next(&k), i++) { upb_oneofdef *o = (upb_oneofdef*)upb_msg_iter_oneof(&k); o->index = i; } upb_gfree(fields); return true; } static void assign_msg_wellknowntype(upb_msgdef *m) { const char *name = upb_msgdef_fullname(m); if (name == NULL) { m->well_known_type = UPB_WELLKNOWN_UNSPECIFIED; return; } if (!strcmp(name, "google.protobuf.Any")) { m->well_known_type = UPB_WELLKNOWN_ANY; } else if (!strcmp(name, "google.protobuf.FieldMask")) { m->well_known_type = UPB_WELLKNOWN_FIELDMASK; } else if (!strcmp(name, "google.protobuf.Duration")) { m->well_known_type = UPB_WELLKNOWN_DURATION; } else if (!strcmp(name, "google.protobuf.Timestamp")) { m->well_known_type = UPB_WELLKNOWN_TIMESTAMP; } else if (!strcmp(name, "google.protobuf.DoubleValue")) { m->well_known_type = UPB_WELLKNOWN_DOUBLEVALUE; } else if (!strcmp(name, "google.protobuf.FloatValue")) { m->well_known_type = UPB_WELLKNOWN_FLOATVALUE; } else if (!strcmp(name, "google.protobuf.Int64Value")) { m->well_known_type = UPB_WELLKNOWN_INT64VALUE; } else if (!strcmp(name, "google.protobuf.UInt64Value")) { m->well_known_type = UPB_WELLKNOWN_UINT64VALUE; } else if (!strcmp(name, "google.protobuf.Int32Value")) { m->well_known_type = UPB_WELLKNOWN_INT32VALUE; } else if (!strcmp(name, "google.protobuf.UInt32Value")) { m->well_known_type = UPB_WELLKNOWN_UINT32VALUE; } else if (!strcmp(name, "google.protobuf.BoolValue")) { m->well_known_type = UPB_WELLKNOWN_BOOLVALUE; } else if (!strcmp(name, "google.protobuf.StringValue")) { m->well_known_type = UPB_WELLKNOWN_STRINGVALUE; } else if (!strcmp(name, "google.protobuf.BytesValue")) { m->well_known_type = UPB_WELLKNOWN_BYTESVALUE; } else if (!strcmp(name, "google.protobuf.Value")) { m->well_known_type = UPB_WELLKNOWN_VALUE; } else if (!strcmp(name, "google.protobuf.ListValue")) { m->well_known_type = UPB_WELLKNOWN_LISTVALUE; } else if (!strcmp(name, "google.protobuf.Struct")) { m->well_known_type = UPB_WELLKNOWN_STRUCT; } else { m->well_known_type = UPB_WELLKNOWN_UNSPECIFIED; } } /* upb_enumdef ****************************************************************/ const char *upb_enumdef_fullname(const upb_enumdef *e) { return e->full_name; } const char *upb_enumdef_name(const upb_enumdef *e) { return shortdefname(e->full_name); } const upb_filedef *upb_enumdef_file(const upb_enumdef *e) { return e->file; } int32_t upb_enumdef_default(const upb_enumdef *e) { UPB_ASSERT(upb_enumdef_iton(e, e->defaultval)); return e->defaultval; } int upb_enumdef_numvals(const upb_enumdef *e) { return upb_strtable_count(&e->ntoi); } void upb_enum_begin(upb_enum_iter *i, const upb_enumdef *e) { /* We iterate over the ntoi table, to account for duplicate numbers. */ upb_strtable_begin(i, &e->ntoi); } void upb_enum_next(upb_enum_iter *iter) { upb_strtable_next(iter); } bool upb_enum_done(upb_enum_iter *iter) { return upb_strtable_done(iter); } bool upb_enumdef_ntoi(const upb_enumdef *def, const char *name, size_t len, int32_t *num) { upb_value v; if (!upb_strtable_lookup2(&def->ntoi, name, len, &v)) { return false; } if (num) *num = upb_value_getint32(v); return true; } const char *upb_enumdef_iton(const upb_enumdef *def, int32_t num) { upb_value v; return upb_inttable_lookup32(&def->iton, num, &v) ? upb_value_getcstr(v) : NULL; } const char *upb_enum_iter_name(upb_enum_iter *iter) { return upb_strtable_iter_key(iter); } int32_t upb_enum_iter_number(upb_enum_iter *iter) { return upb_value_getint32(upb_strtable_iter_value(iter)); } /* upb_fielddef ***************************************************************/ const char *upb_fielddef_fullname(const upb_fielddef *f) { return f->full_name; } upb_fieldtype_t upb_fielddef_type(const upb_fielddef *f) { switch (f->type_) { case UPB_DESCRIPTOR_TYPE_DOUBLE: return UPB_TYPE_DOUBLE; case UPB_DESCRIPTOR_TYPE_FLOAT: return UPB_TYPE_FLOAT; case UPB_DESCRIPTOR_TYPE_INT64: case UPB_DESCRIPTOR_TYPE_SINT64: case UPB_DESCRIPTOR_TYPE_SFIXED64: return UPB_TYPE_INT64; case UPB_DESCRIPTOR_TYPE_INT32: case UPB_DESCRIPTOR_TYPE_SFIXED32: case UPB_DESCRIPTOR_TYPE_SINT32: return UPB_TYPE_INT32; case UPB_DESCRIPTOR_TYPE_UINT64: case UPB_DESCRIPTOR_TYPE_FIXED64: return UPB_TYPE_UINT64; case UPB_DESCRIPTOR_TYPE_UINT32: case UPB_DESCRIPTOR_TYPE_FIXED32: return UPB_TYPE_UINT32; case UPB_DESCRIPTOR_TYPE_ENUM: return UPB_TYPE_ENUM; case UPB_DESCRIPTOR_TYPE_BOOL: return UPB_TYPE_BOOL; case UPB_DESCRIPTOR_TYPE_STRING: return UPB_TYPE_STRING; case UPB_DESCRIPTOR_TYPE_BYTES: return UPB_TYPE_BYTES; case UPB_DESCRIPTOR_TYPE_GROUP: case UPB_DESCRIPTOR_TYPE_MESSAGE: return UPB_TYPE_MESSAGE; } UPB_UNREACHABLE(); } upb_descriptortype_t upb_fielddef_descriptortype(const upb_fielddef *f) { return f->type_; } uint32_t upb_fielddef_index(const upb_fielddef *f) { return f->index_; } upb_label_t upb_fielddef_label(const upb_fielddef *f) { return f->label_; } uint32_t upb_fielddef_number(const upb_fielddef *f) { return f->number_; } bool upb_fielddef_isextension(const upb_fielddef *f) { return f->is_extension_; } bool upb_fielddef_lazy(const upb_fielddef *f) { return f->lazy_; } bool upb_fielddef_packed(const upb_fielddef *f) { return f->packed_; } const char *upb_fielddef_name(const upb_fielddef *f) { return shortdefname(f->full_name); } uint32_t upb_fielddef_selectorbase(const upb_fielddef *f) { return f->selector_base; } size_t upb_fielddef_getjsonname(const upb_fielddef *f, char *buf, size_t len) { const char *name = upb_fielddef_name(f); size_t src, dst = 0; bool ucase_next = false; #define WRITE(byte) \ ++dst; \ if (dst < len) buf[dst - 1] = byte; \ else if (dst == len) buf[dst - 1] = '\0' if (!name) { WRITE('\0'); return 0; } /* Implement the transformation as described in the spec: * 1. upper case all letters after an underscore. * 2. remove all underscores. */ for (src = 0; name[src]; src++) { if (name[src] == '_') { ucase_next = true; continue; } if (ucase_next) { WRITE(toupper(name[src])); ucase_next = false; } else { WRITE(name[src]); } } WRITE('\0'); return dst; #undef WRITE } const upb_msgdef *upb_fielddef_containingtype(const upb_fielddef *f) { return f->msgdef; } const upb_oneofdef *upb_fielddef_containingoneof(const upb_fielddef *f) { return f->oneof; } static void chkdefaulttype(const upb_fielddef *f, int ctype) { UPB_UNUSED(f); UPB_UNUSED(ctype); } int64_t upb_fielddef_defaultint64(const upb_fielddef *f) { chkdefaulttype(f, UPB_TYPE_INT64); return f->defaultval.sint; } int32_t upb_fielddef_defaultint32(const upb_fielddef *f) { chkdefaulttype(f, UPB_TYPE_INT32); return f->defaultval.sint; } uint64_t upb_fielddef_defaultuint64(const upb_fielddef *f) { chkdefaulttype(f, UPB_TYPE_UINT64); return f->defaultval.uint; } uint32_t upb_fielddef_defaultuint32(const upb_fielddef *f) { chkdefaulttype(f, UPB_TYPE_UINT32); return f->defaultval.uint; } bool upb_fielddef_defaultbool(const upb_fielddef *f) { chkdefaulttype(f, UPB_TYPE_BOOL); return f->defaultval.boolean; } float upb_fielddef_defaultfloat(const upb_fielddef *f) { chkdefaulttype(f, UPB_TYPE_FLOAT); return f->defaultval.flt; } double upb_fielddef_defaultdouble(const upb_fielddef *f) { chkdefaulttype(f, UPB_TYPE_DOUBLE); return f->defaultval.dbl; } const char *upb_fielddef_defaultstr(const upb_fielddef *f, size_t *len) { str_t *str = f->defaultval.str; UPB_ASSERT(upb_fielddef_type(f) == UPB_TYPE_STRING || upb_fielddef_type(f) == UPB_TYPE_BYTES || upb_fielddef_type(f) == UPB_TYPE_ENUM); if (str) { if (len) *len = str->len; return str->str; } else { if (len) *len = 0; return NULL; } } const upb_msgdef *upb_fielddef_msgsubdef(const upb_fielddef *f) { UPB_ASSERT(upb_fielddef_type(f) == UPB_TYPE_MESSAGE); return f->sub.msgdef; } const upb_enumdef *upb_fielddef_enumsubdef(const upb_fielddef *f) { UPB_ASSERT(upb_fielddef_type(f) == UPB_TYPE_ENUM); return f->sub.enumdef; } bool upb_fielddef_issubmsg(const upb_fielddef *f) { return upb_fielddef_type(f) == UPB_TYPE_MESSAGE; } bool upb_fielddef_isstring(const upb_fielddef *f) { return upb_fielddef_type(f) == UPB_TYPE_STRING || upb_fielddef_type(f) == UPB_TYPE_BYTES; } bool upb_fielddef_isseq(const upb_fielddef *f) { return upb_fielddef_label(f) == UPB_LABEL_REPEATED; } bool upb_fielddef_isprimitive(const upb_fielddef *f) { return !upb_fielddef_isstring(f) && !upb_fielddef_issubmsg(f); } bool upb_fielddef_ismap(const upb_fielddef *f) { return upb_fielddef_isseq(f) && upb_fielddef_issubmsg(f) && upb_msgdef_mapentry(upb_fielddef_msgsubdef(f)); } bool upb_fielddef_hassubdef(const upb_fielddef *f) { return upb_fielddef_issubmsg(f) || upb_fielddef_type(f) == UPB_TYPE_ENUM; } bool upb_fielddef_haspresence(const upb_fielddef *f) { if (upb_fielddef_isseq(f)) return false; if (upb_fielddef_issubmsg(f)) return true; return f->file->syntax == UPB_SYNTAX_PROTO2; } static bool between(int32_t x, int32_t low, int32_t high) { return x >= low && x <= high; } bool upb_fielddef_checklabel(int32_t label) { return between(label, 1, 3); } bool upb_fielddef_checktype(int32_t type) { return between(type, 1, 11); } bool upb_fielddef_checkintfmt(int32_t fmt) { return between(fmt, 1, 3); } bool upb_fielddef_checkdescriptortype(int32_t type) { return between(type, 1, 18); } /* upb_msgdef *****************************************************************/ const char *upb_msgdef_fullname(const upb_msgdef *m) { return m->full_name; } const upb_filedef *upb_msgdef_file(const upb_msgdef *m) { return m->file; } const char *upb_msgdef_name(const upb_msgdef *m) { return shortdefname(m->full_name); } upb_syntax_t upb_msgdef_syntax(const upb_msgdef *m) { return m->file->syntax; } size_t upb_msgdef_selectorcount(const upb_msgdef *m) { return m->selector_count; } uint32_t upb_msgdef_submsgfieldcount(const upb_msgdef *m) { return m->submsg_field_count; } const upb_fielddef *upb_msgdef_itof(const upb_msgdef *m, uint32_t i) { upb_value val; return upb_inttable_lookup32(&m->itof, i, &val) ? upb_value_getconstptr(val) : NULL; } const upb_fielddef *upb_msgdef_ntof(const upb_msgdef *m, const char *name, size_t len) { upb_value val; if (!upb_strtable_lookup2(&m->ntof, name, len, &val)) { return NULL; } return unpack_def(val, UPB_DEFTYPE_FIELD); } const upb_oneofdef *upb_msgdef_ntoo(const upb_msgdef *m, const char *name, size_t len) { upb_value val; if (!upb_strtable_lookup2(&m->ntof, name, len, &val)) { return NULL; } return unpack_def(val, UPB_DEFTYPE_ONEOF); } bool upb_msgdef_lookupname(const upb_msgdef *m, const char *name, size_t len, const upb_fielddef **f, const upb_oneofdef **o) { upb_value val; if (!upb_strtable_lookup2(&m->ntof, name, len, &val)) { return false; } *o = unpack_def(val, UPB_DEFTYPE_ONEOF); *f = unpack_def(val, UPB_DEFTYPE_FIELD); UPB_ASSERT((*o != NULL) ^ (*f != NULL)); /* Exactly one of the two should be set. */ return true; } int upb_msgdef_numfields(const upb_msgdef *m) { /* The number table contains only fields. */ return upb_inttable_count(&m->itof); } int upb_msgdef_numoneofs(const upb_msgdef *m) { /* The name table includes oneofs, and the number table does not. */ return upb_strtable_count(&m->ntof) - upb_inttable_count(&m->itof); } bool upb_msgdef_mapentry(const upb_msgdef *m) { return m->map_entry; } upb_wellknowntype_t upb_msgdef_wellknowntype(const upb_msgdef *m) { return m->well_known_type; } bool upb_msgdef_isnumberwrapper(const upb_msgdef *m) { upb_wellknowntype_t type = upb_msgdef_wellknowntype(m); return type >= UPB_WELLKNOWN_DOUBLEVALUE && type <= UPB_WELLKNOWN_UINT32VALUE; } void upb_msg_field_begin(upb_msg_field_iter *iter, const upb_msgdef *m) { upb_inttable_begin(iter, &m->itof); } void upb_msg_field_next(upb_msg_field_iter *iter) { upb_inttable_next(iter); } bool upb_msg_field_done(const upb_msg_field_iter *iter) { return upb_inttable_done(iter); } upb_fielddef *upb_msg_iter_field(const upb_msg_field_iter *iter) { return (upb_fielddef *)upb_value_getconstptr(upb_inttable_iter_value(iter)); } void upb_msg_field_iter_setdone(upb_msg_field_iter *iter) { upb_inttable_iter_setdone(iter); } bool upb_msg_field_iter_isequal(const upb_msg_field_iter * iter1, const upb_msg_field_iter * iter2) { return upb_inttable_iter_isequal(iter1, iter2); } void upb_msg_oneof_begin(upb_msg_oneof_iter *iter, const upb_msgdef *m) { upb_strtable_begin(iter, &m->ntof); /* We need to skip past any initial fields. */ while (!upb_strtable_done(iter) && !unpack_def(upb_strtable_iter_value(iter), UPB_DEFTYPE_ONEOF)) { upb_strtable_next(iter); } } void upb_msg_oneof_next(upb_msg_oneof_iter *iter) { /* We need to skip past fields to return only oneofs. */ do { upb_strtable_next(iter); } while (!upb_strtable_done(iter) && !unpack_def(upb_strtable_iter_value(iter), UPB_DEFTYPE_ONEOF)); } bool upb_msg_oneof_done(const upb_msg_oneof_iter *iter) { return upb_strtable_done(iter); } const upb_oneofdef *upb_msg_iter_oneof(const upb_msg_oneof_iter *iter) { return unpack_def(upb_strtable_iter_value(iter), UPB_DEFTYPE_ONEOF); } void upb_msg_oneof_iter_setdone(upb_msg_oneof_iter *iter) { upb_strtable_iter_setdone(iter); } bool upb_msg_oneof_iter_isequal(const upb_msg_oneof_iter *iter1, const upb_msg_oneof_iter *iter2) { return upb_strtable_iter_isequal(iter1, iter2); } /* upb_oneofdef ***************************************************************/ const char *upb_oneofdef_name(const upb_oneofdef *o) { return shortdefname(o->full_name); } const upb_msgdef *upb_oneofdef_containingtype(const upb_oneofdef *o) { return o->parent; } int upb_oneofdef_numfields(const upb_oneofdef *o) { return upb_strtable_count(&o->ntof); } uint32_t upb_oneofdef_index(const upb_oneofdef *o) { return o->index; } const upb_fielddef *upb_oneofdef_ntof(const upb_oneofdef *o, const char *name, size_t length) { upb_value val; return upb_strtable_lookup2(&o->ntof, name, length, &val) ? upb_value_getptr(val) : NULL; } const upb_fielddef *upb_oneofdef_itof(const upb_oneofdef *o, uint32_t num) { upb_value val; return upb_inttable_lookup32(&o->itof, num, &val) ? upb_value_getptr(val) : NULL; } void upb_oneof_begin(upb_oneof_iter *iter, const upb_oneofdef *o) { upb_inttable_begin(iter, &o->itof); } void upb_oneof_next(upb_oneof_iter *iter) { upb_inttable_next(iter); } bool upb_oneof_done(upb_oneof_iter *iter) { return upb_inttable_done(iter); } upb_fielddef *upb_oneof_iter_field(const upb_oneof_iter *iter) { return (upb_fielddef *)upb_value_getconstptr(upb_inttable_iter_value(iter)); } void upb_oneof_iter_setdone(upb_oneof_iter *iter) { upb_inttable_iter_setdone(iter); } /* Code to build defs from descriptor protos. *********************************/ /* There is a question of how much validation to do here. It will be difficult * to perfectly match the amount of validation performed by proto2. But since * this code is used to directly build defs from Ruby (for example) we do need * to validate important constraints like uniqueness of names and numbers. */ #define CHK(x) if (!(x)) { return false; } #define CHK_OOM(x) if (!(x)) { upb_status_setoom(ctx->status); return false; } typedef struct { const upb_symtab *symtab; upb_filedef *file; /* File we are building. */ upb_alloc *alloc; /* Allocate defs here. */ upb_alloc *tmp; /* Alloc for addtab and any other tmp data. */ upb_strtable *addtab; /* full_name -> packed def ptr for new defs. */ upb_status *status; /* Record errors here. */ } symtab_addctx; static char* strviewdup(const symtab_addctx *ctx, upb_strview view) { return upb_strdup2(view.data, view.size, ctx->alloc); } static bool streql2(const char *a, size_t n, const char *b) { return n == strlen(b) && memcmp(a, b, n) == 0; } static bool streql_view(upb_strview view, const char *b) { return streql2(view.data, view.size, b); } static const char *makefullname(const symtab_addctx *ctx, const char *prefix, upb_strview name) { if (prefix) { /* ret = prefix + '.' + name; */ size_t n = strlen(prefix); char *ret = upb_malloc(ctx->alloc, n + name.size + 2); CHK_OOM(ret); strcpy(ret, prefix); ret[n] = '.'; memcpy(&ret[n + 1], name.data, name.size); ret[n + 1 + name.size] = '\0'; return ret; } else { return strviewdup(ctx, name); } } static bool symtab_add(const symtab_addctx *ctx, const char *name, upb_value v) { upb_value tmp; if (upb_strtable_lookup(ctx->addtab, name, &tmp) || upb_strtable_lookup(&ctx->symtab->syms, name, &tmp)) { upb_status_seterrf(ctx->status, "duplicate symbol '%s'", name); return false; } CHK_OOM(upb_strtable_insert3(ctx->addtab, name, strlen(name), v, ctx->tmp)); return true; } /* Given a symbol and the base symbol inside which it is defined, find the * symbol's definition in t. */ static bool resolvename(const upb_strtable *t, const upb_fielddef *f, const char *base, upb_strview sym, upb_deftype_t type, upb_status *status, const void **def) { if(sym.size == 0) return NULL; if(sym.data[0] == '.') { /* Symbols starting with '.' are absolute, so we do a single lookup. * Slice to omit the leading '.' */ upb_value v; if (!upb_strtable_lookup2(t, sym.data + 1, sym.size - 1, &v)) { return false; } *def = unpack_def(v, type); if (!*def) { upb_status_seterrf(status, "type mismatch when resolving field %s, name %s", f->full_name, sym.data); return false; } return true; } else { /* Remove components from base until we find an entry or run out. * TODO: This branch is totally broken, but currently not used. */ (void)base; UPB_ASSERT(false); return false; } } const void *symtab_resolve(const symtab_addctx *ctx, const upb_fielddef *f, const char *base, upb_strview sym, upb_deftype_t type) { const void *ret; if (!resolvename(ctx->addtab, f, base, sym, type, ctx->status, &ret) && !resolvename(&ctx->symtab->syms, f, base, sym, type, ctx->status, &ret)) { if (upb_ok(ctx->status)) { upb_status_seterrf(ctx->status, "couldn't resolve name '%s'", sym.data); } return false; } return ret; } static bool create_oneofdef( const symtab_addctx *ctx, upb_msgdef *m, const google_protobuf_OneofDescriptorProto *oneof_proto) { upb_oneofdef *o; upb_strview name = google_protobuf_OneofDescriptorProto_name(oneof_proto); upb_value v; o = (upb_oneofdef*)&m->oneofs[m->oneof_count++]; o->parent = m; o->full_name = makefullname(ctx, m->full_name, name); v = pack_def(o, UPB_DEFTYPE_ONEOF); CHK_OOM(symtab_add(ctx, o->full_name, v)); CHK_OOM(upb_strtable_insert3(&m->ntof, name.data, name.size, v, ctx->alloc)); CHK_OOM(upb_inttable_init2(&o->itof, UPB_CTYPE_CONSTPTR, ctx->alloc)); CHK_OOM(upb_strtable_init2(&o->ntof, UPB_CTYPE_CONSTPTR, ctx->alloc)); return true; } static bool parse_default(const symtab_addctx *ctx, const char *str, size_t len, upb_fielddef *f) { char *end; char nullz[64]; errno = 0; switch (upb_fielddef_type(f)) { case UPB_TYPE_INT32: case UPB_TYPE_INT64: case UPB_TYPE_UINT32: case UPB_TYPE_UINT64: case UPB_TYPE_DOUBLE: case UPB_TYPE_FLOAT: /* Standard C number parsing functions expect null-terminated strings. */ if (len >= sizeof(nullz) - 1) { return false; } memcpy(nullz, str, len); nullz[len] = '\0'; str = nullz; break; default: break; } switch (upb_fielddef_type(f)) { case UPB_TYPE_INT32: { long val = strtol(str, &end, 0); CHK(val <= INT32_MAX && val >= INT32_MIN && errno != ERANGE && !*end); f->defaultval.sint = val; break; } case UPB_TYPE_ENUM: { const upb_enumdef *e = f->sub.enumdef; int32_t val; CHK(upb_enumdef_ntoi(e, str, len, &val)); f->defaultval.sint = val; break; } case UPB_TYPE_INT64: { /* XXX: Need to write our own strtoll, since it's not available in c89. */ long long val = strtol(str, &end, 0); CHK(val <= INT64_MAX && val >= INT64_MIN && errno != ERANGE && !*end); f->defaultval.sint = val; break; } case UPB_TYPE_UINT32: { unsigned long val = strtoul(str, &end, 0); CHK(val <= UINT32_MAX && errno != ERANGE && !*end); f->defaultval.uint = val; break; } case UPB_TYPE_UINT64: { /* XXX: Need to write our own strtoull, since it's not available in c89. */ unsigned long long val = strtoul(str, &end, 0); CHK(val <= UINT64_MAX && errno != ERANGE && !*end); f->defaultval.uint = val; break; } case UPB_TYPE_DOUBLE: { double val = strtod(str, &end); CHK(errno != ERANGE && !*end); f->defaultval.dbl = val; break; } case UPB_TYPE_FLOAT: { /* XXX: Need to write our own strtof, since it's not available in c89. */ float val = strtod(str, &end); CHK(errno != ERANGE && !*end); f->defaultval.flt = val; break; } case UPB_TYPE_BOOL: { if (streql2(str, len, "false")) { f->defaultval.boolean = false; } else if (streql2(str, len, "true")) { f->defaultval.boolean = true; } else { return false; } break; } case UPB_TYPE_STRING: f->defaultval.str = newstr(ctx->alloc, str, len); break; case UPB_TYPE_BYTES: /* XXX: need to interpret the C-escaped value. */ f->defaultval.str = newstr(ctx->alloc, str, len); break; case UPB_TYPE_MESSAGE: /* Should not have a default value. */ return false; } return true; } static void set_default_default(const symtab_addctx *ctx, upb_fielddef *f) { switch (upb_fielddef_type(f)) { case UPB_TYPE_INT32: case UPB_TYPE_INT64: case UPB_TYPE_ENUM: f->defaultval.sint = 0; break; case UPB_TYPE_UINT64: case UPB_TYPE_UINT32: f->defaultval.uint = 0; break; case UPB_TYPE_DOUBLE: case UPB_TYPE_FLOAT: f->defaultval.dbl = 0; break; case UPB_TYPE_STRING: case UPB_TYPE_BYTES: f->defaultval.str = newstr(ctx->alloc, NULL, 0); break; case UPB_TYPE_BOOL: f->defaultval.boolean = false; break; case UPB_TYPE_MESSAGE: break; } } static bool create_fielddef( const symtab_addctx *ctx, const char *prefix, upb_msgdef *m, const google_protobuf_FieldDescriptorProto *field_proto) { upb_alloc *alloc = ctx->alloc; upb_fielddef *f; const google_protobuf_FieldOptions *options; upb_strview name; const char *full_name; const char *shortname; uint32_t field_number; if (!google_protobuf_FieldDescriptorProto_has_name(field_proto)) { upb_status_seterrmsg(ctx->status, "field has no name"); return false; } name = google_protobuf_FieldDescriptorProto_name(field_proto); CHK(upb_isident(name, false, ctx->status)); full_name = makefullname(ctx, prefix, name); shortname = shortdefname(full_name); field_number = google_protobuf_FieldDescriptorProto_number(field_proto); if (field_number == 0 || field_number > UPB_MAX_FIELDNUMBER) { upb_status_seterrf(ctx->status, "invalid field number (%u)", field_number); return false; } if (m) { /* direct message field. */ upb_value v, packed_v; f = (upb_fielddef*)&m->fields[m->field_count++]; f->msgdef = m; f->is_extension_ = false; packed_v = pack_def(f, UPB_DEFTYPE_FIELD); v = upb_value_constptr(f); if (!upb_strtable_insert3(&m->ntof, name.data, name.size, packed_v, alloc)) { upb_status_seterrf(ctx->status, "duplicate field name (%s)", shortname); return false; } if (!upb_inttable_insert2(&m->itof, field_number, v, alloc)) { upb_status_seterrf(ctx->status, "duplicate field number (%u)", field_number); return false; } } else { /* extension field. */ f = (upb_fielddef*)&ctx->file->exts[ctx->file->ext_count]; f->is_extension_ = true; CHK_OOM(symtab_add(ctx, full_name, pack_def(f, UPB_DEFTYPE_FIELD))); } f->full_name = full_name; f->file = ctx->file; f->type_ = (int)google_protobuf_FieldDescriptorProto_type(field_proto); f->label_ = (int)google_protobuf_FieldDescriptorProto_label(field_proto); f->number_ = field_number; f->oneof = NULL; /* We can't resolve the subdef or (in the case of extensions) the containing * message yet, because it may not have been defined yet. We stash a pointer * to the field_proto until later when we can properly resolve it. */ f->sub.unresolved = field_proto; if (f->label_ == UPB_LABEL_REQUIRED && f->file->syntax == UPB_SYNTAX_PROTO3) { upb_status_seterrf(ctx->status, "proto3 fields cannot be required (%s)", f->full_name); return false; } if (google_protobuf_FieldDescriptorProto_has_oneof_index(field_proto)) { int oneof_index = google_protobuf_FieldDescriptorProto_oneof_index(field_proto); upb_oneofdef *oneof; upb_value v = upb_value_constptr(f); if (upb_fielddef_label(f) != UPB_LABEL_OPTIONAL) { upb_status_seterrf(ctx->status, "fields in oneof must have OPTIONAL label (%s)", f->full_name); return false; } if (!m) { upb_status_seterrf(ctx->status, "oneof_index provided for extension field (%s)", f->full_name); return false; } if (oneof_index >= m->oneof_count) { upb_status_seterrf(ctx->status, "oneof_index out of range (%s)", f->full_name); return false; } oneof = (upb_oneofdef*)&m->oneofs[oneof_index]; f->oneof = oneof; CHK(upb_inttable_insert2(&oneof->itof, f->number_, v, alloc)); CHK(upb_strtable_insert3(&oneof->ntof, name.data, name.size, v, alloc)); } else { f->oneof = NULL; } if (google_protobuf_FieldDescriptorProto_has_options(field_proto)) { options = google_protobuf_FieldDescriptorProto_options(field_proto); f->lazy_ = google_protobuf_FieldOptions_lazy(options); f->packed_ = google_protobuf_FieldOptions_packed(options); } else { f->lazy_ = false; f->packed_ = false; } return true; } static bool create_enumdef( const symtab_addctx *ctx, const char *prefix, const google_protobuf_EnumDescriptorProto *enum_proto) { upb_enumdef *e; const google_protobuf_EnumValueDescriptorProto *const *values; upb_strview name; size_t i, n; name = google_protobuf_EnumDescriptorProto_name(enum_proto); CHK(upb_isident(name, false, ctx->status)); e = (upb_enumdef*)&ctx->file->enums[ctx->file->enum_count++]; e->full_name = makefullname(ctx, prefix, name); CHK_OOM(symtab_add(ctx, e->full_name, pack_def(e, UPB_DEFTYPE_ENUM))); CHK_OOM(upb_strtable_init2(&e->ntoi, UPB_CTYPE_INT32, ctx->alloc)); CHK_OOM(upb_inttable_init2(&e->iton, UPB_CTYPE_CSTR, ctx->alloc)); e->file = ctx->file; e->defaultval = 0; values = google_protobuf_EnumDescriptorProto_value(enum_proto, &n); if (n == 0) { upb_status_seterrf(ctx->status, "enums must contain at least one value (%s)", e->full_name); return false; } for (i = 0; i < n; i++) { const google_protobuf_EnumValueDescriptorProto *value = values[i]; upb_strview name = google_protobuf_EnumValueDescriptorProto_name(value); char *name2 = strviewdup(ctx, name); int32_t num = google_protobuf_EnumValueDescriptorProto_number(value); upb_value v = upb_value_int32(num); if (i == 0 && e->file->syntax == UPB_SYNTAX_PROTO3 && num != 0) { upb_status_seterrf(ctx->status, "for proto3, the first enum value must be zero (%s)", e->full_name); return false; } if (upb_strtable_lookup(&e->ntoi, name2, NULL)) { upb_status_seterrf(ctx->status, "duplicate enum label '%s'", name2); return false; } CHK_OOM(name2) CHK_OOM( upb_strtable_insert3(&e->ntoi, name2, strlen(name2), v, ctx->alloc)); if (!upb_inttable_lookup(&e->iton, num, NULL)) { upb_value v = upb_value_cstr(name2); CHK_OOM(upb_inttable_insert2(&e->iton, num, v, ctx->alloc)); } } upb_inttable_compact2(&e->iton, ctx->alloc); return true; } static bool create_msgdef(const symtab_addctx *ctx, const char *prefix, const google_protobuf_DescriptorProto *msg_proto) { upb_msgdef *m; const google_protobuf_MessageOptions *options; const google_protobuf_OneofDescriptorProto *const *oneofs; const google_protobuf_FieldDescriptorProto *const *fields; const google_protobuf_EnumDescriptorProto *const *enums; const google_protobuf_DescriptorProto *const *msgs; size_t i, n; upb_strview name; name = google_protobuf_DescriptorProto_name(msg_proto); CHK(upb_isident(name, false, ctx->status)); m = (upb_msgdef*)&ctx->file->msgs[ctx->file->msg_count++]; m->full_name = makefullname(ctx, prefix, name); CHK_OOM(symtab_add(ctx, m->full_name, pack_def(m, UPB_DEFTYPE_MSG))); CHK_OOM(upb_inttable_init2(&m->itof, UPB_CTYPE_CONSTPTR, ctx->alloc)); CHK_OOM(upb_strtable_init2(&m->ntof, UPB_CTYPE_CONSTPTR, ctx->alloc)); m->file = ctx->file; m->map_entry = false; options = google_protobuf_DescriptorProto_options(msg_proto); if (options) { m->map_entry = google_protobuf_MessageOptions_map_entry(options); } oneofs = google_protobuf_DescriptorProto_oneof_decl(msg_proto, &n); m->oneof_count = 0; m->oneofs = upb_malloc(ctx->alloc, sizeof(*m->oneofs) * n); for (i = 0; i < n; i++) { CHK(create_oneofdef(ctx, m, oneofs[i])); } fields = google_protobuf_DescriptorProto_field(msg_proto, &n); m->field_count = 0; m->fields = upb_malloc(ctx->alloc, sizeof(*m->fields) * n); for (i = 0; i < n; i++) { CHK(create_fielddef(ctx, m->full_name, m, fields[i])); } CHK(assign_msg_indices(m, ctx->status)); assign_msg_wellknowntype(m); upb_inttable_compact2(&m->itof, ctx->alloc); /* This message is built. Now build nested messages and enums. */ enums = google_protobuf_DescriptorProto_enum_type(msg_proto, &n); for (i = 0; i < n; i++) { CHK(create_enumdef(ctx, m->full_name, enums[i])); } msgs = google_protobuf_DescriptorProto_nested_type(msg_proto, &n); for (i = 0; i < n; i++) { CHK(create_msgdef(ctx, m->full_name, msgs[i])); } return true; } typedef struct { int msg_count; int enum_count; int ext_count; } decl_counts; static void count_types_in_msg(const google_protobuf_DescriptorProto *msg_proto, decl_counts *counts) { const google_protobuf_DescriptorProto *const *msgs; size_t i, n; counts->msg_count++; msgs = google_protobuf_DescriptorProto_nested_type(msg_proto, &n); for (i = 0; i < n; i++) { count_types_in_msg(msgs[i], counts); } google_protobuf_DescriptorProto_enum_type(msg_proto, &n); counts->enum_count += n; google_protobuf_DescriptorProto_extension(msg_proto, &n); counts->ext_count += n; } static void count_types_in_file( const google_protobuf_FileDescriptorProto *file_proto, decl_counts *counts) { const google_protobuf_DescriptorProto *const *msgs; size_t i, n; msgs = google_protobuf_FileDescriptorProto_message_type(file_proto, &n); for (i = 0; i < n; i++) { count_types_in_msg(msgs[i], counts); } google_protobuf_FileDescriptorProto_enum_type(file_proto, &n); counts->enum_count += n; google_protobuf_FileDescriptorProto_extension(file_proto, &n); counts->ext_count += n; } static bool resolve_fielddef(const symtab_addctx *ctx, const char *prefix, upb_fielddef *f) { upb_strview name; const google_protobuf_FieldDescriptorProto *field_proto = f->sub.unresolved; if (f->is_extension_) { if (!google_protobuf_FieldDescriptorProto_has_extendee(field_proto)) { upb_status_seterrf(ctx->status, "extension for field '%s' had no extendee", f->full_name); return false; } name = google_protobuf_FieldDescriptorProto_extendee(field_proto); f->msgdef = symtab_resolve(ctx, f, prefix, name, UPB_DEFTYPE_MSG); CHK(f->msgdef); } if ((upb_fielddef_issubmsg(f) || f->type_ == UPB_DESCRIPTOR_TYPE_ENUM) && !google_protobuf_FieldDescriptorProto_has_type_name(field_proto)) { upb_status_seterrf(ctx->status, "field '%s' is missing type name", f->full_name); return false; } name = google_protobuf_FieldDescriptorProto_type_name(field_proto); if (upb_fielddef_issubmsg(f)) { f->sub.msgdef = symtab_resolve(ctx, f, prefix, name, UPB_DEFTYPE_MSG); CHK(f->sub.msgdef); } else if (f->type_ == UPB_DESCRIPTOR_TYPE_ENUM) { f->sub.enumdef = symtab_resolve(ctx, f, prefix, name, UPB_DEFTYPE_ENUM); CHK(f->sub.enumdef); } /* Have to delay resolving of the default value until now because of the enum * case, since enum defaults are specified with a label. */ if (google_protobuf_FieldDescriptorProto_has_default_value(field_proto)) { upb_strview defaultval = google_protobuf_FieldDescriptorProto_default_value(field_proto); if (f->file->syntax == UPB_SYNTAX_PROTO3) { upb_status_seterrf(ctx->status, "proto3 fields cannot have explicit defaults (%s)", f->full_name); return false; } if (upb_fielddef_issubmsg(f)) { upb_status_seterrf(ctx->status, "message fields cannot have explicit defaults (%s)", f->full_name); return false; } if (!parse_default(ctx, defaultval.data, defaultval.size, f)) { upb_status_seterrf(ctx->status, "couldn't parse default '" UPB_STRVIEW_FORMAT "' for field (%s)", UPB_STRVIEW_ARGS(defaultval), f->full_name); return false; } } else { set_default_default(ctx, f); } return true; } static bool build_filedef( const symtab_addctx *ctx, upb_filedef *file, const google_protobuf_FileDescriptorProto *file_proto) { upb_alloc *alloc = ctx->alloc; const google_protobuf_FileOptions *file_options_proto; const google_protobuf_DescriptorProto *const *msgs; const google_protobuf_EnumDescriptorProto *const *enums; const google_protobuf_FieldDescriptorProto *const *exts; const upb_strview* strs; size_t i, n; decl_counts counts = {0}; count_types_in_file(file_proto, &counts); file->msgs = upb_malloc(alloc, sizeof(*file->msgs) * counts.msg_count); file->enums = upb_malloc(alloc, sizeof(*file->enums) * counts.enum_count); file->exts = upb_malloc(alloc, sizeof(*file->exts) * counts.ext_count); CHK_OOM(counts.msg_count == 0 || file->msgs); CHK_OOM(counts.enum_count == 0 || file->enums); CHK_OOM(counts.ext_count == 0 || file->exts); /* We increment these as defs are added. */ file->msg_count = 0; file->enum_count = 0; file->ext_count = 0; if (!google_protobuf_FileDescriptorProto_has_name(file_proto)) { upb_status_seterrmsg(ctx->status, "File has no name"); return false; } file->name = strviewdup(ctx, google_protobuf_FileDescriptorProto_name(file_proto)); file->phpprefix = NULL; file->phpnamespace = NULL; if (google_protobuf_FileDescriptorProto_has_package(file_proto)) { upb_strview package = google_protobuf_FileDescriptorProto_package(file_proto); CHK(upb_isident(package, true, ctx->status)); file->package = strviewdup(ctx, package); } else { file->package = NULL; } if (google_protobuf_FileDescriptorProto_has_syntax(file_proto)) { upb_strview syntax = google_protobuf_FileDescriptorProto_syntax(file_proto); if (streql_view(syntax, "proto2")) { file->syntax = UPB_SYNTAX_PROTO2; } else if (streql_view(syntax, "proto3")) { file->syntax = UPB_SYNTAX_PROTO3; } else { upb_status_seterrf(ctx->status, "Invalid syntax '%s'", syntax); return false; } } else { file->syntax = UPB_SYNTAX_PROTO2; } /* Read options. */ file_options_proto = google_protobuf_FileDescriptorProto_options(file_proto); if (file_options_proto) { if (google_protobuf_FileOptions_has_php_class_prefix(file_options_proto)) { file->phpprefix = strviewdup( ctx, google_protobuf_FileOptions_php_class_prefix(file_options_proto)); } if (google_protobuf_FileOptions_has_php_namespace(file_options_proto)) { file->phpnamespace = strviewdup( ctx, google_protobuf_FileOptions_php_namespace(file_options_proto)); } } /* Verify dependencies. */ strs = google_protobuf_FileDescriptorProto_dependency(file_proto, &n); file->deps = upb_malloc(alloc, sizeof(*file->deps) * n) ; CHK_OOM(n == 0 || file->deps); for (i = 0; i < n; i++) { upb_strview dep_name = strs[i]; upb_value v; if (!upb_strtable_lookup2(&ctx->symtab->files, dep_name.data, dep_name.size, &v)) { upb_status_seterrf(ctx->status, "Depends on file '" UPB_STRVIEW_FORMAT "', but it has not been loaded", UPB_STRVIEW_ARGS(dep_name)); return false; } file->deps[i] = upb_value_getconstptr(v); } /* Create messages. */ msgs = google_protobuf_FileDescriptorProto_message_type(file_proto, &n); for (i = 0; i < n; i++) { CHK(create_msgdef(ctx, file->package, msgs[i])); } /* Create enums. */ enums = google_protobuf_FileDescriptorProto_enum_type(file_proto, &n); for (i = 0; i < n; i++) { CHK(create_enumdef(ctx, file->package, enums[i])); } /* Create extensions. */ exts = google_protobuf_FileDescriptorProto_extension(file_proto, &n); file->exts = upb_malloc(alloc, sizeof(*file->exts) * n); CHK_OOM(n == 0 || file->exts); for (i = 0; i < n; i++) { CHK(create_fielddef(ctx, file->package, NULL, exts[i])); } /* Now that all names are in the table, resolve references. */ for (i = 0; i < file->ext_count; i++) { CHK(resolve_fielddef(ctx, file->package, (upb_fielddef*)&file->exts[i])); } for (i = 0; i < file->msg_count; i++) { const upb_msgdef *m = &file->msgs[i]; int j; for (j = 0; j < m->field_count; j++) { CHK(resolve_fielddef(ctx, m->full_name, (upb_fielddef*)&m->fields[j])); } } return true; } static bool upb_symtab_addtotabs(upb_symtab *s, symtab_addctx *ctx, upb_status *status) { const upb_filedef *file = ctx->file; upb_alloc *alloc = upb_arena_alloc(s->arena); upb_strtable_iter iter; CHK_OOM(upb_strtable_insert3(&s->files, file->name, strlen(file->name), upb_value_constptr(file), alloc)); upb_strtable_begin(&iter, ctx->addtab); for (; !upb_strtable_done(&iter); upb_strtable_next(&iter)) { const char *key = upb_strtable_iter_key(&iter); size_t keylen = upb_strtable_iter_keylength(&iter); upb_value value = upb_strtable_iter_value(&iter); CHK_OOM(upb_strtable_insert3(&s->syms, key, keylen, value, alloc)); } return true; } /* upb_filedef ****************************************************************/ const char *upb_filedef_name(const upb_filedef *f) { return f->name; } const char *upb_filedef_package(const upb_filedef *f) { return f->package; } const char *upb_filedef_phpprefix(const upb_filedef *f) { return f->phpprefix; } const char *upb_filedef_phpnamespace(const upb_filedef *f) { return f->phpnamespace; } upb_syntax_t upb_filedef_syntax(const upb_filedef *f) { return f->syntax; } int upb_filedef_msgcount(const upb_filedef *f) { return f->msg_count; } int upb_filedef_depcount(const upb_filedef *f) { return f->dep_count; } int upb_filedef_enumcount(const upb_filedef *f) { return f->enum_count; } const upb_filedef *upb_filedef_dep(const upb_filedef *f, int i) { return i < 0 || i >= f->dep_count ? NULL : f->deps[i]; } const upb_msgdef *upb_filedef_msg(const upb_filedef *f, int i) { return i < 0 || i >= f->msg_count ? NULL : &f->msgs[i]; } const upb_enumdef *upb_filedef_enum(const upb_filedef *f, int i) { return i < 0 || i >= f->enum_count ? NULL : &f->enums[i]; } void upb_symtab_free(upb_symtab *s) { upb_arena_free(s->arena); upb_gfree(s); } upb_symtab *upb_symtab_new(void) { upb_symtab *s = upb_gmalloc(sizeof(*s)); upb_alloc *alloc; if (!s) { return NULL; } s->arena = upb_arena_new(); alloc = upb_arena_alloc(s->arena); if (!upb_strtable_init2(&s->syms, UPB_CTYPE_CONSTPTR, alloc) || !upb_strtable_init2(&s->files, UPB_CTYPE_CONSTPTR, alloc)) { upb_arena_free(s->arena); upb_gfree(s); s = NULL; } return s; } const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym) { upb_value v; return upb_strtable_lookup(&s->syms, sym, &v) ? unpack_def(v, UPB_DEFTYPE_MSG) : NULL; } const upb_msgdef *upb_symtab_lookupmsg2(const upb_symtab *s, const char *sym, size_t len) { upb_value v; return upb_strtable_lookup2(&s->syms, sym, len, &v) ? unpack_def(v, UPB_DEFTYPE_MSG) : NULL; } const upb_enumdef *upb_symtab_lookupenum(const upb_symtab *s, const char *sym) { upb_value v; return upb_strtable_lookup(&s->syms, sym, &v) ? unpack_def(v, UPB_DEFTYPE_ENUM) : NULL; } const upb_filedef *upb_symtab_lookupfile(const upb_symtab *s, const char *name) { upb_value v; return upb_strtable_lookup(&s->files, name, &v) ? upb_value_getconstptr(v) : NULL; } const upb_filedef *upb_symtab_addfile( upb_symtab *s, const google_protobuf_FileDescriptorProto *file_proto, upb_status *status) { upb_arena *tmparena = upb_arena_new(); upb_strtable addtab; upb_alloc *alloc = upb_arena_alloc(s->arena); upb_filedef *file = upb_malloc(alloc, sizeof(*file)); bool ok; symtab_addctx ctx; ctx.file = file; ctx.symtab = s; ctx.alloc = alloc; ctx.tmp = upb_arena_alloc(tmparena); ctx.addtab = &addtab; ctx.status = status; ok = file && upb_strtable_init2(&addtab, UPB_CTYPE_CONSTPTR, ctx.tmp) && build_filedef(&ctx, file, file_proto) && upb_symtab_addtotabs(s, &ctx, status); upb_arena_free(tmparena); return ok ? file : NULL; } /* Include here since we want most of this file to be stdio-free. */ #include bool _upb_symtab_loaddefinit(upb_symtab *s, const upb_def_init *init) { /* Since this function should never fail (it would indicate a bug in upb) we * print errors to stderr instead of returning error status to the user. */ upb_def_init **deps = init->deps; google_protobuf_FileDescriptorProto *file; upb_arena *arena; upb_status status; upb_status_clear(&status); if (upb_strtable_lookup(&s->files, init->filename, NULL)) { return true; } arena = upb_arena_new(); for (; *deps; deps++) { if (!_upb_symtab_loaddefinit(s, *deps)) goto err; } file = google_protobuf_FileDescriptorProto_parse( init->descriptor.data, init->descriptor.size, arena); if (!file) { upb_status_seterrf( &status, "Failed to parse compiled-in descriptor for file '%s'. This should " "never happen.", init->filename); goto err; } if (!upb_symtab_addfile(s, file, &status)) goto err; upb_arena_free(arena); return true; err: fprintf(stderr, "Error loading compiled-in descriptor: %s\n", upb_status_errmsg(&status)); upb_arena_free(arena); return false; } #undef CHK #undef CHK_OOM static bool is_power_of_two(size_t val) { return (val & (val - 1)) == 0; } /* Align up to the given power of 2. */ static size_t align_up(size_t val, size_t align) { UPB_ASSERT(is_power_of_two(align)); return (val + align - 1) & ~(align - 1); } static size_t div_round_up(size_t n, size_t d) { return (n + d - 1) / d; } static size_t upb_msgval_sizeof2(upb_fieldtype_t type) { switch (type) { case UPB_TYPE_DOUBLE: case UPB_TYPE_INT64: case UPB_TYPE_UINT64: return 8; case UPB_TYPE_ENUM: case UPB_TYPE_INT32: case UPB_TYPE_UINT32: case UPB_TYPE_FLOAT: return 4; case UPB_TYPE_BOOL: return 1; case UPB_TYPE_MESSAGE: return sizeof(void*); case UPB_TYPE_BYTES: case UPB_TYPE_STRING: return sizeof(upb_strview); } UPB_UNREACHABLE(); } static uint8_t upb_msg_fielddefsize(const upb_fielddef *f) { if (upb_fielddef_isseq(f)) { return sizeof(void*); } else { return upb_msgval_sizeof2(upb_fielddef_type(f)); } } /** upb_msglayout *************************************************************/ static void upb_msglayout_free(upb_msglayout *l) { upb_gfree(l); } static size_t upb_msglayout_place(upb_msglayout *l, size_t size) { size_t ret; l->size = align_up(l->size, size); ret = l->size; l->size += size; return ret; } static bool upb_msglayout_init(const upb_msgdef *m, upb_msglayout *l, upb_msgfactory *factory) { upb_msg_field_iter it; upb_msg_oneof_iter oit; size_t hasbit; size_t submsg_count = 0; const upb_msglayout **submsgs; upb_msglayout_field *fields; for (upb_msg_field_begin(&it, m); !upb_msg_field_done(&it); upb_msg_field_next(&it)) { const upb_fielddef* f = upb_msg_iter_field(&it); if (upb_fielddef_issubmsg(f)) { submsg_count++; } } memset(l, 0, sizeof(*l)); fields = upb_gmalloc(upb_msgdef_numfields(m) * sizeof(*fields)); submsgs = upb_gmalloc(submsg_count * sizeof(*submsgs)); if ((!fields && upb_msgdef_numfields(m)) || (!submsgs && submsg_count)) { /* OOM. */ upb_gfree(fields); upb_gfree(submsgs); return false; } l->field_count = upb_msgdef_numfields(m); l->fields = fields; l->submsgs = submsgs; /* Allocate data offsets in three stages: * * 1. hasbits. * 2. regular fields. * 3. oneof fields. * * OPT: There is a lot of room for optimization here to minimize the size. */ /* Allocate hasbits and set basic field attributes. */ submsg_count = 0; for (upb_msg_field_begin(&it, m), hasbit = 0; !upb_msg_field_done(&it); upb_msg_field_next(&it)) { const upb_fielddef* f = upb_msg_iter_field(&it); upb_msglayout_field *field = &fields[upb_fielddef_index(f)]; field->number = upb_fielddef_number(f); field->descriptortype = upb_fielddef_descriptortype(f); field->label = upb_fielddef_label(f); if (upb_fielddef_issubmsg(f)) { const upb_msglayout *sub_layout = upb_msgfactory_getlayout(factory, upb_fielddef_msgsubdef(f)); field->submsg_index = submsg_count++; submsgs[field->submsg_index] = sub_layout; } if (upb_fielddef_haspresence(f) && !upb_fielddef_containingoneof(f)) { field->presence = (hasbit++); } else { field->presence = 0; } } /* Account for space used by hasbits. */ l->size = div_round_up(hasbit, 8); /* Allocate non-oneof fields. */ for (upb_msg_field_begin(&it, m); !upb_msg_field_done(&it); upb_msg_field_next(&it)) { const upb_fielddef* f = upb_msg_iter_field(&it); size_t field_size = upb_msg_fielddefsize(f); size_t index = upb_fielddef_index(f); if (upb_fielddef_containingoneof(f)) { /* Oneofs are handled separately below. */ continue; } fields[index].offset = upb_msglayout_place(l, field_size); } /* Allocate oneof fields. Each oneof field consists of a uint32 for the case * and space for the actual data. */ for (upb_msg_oneof_begin(&oit, m); !upb_msg_oneof_done(&oit); upb_msg_oneof_next(&oit)) { const upb_oneofdef* o = upb_msg_iter_oneof(&oit); upb_oneof_iter fit; size_t case_size = sizeof(uint32_t); /* Could potentially optimize this. */ size_t field_size = 0; uint32_t case_offset; uint32_t data_offset; /* Calculate field size: the max of all field sizes. */ for (upb_oneof_begin(&fit, o); !upb_oneof_done(&fit); upb_oneof_next(&fit)) { const upb_fielddef* f = upb_oneof_iter_field(&fit); field_size = UPB_MAX(field_size, upb_msg_fielddefsize(f)); } /* Align and allocate case offset. */ case_offset = upb_msglayout_place(l, case_size); data_offset = upb_msglayout_place(l, field_size); for (upb_oneof_begin(&fit, o); !upb_oneof_done(&fit); upb_oneof_next(&fit)) { const upb_fielddef* f = upb_oneof_iter_field(&fit); fields[upb_fielddef_index(f)].offset = data_offset; fields[upb_fielddef_index(f)].presence = ~case_offset; } } /* Size of the entire structure should be a multiple of its greatest * alignment. TODO: track overall alignment for real? */ l->size = align_up(l->size, 8); return true; } /** upb_msgfactory ************************************************************/ struct upb_msgfactory { const upb_symtab *symtab; /* We own a ref. */ upb_inttable layouts; }; upb_msgfactory *upb_msgfactory_new(const upb_symtab *symtab) { upb_msgfactory *ret = upb_gmalloc(sizeof(*ret)); ret->symtab = symtab; upb_inttable_init(&ret->layouts, UPB_CTYPE_PTR); return ret; } void upb_msgfactory_free(upb_msgfactory *f) { upb_inttable_iter i; upb_inttable_begin(&i, &f->layouts); for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { upb_msglayout *l = upb_value_getptr(upb_inttable_iter_value(&i)); upb_msglayout_free(l); } upb_inttable_uninit(&f->layouts); upb_gfree(f); } const upb_symtab *upb_msgfactory_symtab(const upb_msgfactory *f) { return f->symtab; } const upb_msglayout *upb_msgfactory_getlayout(upb_msgfactory *f, const upb_msgdef *m) { upb_value v; UPB_ASSERT(upb_symtab_lookupmsg(f->symtab, upb_msgdef_fullname(m)) == m); UPB_ASSERT(!upb_msgdef_mapentry(m)); if (upb_inttable_lookupptr(&f->layouts, m, &v)) { UPB_ASSERT(upb_value_getptr(v)); return upb_value_getptr(v); } else { /* In case of circular dependency, layout has to be inserted first. */ upb_msglayout *l = upb_gmalloc(sizeof(*l)); upb_msgfactory *mutable_f = (void*)f; upb_inttable_insertptr(&mutable_f->layouts, m, upb_value_ptr(l)); UPB_ASSERT(l); if (!upb_msglayout_init(m, l, f)) { upb_msglayout_free(l); } return l; } } /* ** TODO(haberman): it's unclear whether a lot of the consistency checks should ** UPB_ASSERT() or return false. */ #include struct upb_handlers { upb_handlercache *cache; const upb_msgdef *msg; const upb_handlers **sub; const void *top_closure_type; upb_handlers_tabent table[1]; /* Dynamically-sized field handler array. */ }; static void *upb_calloc(upb_arena *arena, size_t size) { void *mem = upb_malloc(upb_arena_alloc(arena), size); if (mem) { memset(mem, 0, size); } return mem; } /* Defined for the sole purpose of having a unique pointer value for * UPB_NO_CLOSURE. */ char _upb_noclosure; /* Given a selector for a STARTSUBMSG handler, resolves to a pointer to the * subhandlers for this submessage field. */ #define SUBH(h, selector) (h->sub[selector]) /* The selector for a submessage field is the field index. */ #define SUBH_F(h, f) SUBH(h, upb_fielddef_index(f)) static int32_t trygetsel(upb_handlers *h, const upb_fielddef *f, upb_handlertype_t type) { upb_selector_t sel; bool ok; ok = upb_handlers_getselector(f, type, &sel); UPB_ASSERT(upb_handlers_msgdef(h) == upb_fielddef_containingtype(f)); UPB_ASSERT(ok); return sel; } static upb_selector_t handlers_getsel(upb_handlers *h, const upb_fielddef *f, upb_handlertype_t type) { int32_t sel = trygetsel(h, f, type); UPB_ASSERT(sel >= 0); return sel; } static const void **returntype(upb_handlers *h, const upb_fielddef *f, upb_handlertype_t type) { return &h->table[handlers_getsel(h, f, type)].attr.return_closure_type; } static bool doset(upb_handlers *h, int32_t sel, const upb_fielddef *f, upb_handlertype_t type, upb_func *func, const upb_handlerattr *attr) { upb_handlerattr set_attr = UPB_HANDLERATTR_INIT; const void *closure_type; const void **context_closure_type; UPB_ASSERT(!h->table[sel].func); if (attr) { set_attr = *attr; } /* Check that the given closure type matches the closure type that has been * established for this context (if any). */ closure_type = set_attr.closure_type; if (type == UPB_HANDLER_STRING) { context_closure_type = returntype(h, f, UPB_HANDLER_STARTSTR); } else if (f && upb_fielddef_isseq(f) && type != UPB_HANDLER_STARTSEQ && type != UPB_HANDLER_ENDSEQ) { context_closure_type = returntype(h, f, UPB_HANDLER_STARTSEQ); } else { context_closure_type = &h->top_closure_type; } if (closure_type && *context_closure_type && closure_type != *context_closure_type) { return false; } if (closure_type) *context_closure_type = closure_type; /* If this is a STARTSEQ or STARTSTR handler, check that the returned pointer * matches any pre-existing expectations about what type is expected. */ if (type == UPB_HANDLER_STARTSEQ || type == UPB_HANDLER_STARTSTR) { const void *return_type = set_attr.return_closure_type; const void *table_return_type = h->table[sel].attr.return_closure_type; if (return_type && table_return_type && return_type != table_return_type) { return false; } if (table_return_type && !return_type) { set_attr.return_closure_type = table_return_type; } } h->table[sel].func = (upb_func*)func; h->table[sel].attr = set_attr; return true; } /* Returns the effective closure type for this handler (which will propagate * from outer frames if this frame has no START* handler). Not implemented for * UPB_HANDLER_STRING at the moment since this is not needed. Returns NULL is * the effective closure type is unspecified (either no handler was registered * to specify it or the handler that was registered did not specify the closure * type). */ const void *effective_closure_type(upb_handlers *h, const upb_fielddef *f, upb_handlertype_t type) { const void *ret; upb_selector_t sel; UPB_ASSERT(type != UPB_HANDLER_STRING); ret = h->top_closure_type; if (upb_fielddef_isseq(f) && type != UPB_HANDLER_STARTSEQ && type != UPB_HANDLER_ENDSEQ && h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSEQ)].func) { ret = h->table[sel].attr.return_closure_type; } if (type == UPB_HANDLER_STRING && h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSTR)].func) { ret = h->table[sel].attr.return_closure_type; } /* The effective type of the submessage; not used yet. * if (type == SUBMESSAGE && * h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSUBMSG)].func) { * ret = h->table[sel].attr.return_closure_type; * } */ return ret; } /* Checks whether the START* handler specified by f & type is missing even * though it is required to convert the established type of an outer frame * ("closure_type") into the established type of an inner frame (represented in * the return closure type of this handler's attr. */ bool checkstart(upb_handlers *h, const upb_fielddef *f, upb_handlertype_t type, upb_status *status) { const void *closure_type; const upb_handlerattr *attr; const void *return_closure_type; upb_selector_t sel = handlers_getsel(h, f, type); if (h->table[sel].func) return true; closure_type = effective_closure_type(h, f, type); attr = &h->table[sel].attr; return_closure_type = attr->return_closure_type; if (closure_type && return_closure_type && closure_type != return_closure_type) { return false; } return true; } static upb_handlers *upb_handlers_new(const upb_msgdef *md, upb_handlercache *cache, upb_arena *arena) { int extra; upb_handlers *h; extra = sizeof(upb_handlers_tabent) * (upb_msgdef_selectorcount(md) - 1); h = upb_calloc(arena, sizeof(*h) + extra); if (!h) return NULL; h->cache = cache; h->msg = md; if (upb_msgdef_submsgfieldcount(md) > 0) { size_t bytes = upb_msgdef_submsgfieldcount(md) * sizeof(*h->sub); h->sub = upb_calloc(arena, bytes); if (!h->sub) return NULL; } else { h->sub = 0; } /* calloc() above initialized all handlers to NULL. */ return h; } /* Public interface ***********************************************************/ #define SETTER(name, handlerctype, handlertype) \ bool upb_handlers_set##name(upb_handlers *h, const upb_fielddef *f, \ handlerctype func, \ const upb_handlerattr *attr) { \ int32_t sel = trygetsel(h, f, handlertype); \ return doset(h, sel, f, handlertype, (upb_func *)func, attr); \ } SETTER(int32, upb_int32_handlerfunc*, UPB_HANDLER_INT32) SETTER(int64, upb_int64_handlerfunc*, UPB_HANDLER_INT64) SETTER(uint32, upb_uint32_handlerfunc*, UPB_HANDLER_UINT32) SETTER(uint64, upb_uint64_handlerfunc*, UPB_HANDLER_UINT64) SETTER(float, upb_float_handlerfunc*, UPB_HANDLER_FLOAT) SETTER(double, upb_double_handlerfunc*, UPB_HANDLER_DOUBLE) SETTER(bool, upb_bool_handlerfunc*, UPB_HANDLER_BOOL) SETTER(startstr, upb_startstr_handlerfunc*, UPB_HANDLER_STARTSTR) SETTER(string, upb_string_handlerfunc*, UPB_HANDLER_STRING) SETTER(endstr, upb_endfield_handlerfunc*, UPB_HANDLER_ENDSTR) SETTER(startseq, upb_startfield_handlerfunc*, UPB_HANDLER_STARTSEQ) SETTER(startsubmsg, upb_startfield_handlerfunc*, UPB_HANDLER_STARTSUBMSG) SETTER(endsubmsg, upb_endfield_handlerfunc*, UPB_HANDLER_ENDSUBMSG) SETTER(endseq, upb_endfield_handlerfunc*, UPB_HANDLER_ENDSEQ) #undef SETTER bool upb_handlers_setunknown(upb_handlers *h, upb_unknown_handlerfunc *func, const upb_handlerattr *attr) { return doset(h, UPB_UNKNOWN_SELECTOR, NULL, UPB_HANDLER_INT32, (upb_func *)func, attr); } bool upb_handlers_setstartmsg(upb_handlers *h, upb_startmsg_handlerfunc *func, const upb_handlerattr *attr) { return doset(h, UPB_STARTMSG_SELECTOR, NULL, UPB_HANDLER_INT32, (upb_func *)func, attr); } bool upb_handlers_setendmsg(upb_handlers *h, upb_endmsg_handlerfunc *func, const upb_handlerattr *attr) { return doset(h, UPB_ENDMSG_SELECTOR, NULL, UPB_HANDLER_INT32, (upb_func *)func, attr); } bool upb_handlers_setsubhandlers(upb_handlers *h, const upb_fielddef *f, const upb_handlers *sub) { UPB_ASSERT(sub); UPB_ASSERT(upb_fielddef_issubmsg(f)); if (SUBH_F(h, f)) return false; /* Can't reset. */ if (upb_handlers_msgdef(sub) != upb_fielddef_msgsubdef(f)) { return false; } SUBH_F(h, f) = sub; return true; } const upb_handlers *upb_handlers_getsubhandlers(const upb_handlers *h, const upb_fielddef *f) { UPB_ASSERT(upb_fielddef_issubmsg(f)); return SUBH_F(h, f); } upb_func *upb_handlers_gethandler(const upb_handlers *h, upb_selector_t s, const void **handler_data) { upb_func *ret = (upb_func *)h->table[s].func; if (ret && handler_data) { *handler_data = h->table[s].attr.handler_data; } return ret; } bool upb_handlers_getattr(const upb_handlers *h, upb_selector_t sel, upb_handlerattr *attr) { if (!upb_handlers_gethandler(h, sel, NULL)) return false; *attr = h->table[sel].attr; return true; } const upb_handlers *upb_handlers_getsubhandlers_sel(const upb_handlers *h, upb_selector_t sel) { /* STARTSUBMSG selector in sel is the field's selector base. */ return SUBH(h, sel - UPB_STATIC_SELECTOR_COUNT); } const upb_msgdef *upb_handlers_msgdef(const upb_handlers *h) { return h->msg; } bool upb_handlers_addcleanup(upb_handlers *h, void *p, upb_handlerfree *func) { return upb_handlercache_addcleanup(h->cache, p, func); } upb_handlertype_t upb_handlers_getprimitivehandlertype(const upb_fielddef *f) { switch (upb_fielddef_type(f)) { case UPB_TYPE_INT32: case UPB_TYPE_ENUM: return UPB_HANDLER_INT32; case UPB_TYPE_INT64: return UPB_HANDLER_INT64; case UPB_TYPE_UINT32: return UPB_HANDLER_UINT32; case UPB_TYPE_UINT64: return UPB_HANDLER_UINT64; case UPB_TYPE_FLOAT: return UPB_HANDLER_FLOAT; case UPB_TYPE_DOUBLE: return UPB_HANDLER_DOUBLE; case UPB_TYPE_BOOL: return UPB_HANDLER_BOOL; default: UPB_ASSERT(false); return -1; /* Invalid input. */ } } bool upb_handlers_getselector(const upb_fielddef *f, upb_handlertype_t type, upb_selector_t *s) { uint32_t selector_base = upb_fielddef_selectorbase(f); switch (type) { case UPB_HANDLER_INT32: case UPB_HANDLER_INT64: case UPB_HANDLER_UINT32: case UPB_HANDLER_UINT64: case UPB_HANDLER_FLOAT: case UPB_HANDLER_DOUBLE: case UPB_HANDLER_BOOL: if (!upb_fielddef_isprimitive(f) || upb_handlers_getprimitivehandlertype(f) != type) return false; *s = selector_base; break; case UPB_HANDLER_STRING: if (upb_fielddef_isstring(f)) { *s = selector_base; } else if (upb_fielddef_lazy(f)) { *s = selector_base + 3; } else { return false; } break; case UPB_HANDLER_STARTSTR: if (upb_fielddef_isstring(f) || upb_fielddef_lazy(f)) { *s = selector_base + 1; } else { return false; } break; case UPB_HANDLER_ENDSTR: if (upb_fielddef_isstring(f) || upb_fielddef_lazy(f)) { *s = selector_base + 2; } else { return false; } break; case UPB_HANDLER_STARTSEQ: if (!upb_fielddef_isseq(f)) return false; *s = selector_base - 2; break; case UPB_HANDLER_ENDSEQ: if (!upb_fielddef_isseq(f)) return false; *s = selector_base - 1; break; case UPB_HANDLER_STARTSUBMSG: if (!upb_fielddef_issubmsg(f)) return false; /* Selectors for STARTSUBMSG are at the beginning of the table so that the * selector can also be used as an index into the "sub" array of * subhandlers. The indexes for the two into these two tables are the * same, except that in the handler table the static selectors come first. */ *s = upb_fielddef_index(f) + UPB_STATIC_SELECTOR_COUNT; break; case UPB_HANDLER_ENDSUBMSG: if (!upb_fielddef_issubmsg(f)) return false; *s = selector_base; break; } UPB_ASSERT((size_t)*s < upb_msgdef_selectorcount(upb_fielddef_containingtype(f))); return true; } /* upb_handlercache ***********************************************************/ struct upb_handlercache { upb_arena *arena; upb_inttable tab; /* maps upb_msgdef* -> upb_handlers*. */ upb_handlers_callback *callback; const void *closure; }; const upb_handlers *upb_handlercache_get(upb_handlercache *c, const upb_msgdef *md) { upb_msg_field_iter i; upb_value v; upb_handlers *h; if (upb_inttable_lookupptr(&c->tab, md, &v)) { return upb_value_getptr(v); } h = upb_handlers_new(md, c, c->arena); v = upb_value_ptr(h); if (!h) return NULL; if (!upb_inttable_insertptr(&c->tab, md, v)) return NULL; c->callback(c->closure, h); /* For each submessage field, get or create a handlers object and set it as * the subhandlers. */ for(upb_msg_field_begin(&i, md); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { upb_fielddef *f = upb_msg_iter_field(&i); if (upb_fielddef_issubmsg(f)) { const upb_msgdef *subdef = upb_fielddef_msgsubdef(f); const upb_handlers *sub_mh = upb_handlercache_get(c, subdef); if (!sub_mh) return NULL; upb_handlers_setsubhandlers(h, f, sub_mh); } } return h; } upb_handlercache *upb_handlercache_new(upb_handlers_callback *callback, const void *closure) { upb_handlercache *cache = upb_gmalloc(sizeof(*cache)); if (!cache) return NULL; cache->arena = upb_arena_new(); cache->callback = callback; cache->closure = closure; if (!upb_inttable_init(&cache->tab, UPB_CTYPE_PTR)) goto oom; return cache; oom: upb_gfree(cache); return NULL; } void upb_handlercache_free(upb_handlercache *cache) { upb_inttable_uninit(&cache->tab); upb_arena_free(cache->arena); upb_gfree(cache); } bool upb_handlercache_addcleanup(upb_handlercache *c, void *p, upb_handlerfree *func) { return upb_arena_addcleanup(c->arena, p, func); } /* upb_byteshandler ***********************************************************/ bool upb_byteshandler_setstartstr(upb_byteshandler *h, upb_startstr_handlerfunc *func, void *d) { h->table[UPB_STARTSTR_SELECTOR].func = (upb_func*)func; h->table[UPB_STARTSTR_SELECTOR].attr.handler_data = d; return true; } bool upb_byteshandler_setstring(upb_byteshandler *h, upb_string_handlerfunc *func, void *d) { h->table[UPB_STRING_SELECTOR].func = (upb_func*)func; h->table[UPB_STRING_SELECTOR].attr.handler_data = d; return true; } bool upb_byteshandler_setendstr(upb_byteshandler *h, upb_endfield_handlerfunc *func, void *d) { h->table[UPB_ENDSTR_SELECTOR].func = (upb_func*)func; h->table[UPB_ENDSTR_SELECTOR].attr.handler_data = d; return true; } /** Handlers for upb_msg ******************************************************/ typedef struct { size_t offset; int32_t hasbit; } upb_msg_handlerdata; /* Fallback implementation if the handler is not specialized by the producer. */ #define MSG_WRITER(type, ctype) \ bool upb_msg_set ## type (void *c, const void *hd, ctype val) { \ uint8_t *m = c; \ const upb_msg_handlerdata *d = hd; \ if (d->hasbit > 0) \ *(uint8_t*)&m[d->hasbit / 8] |= 1 << (d->hasbit % 8); \ *(ctype*)&m[d->offset] = val; \ return true; \ } \ MSG_WRITER(double, double) MSG_WRITER(float, float) MSG_WRITER(int32, int32_t) MSG_WRITER(int64, int64_t) MSG_WRITER(uint32, uint32_t) MSG_WRITER(uint64, uint64_t) MSG_WRITER(bool, bool) bool upb_msg_setscalarhandler(upb_handlers *h, const upb_fielddef *f, size_t offset, int32_t hasbit) { upb_handlerattr attr = UPB_HANDLERATTR_INIT; bool ok; upb_msg_handlerdata *d = upb_gmalloc(sizeof(*d)); if (!d) return false; d->offset = offset; d->hasbit = hasbit; attr.handler_data = d; attr.alwaysok = true; upb_handlers_addcleanup(h, d, upb_gfree); #define TYPE(u, l) \ case UPB_TYPE_##u: \ ok = upb_handlers_set##l(h, f, upb_msg_set##l, &attr); break; ok = false; switch (upb_fielddef_type(f)) { TYPE(INT64, int64); TYPE(INT32, int32); TYPE(ENUM, int32); TYPE(UINT64, uint64); TYPE(UINT32, uint32); TYPE(DOUBLE, double); TYPE(FLOAT, float); TYPE(BOOL, bool); default: UPB_ASSERT(false); break; } #undef TYPE return ok; } bool upb_msg_getscalarhandlerdata(const upb_handlers *h, upb_selector_t s, upb_fieldtype_t *type, size_t *offset, int32_t *hasbit) { const upb_msg_handlerdata *d; const void *p; upb_func *f = upb_handlers_gethandler(h, s, &p); if ((upb_int64_handlerfunc*)f == upb_msg_setint64) { *type = UPB_TYPE_INT64; } else if ((upb_int32_handlerfunc*)f == upb_msg_setint32) { *type = UPB_TYPE_INT32; } else if ((upb_uint64_handlerfunc*)f == upb_msg_setuint64) { *type = UPB_TYPE_UINT64; } else if ((upb_uint32_handlerfunc*)f == upb_msg_setuint32) { *type = UPB_TYPE_UINT32; } else if ((upb_double_handlerfunc*)f == upb_msg_setdouble) { *type = UPB_TYPE_DOUBLE; } else if ((upb_float_handlerfunc*)f == upb_msg_setfloat) { *type = UPB_TYPE_FLOAT; } else if ((upb_bool_handlerfunc*)f == upb_msg_setbool) { *type = UPB_TYPE_BOOL; } else { return false; } d = p; *offset = d->offset; *hasbit = d->hasbit; return true; } bool upb_bufsrc_putbuf(const char *buf, size_t len, upb_bytessink sink) { void *subc; bool ret; upb_bufhandle handle = UPB_BUFHANDLE_INIT; handle.buf = buf; ret = upb_bytessink_start(sink, len, &subc); if (ret && len != 0) { ret = (upb_bytessink_putbuf(sink, subc, buf, len, &handle) >= len); } if (ret) { ret = upb_bytessink_end(sink); } return ret; } /* ** protobuf decoder bytecode compiler ** ** Code to compile a upb::Handlers into bytecode for decoding a protobuf ** according to that specific schema and destination handlers. ** ** Bytecode definition is in decoder.int.h. */ #include #ifdef UPB_DUMP_BYTECODE #include #endif #define MAXLABEL 5 #define EMPTYLABEL -1 /* upb_pbdecodermethod ********************************************************/ static void freemethod(upb_pbdecodermethod *method) { upb_inttable_uninit(&method->dispatch); upb_gfree(method); } static upb_pbdecodermethod *newmethod(const upb_handlers *dest_handlers, mgroup *group) { upb_pbdecodermethod *ret = upb_gmalloc(sizeof(*ret)); upb_byteshandler_init(&ret->input_handler_); ret->group = group; ret->dest_handlers_ = dest_handlers; upb_inttable_init(&ret->dispatch, UPB_CTYPE_UINT64); return ret; } const upb_handlers *upb_pbdecodermethod_desthandlers( const upb_pbdecodermethod *m) { return m->dest_handlers_; } const upb_byteshandler *upb_pbdecodermethod_inputhandler( const upb_pbdecodermethod *m) { return &m->input_handler_; } bool upb_pbdecodermethod_isnative(const upb_pbdecodermethod *m) { return m->is_native_; } /* mgroup *********************************************************************/ static void freegroup(mgroup *g) { upb_inttable_iter i; upb_inttable_begin(&i, &g->methods); for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { freemethod(upb_value_getptr(upb_inttable_iter_value(&i))); } upb_inttable_uninit(&g->methods); upb_gfree(g->bytecode); upb_gfree(g); } mgroup *newgroup(void) { mgroup *g = upb_gmalloc(sizeof(*g)); upb_inttable_init(&g->methods, UPB_CTYPE_PTR); g->bytecode = NULL; g->bytecode_end = NULL; return g; } /* bytecode compiler **********************************************************/ /* Data used only at compilation time. */ typedef struct { mgroup *group; uint32_t *pc; int fwd_labels[MAXLABEL]; int back_labels[MAXLABEL]; /* For fields marked "lazy", parse them lazily or eagerly? */ bool lazy; } compiler; static compiler *newcompiler(mgroup *group, bool lazy) { compiler *ret = upb_gmalloc(sizeof(*ret)); int i; ret->group = group; ret->lazy = lazy; for (i = 0; i < MAXLABEL; i++) { ret->fwd_labels[i] = EMPTYLABEL; ret->back_labels[i] = EMPTYLABEL; } return ret; } static void freecompiler(compiler *c) { upb_gfree(c); } const size_t ptr_words = sizeof(void*) / sizeof(uint32_t); /* How many words an instruction is. */ static int instruction_len(uint32_t instr) { switch (getop(instr)) { case OP_SETDISPATCH: return 1 + ptr_words; case OP_TAGN: return 3; case OP_SETBIGGROUPNUM: return 2; default: return 1; } } bool op_has_longofs(int32_t instruction) { switch (getop(instruction)) { case OP_CALL: case OP_BRANCH: case OP_CHECKDELIM: return true; /* The "tag" instructions only have 8 bytes available for the jump target, * but that is ok because these opcodes only require short jumps. */ case OP_TAG1: case OP_TAG2: case OP_TAGN: return false; default: UPB_ASSERT(false); return false; } } static int32_t getofs(uint32_t instruction) { if (op_has_longofs(instruction)) { return (int32_t)instruction >> 8; } else { return (int8_t)(instruction >> 8); } } static void setofs(uint32_t *instruction, int32_t ofs) { if (op_has_longofs(*instruction)) { *instruction = getop(*instruction) | (uint32_t)ofs << 8; } else { *instruction = (*instruction & ~0xff00) | ((ofs & 0xff) << 8); } UPB_ASSERT(getofs(*instruction) == ofs); /* Would fail in cases of overflow. */ } static uint32_t pcofs(compiler *c) { return c->pc - c->group->bytecode; } /* Defines a local label at the current PC location. All previous forward * references are updated to point to this location. The location is noted * for any future backward references. */ static void label(compiler *c, unsigned int label) { int val; uint32_t *codep; UPB_ASSERT(label < MAXLABEL); val = c->fwd_labels[label]; codep = (val == EMPTYLABEL) ? NULL : c->group->bytecode + val; while (codep) { int ofs = getofs(*codep); setofs(codep, c->pc - codep - instruction_len(*codep)); codep = ofs ? codep + ofs : NULL; } c->fwd_labels[label] = EMPTYLABEL; c->back_labels[label] = pcofs(c); } /* Creates a reference to a numbered label; either a forward reference * (positive arg) or backward reference (negative arg). For forward references * the value returned now is actually a "next" pointer into a linked list of all * instructions that use this label and will be patched later when the label is * defined with label(). * * The returned value is the offset that should be written into the instruction. */ static int32_t labelref(compiler *c, int label) { UPB_ASSERT(label < MAXLABEL); if (label == LABEL_DISPATCH) { /* No resolving required. */ return 0; } else if (label < 0) { /* Backward local label. Relative to the next instruction. */ uint32_t from = (c->pc + 1) - c->group->bytecode; return c->back_labels[-label] - from; } else { /* Forward local label: prepend to (possibly-empty) linked list. */ int *lptr = &c->fwd_labels[label]; int32_t ret = (*lptr == EMPTYLABEL) ? 0 : *lptr - pcofs(c); *lptr = pcofs(c); return ret; } } static void put32(compiler *c, uint32_t v) { mgroup *g = c->group; if (c->pc == g->bytecode_end) { int ofs = pcofs(c); size_t oldsize = g->bytecode_end - g->bytecode; size_t newsize = UPB_MAX(oldsize * 2, 64); /* TODO(haberman): handle OOM. */ g->bytecode = upb_grealloc(g->bytecode, oldsize * sizeof(uint32_t), newsize * sizeof(uint32_t)); g->bytecode_end = g->bytecode + newsize; c->pc = g->bytecode + ofs; } *c->pc++ = v; } static void putop(compiler *c, int op, ...) { va_list ap; va_start(ap, op); switch (op) { case OP_SETDISPATCH: { uintptr_t ptr = (uintptr_t)va_arg(ap, void*); put32(c, OP_SETDISPATCH); put32(c, ptr); if (sizeof(uintptr_t) > sizeof(uint32_t)) put32(c, (uint64_t)ptr >> 32); break; } case OP_STARTMSG: case OP_ENDMSG: case OP_PUSHLENDELIM: case OP_POP: case OP_SETDELIM: case OP_HALT: case OP_RET: case OP_DISPATCH: put32(c, op); break; case OP_PARSE_DOUBLE: case OP_PARSE_FLOAT: case OP_PARSE_INT64: case OP_PARSE_UINT64: case OP_PARSE_INT32: case OP_PARSE_FIXED64: case OP_PARSE_FIXED32: case OP_PARSE_BOOL: case OP_PARSE_UINT32: case OP_PARSE_SFIXED32: case OP_PARSE_SFIXED64: case OP_PARSE_SINT32: case OP_PARSE_SINT64: case OP_STARTSEQ: case OP_ENDSEQ: case OP_STARTSUBMSG: case OP_ENDSUBMSG: case OP_STARTSTR: case OP_STRING: case OP_ENDSTR: case OP_PUSHTAGDELIM: put32(c, op | va_arg(ap, upb_selector_t) << 8); break; case OP_SETBIGGROUPNUM: put32(c, op); put32(c, va_arg(ap, int)); break; case OP_CALL: { const upb_pbdecodermethod *method = va_arg(ap, upb_pbdecodermethod *); put32(c, op | (method->code_base.ofs - (pcofs(c) + 1)) << 8); break; } case OP_CHECKDELIM: case OP_BRANCH: { uint32_t instruction = op; int label = va_arg(ap, int); setofs(&instruction, labelref(c, label)); put32(c, instruction); break; } case OP_TAG1: case OP_TAG2: { int label = va_arg(ap, int); uint64_t tag = va_arg(ap, uint64_t); uint32_t instruction = op | (tag << 16); UPB_ASSERT(tag <= 0xffff); setofs(&instruction, labelref(c, label)); put32(c, instruction); break; } case OP_TAGN: { int label = va_arg(ap, int); uint64_t tag = va_arg(ap, uint64_t); uint32_t instruction = op | (upb_value_size(tag) << 16); setofs(&instruction, labelref(c, label)); put32(c, instruction); put32(c, tag); put32(c, tag >> 32); break; } } va_end(ap); } #if defined(UPB_DUMP_BYTECODE) const char *upb_pbdecoder_getopname(unsigned int op) { #define QUOTE(x) #x #define EXPAND_AND_QUOTE(x) QUOTE(x) #define OPNAME(x) OP_##x #define OP(x) case OPNAME(x): return EXPAND_AND_QUOTE(OPNAME(x)); #define T(x) OP(PARSE_##x) /* Keep in sync with list in decoder.int.h. */ switch ((opcode)op) { T(DOUBLE) T(FLOAT) T(INT64) T(UINT64) T(INT32) T(FIXED64) T(FIXED32) T(BOOL) T(UINT32) T(SFIXED32) T(SFIXED64) T(SINT32) T(SINT64) OP(STARTMSG) OP(ENDMSG) OP(STARTSEQ) OP(ENDSEQ) OP(STARTSUBMSG) OP(ENDSUBMSG) OP(STARTSTR) OP(STRING) OP(ENDSTR) OP(CALL) OP(RET) OP(PUSHLENDELIM) OP(PUSHTAGDELIM) OP(SETDELIM) OP(CHECKDELIM) OP(BRANCH) OP(TAG1) OP(TAG2) OP(TAGN) OP(SETDISPATCH) OP(POP) OP(SETBIGGROUPNUM) OP(DISPATCH) OP(HALT) } return ""; #undef OP #undef T } #endif #ifdef UPB_DUMP_BYTECODE static void dumpbc(uint32_t *p, uint32_t *end, FILE *f) { uint32_t *begin = p; while (p < end) { fprintf(f, "%p %8tx", p, p - begin); uint32_t instr = *p++; uint8_t op = getop(instr); fprintf(f, " %s", upb_pbdecoder_getopname(op)); switch ((opcode)op) { case OP_SETDISPATCH: { const upb_inttable *dispatch; memcpy(&dispatch, p, sizeof(void*)); p += ptr_words; const upb_pbdecodermethod *method = (void *)((char *)dispatch - offsetof(upb_pbdecodermethod, dispatch)); fprintf(f, " %s", upb_msgdef_fullname( upb_handlers_msgdef(method->dest_handlers_))); break; } case OP_DISPATCH: case OP_STARTMSG: case OP_ENDMSG: case OP_PUSHLENDELIM: case OP_POP: case OP_SETDELIM: case OP_HALT: case OP_RET: break; case OP_PARSE_DOUBLE: case OP_PARSE_FLOAT: case OP_PARSE_INT64: case OP_PARSE_UINT64: case OP_PARSE_INT32: case OP_PARSE_FIXED64: case OP_PARSE_FIXED32: case OP_PARSE_BOOL: case OP_PARSE_UINT32: case OP_PARSE_SFIXED32: case OP_PARSE_SFIXED64: case OP_PARSE_SINT32: case OP_PARSE_SINT64: case OP_STARTSEQ: case OP_ENDSEQ: case OP_STARTSUBMSG: case OP_ENDSUBMSG: case OP_STARTSTR: case OP_STRING: case OP_ENDSTR: case OP_PUSHTAGDELIM: fprintf(f, " %d", instr >> 8); break; case OP_SETBIGGROUPNUM: fprintf(f, " %d", *p++); break; case OP_CHECKDELIM: case OP_CALL: case OP_BRANCH: fprintf(f, " =>0x%tx", p + getofs(instr) - begin); break; case OP_TAG1: case OP_TAG2: { fprintf(f, " tag:0x%x", instr >> 16); if (getofs(instr)) { fprintf(f, " =>0x%tx", p + getofs(instr) - begin); } break; } case OP_TAGN: { uint64_t tag = *p++; tag |= (uint64_t)*p++ << 32; fprintf(f, " tag:0x%llx", (long long)tag); fprintf(f, " n:%d", instr >> 16); if (getofs(instr)) { fprintf(f, " =>0x%tx", p + getofs(instr) - begin); } break; } } fputs("\n", f); } } #endif static uint64_t get_encoded_tag(const upb_fielddef *f, int wire_type) { uint32_t tag = (upb_fielddef_number(f) << 3) | wire_type; uint64_t encoded_tag = upb_vencode32(tag); /* No tag should be greater than 5 bytes. */ UPB_ASSERT(encoded_tag <= 0xffffffffff); return encoded_tag; } static void putchecktag(compiler *c, const upb_fielddef *f, int wire_type, int dest) { uint64_t tag = get_encoded_tag(f, wire_type); switch (upb_value_size(tag)) { case 1: putop(c, OP_TAG1, dest, tag); break; case 2: putop(c, OP_TAG2, dest, tag); break; default: putop(c, OP_TAGN, dest, tag); break; } } static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) { upb_selector_t selector; bool ok = upb_handlers_getselector(f, type, &selector); UPB_ASSERT(ok); return selector; } /* Takes an existing, primary dispatch table entry and repacks it with a * different alternate wire type. Called when we are inserting a secondary * dispatch table entry for an alternate wire type. */ static uint64_t repack(uint64_t dispatch, int new_wt2) { uint64_t ofs; uint8_t wt1; uint8_t old_wt2; upb_pbdecoder_unpackdispatch(dispatch, &ofs, &wt1, &old_wt2); UPB_ASSERT(old_wt2 == NO_WIRE_TYPE); /* wt2 should not be set yet. */ return upb_pbdecoder_packdispatch(ofs, wt1, new_wt2); } /* Marks the current bytecode position as the dispatch target for this message, * field, and wire type. */ static void dispatchtarget(compiler *c, upb_pbdecodermethod *method, const upb_fielddef *f, int wire_type) { /* Offset is relative to msg base. */ uint64_t ofs = pcofs(c) - method->code_base.ofs; uint32_t fn = upb_fielddef_number(f); upb_inttable *d = &method->dispatch; upb_value v; if (upb_inttable_remove(d, fn, &v)) { /* TODO: prioritize based on packed setting in .proto file. */ uint64_t repacked = repack(upb_value_getuint64(v), wire_type); upb_inttable_insert(d, fn, upb_value_uint64(repacked)); upb_inttable_insert(d, fn + UPB_MAX_FIELDNUMBER, upb_value_uint64(ofs)); } else { uint64_t val = upb_pbdecoder_packdispatch(ofs, wire_type, NO_WIRE_TYPE); upb_inttable_insert(d, fn, upb_value_uint64(val)); } } static void putpush(compiler *c, const upb_fielddef *f) { if (upb_fielddef_descriptortype(f) == UPB_DESCRIPTOR_TYPE_MESSAGE) { putop(c, OP_PUSHLENDELIM); } else { uint32_t fn = upb_fielddef_number(f); if (fn >= 1 << 24) { putop(c, OP_PUSHTAGDELIM, 0); putop(c, OP_SETBIGGROUPNUM, fn); } else { putop(c, OP_PUSHTAGDELIM, fn); } } } static upb_pbdecodermethod *find_submethod(const compiler *c, const upb_pbdecodermethod *method, const upb_fielddef *f) { const upb_handlers *sub = upb_handlers_getsubhandlers(method->dest_handlers_, f); upb_value v; return upb_inttable_lookupptr(&c->group->methods, sub, &v) ? upb_value_getptr(v) : NULL; } static void putsel(compiler *c, opcode op, upb_selector_t sel, const upb_handlers *h) { if (upb_handlers_gethandler(h, sel, NULL)) { putop(c, op, sel); } } /* Puts an opcode to call a callback, but only if a callback actually exists for * this field and handler type. */ static void maybeput(compiler *c, opcode op, const upb_handlers *h, const upb_fielddef *f, upb_handlertype_t type) { putsel(c, op, getsel(f, type), h); } static bool haslazyhandlers(const upb_handlers *h, const upb_fielddef *f) { if (!upb_fielddef_lazy(f)) return false; return upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_STARTSTR), NULL) || upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_STRING), NULL) || upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_ENDSTR), NULL); } /* bytecode compiler code generation ******************************************/ /* Symbolic names for our local labels. */ #define LABEL_LOOPSTART 1 /* Top of a repeated field loop. */ #define LABEL_LOOPBREAK 2 /* To jump out of a repeated loop */ #define LABEL_FIELD 3 /* Jump backward to find the most recent field. */ #define LABEL_ENDMSG 4 /* To reach the OP_ENDMSG instr for this msg. */ /* Generates bytecode to parse a single non-lazy message field. */ static void generate_msgfield(compiler *c, const upb_fielddef *f, upb_pbdecodermethod *method) { const upb_handlers *h = upb_pbdecodermethod_desthandlers(method); const upb_pbdecodermethod *sub_m = find_submethod(c, method, f); int wire_type; if (!sub_m) { /* Don't emit any code for this field at all; it will be parsed as an * unknown field. * * TODO(haberman): we should change this to parse it as a string field * instead. It will probably be faster, but more importantly, once we * start vending unknown fields, a field shouldn't be treated as unknown * just because it doesn't have subhandlers registered. */ return; } label(c, LABEL_FIELD); wire_type = (upb_fielddef_descriptortype(f) == UPB_DESCRIPTOR_TYPE_MESSAGE) ? UPB_WIRE_TYPE_DELIMITED : UPB_WIRE_TYPE_START_GROUP; if (upb_fielddef_isseq(f)) { putop(c, OP_CHECKDELIM, LABEL_ENDMSG); putchecktag(c, f, wire_type, LABEL_DISPATCH); dispatchtarget(c, method, f, wire_type); putop(c, OP_PUSHTAGDELIM, 0); putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); label(c, LABEL_LOOPSTART); putpush(c, f); putop(c, OP_STARTSUBMSG, getsel(f, UPB_HANDLER_STARTSUBMSG)); putop(c, OP_CALL, sub_m); putop(c, OP_POP); maybeput(c, OP_ENDSUBMSG, h, f, UPB_HANDLER_ENDSUBMSG); if (wire_type == UPB_WIRE_TYPE_DELIMITED) { putop(c, OP_SETDELIM); } putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK); putchecktag(c, f, wire_type, LABEL_LOOPBREAK); putop(c, OP_BRANCH, -LABEL_LOOPSTART); label(c, LABEL_LOOPBREAK); putop(c, OP_POP); maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ); } else { putop(c, OP_CHECKDELIM, LABEL_ENDMSG); putchecktag(c, f, wire_type, LABEL_DISPATCH); dispatchtarget(c, method, f, wire_type); putpush(c, f); putop(c, OP_STARTSUBMSG, getsel(f, UPB_HANDLER_STARTSUBMSG)); putop(c, OP_CALL, sub_m); putop(c, OP_POP); maybeput(c, OP_ENDSUBMSG, h, f, UPB_HANDLER_ENDSUBMSG); if (wire_type == UPB_WIRE_TYPE_DELIMITED) { putop(c, OP_SETDELIM); } } } /* Generates bytecode to parse a single string or lazy submessage field. */ static void generate_delimfield(compiler *c, const upb_fielddef *f, upb_pbdecodermethod *method) { const upb_handlers *h = upb_pbdecodermethod_desthandlers(method); label(c, LABEL_FIELD); if (upb_fielddef_isseq(f)) { putop(c, OP_CHECKDELIM, LABEL_ENDMSG); putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH); dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED); putop(c, OP_PUSHTAGDELIM, 0); putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); label(c, LABEL_LOOPSTART); putop(c, OP_PUSHLENDELIM); putop(c, OP_STARTSTR, getsel(f, UPB_HANDLER_STARTSTR)); /* Need to emit even if no handler to skip past the string. */ putop(c, OP_STRING, getsel(f, UPB_HANDLER_STRING)); maybeput(c, OP_ENDSTR, h, f, UPB_HANDLER_ENDSTR); putop(c, OP_POP); putop(c, OP_SETDELIM); putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK); putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_LOOPBREAK); putop(c, OP_BRANCH, -LABEL_LOOPSTART); label(c, LABEL_LOOPBREAK); putop(c, OP_POP); maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ); } else { putop(c, OP_CHECKDELIM, LABEL_ENDMSG); putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH); dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED); putop(c, OP_PUSHLENDELIM); putop(c, OP_STARTSTR, getsel(f, UPB_HANDLER_STARTSTR)); putop(c, OP_STRING, getsel(f, UPB_HANDLER_STRING)); maybeput(c, OP_ENDSTR, h, f, UPB_HANDLER_ENDSTR); putop(c, OP_POP); putop(c, OP_SETDELIM); } } /* Generates bytecode to parse a single primitive field. */ static void generate_primitivefield(compiler *c, const upb_fielddef *f, upb_pbdecodermethod *method) { const upb_handlers *h = upb_pbdecodermethod_desthandlers(method); upb_descriptortype_t descriptor_type = upb_fielddef_descriptortype(f); opcode parse_type; upb_selector_t sel; int wire_type; label(c, LABEL_FIELD); /* From a decoding perspective, ENUM is the same as INT32. */ if (descriptor_type == UPB_DESCRIPTOR_TYPE_ENUM) descriptor_type = UPB_DESCRIPTOR_TYPE_INT32; parse_type = (opcode)descriptor_type; /* TODO(haberman): generate packed or non-packed first depending on "packed" * setting in the fielddef. This will favor (in speed) whichever was * specified. */ UPB_ASSERT((int)parse_type >= 0 && parse_type <= OP_MAX); sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); wire_type = upb_pb_native_wire_types[upb_fielddef_descriptortype(f)]; if (upb_fielddef_isseq(f)) { putop(c, OP_CHECKDELIM, LABEL_ENDMSG); putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH); dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED); putop(c, OP_PUSHLENDELIM); putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); /* Packed */ label(c, LABEL_LOOPSTART); putop(c, parse_type, sel); putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK); putop(c, OP_BRANCH, -LABEL_LOOPSTART); dispatchtarget(c, method, f, wire_type); putop(c, OP_PUSHTAGDELIM, 0); putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); /* Non-packed */ label(c, LABEL_LOOPSTART); putop(c, parse_type, sel); putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK); putchecktag(c, f, wire_type, LABEL_LOOPBREAK); putop(c, OP_BRANCH, -LABEL_LOOPSTART); label(c, LABEL_LOOPBREAK); putop(c, OP_POP); /* Packed and non-packed join. */ maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ); putop(c, OP_SETDELIM); /* Could remove for non-packed by dup ENDSEQ. */ } else { putop(c, OP_CHECKDELIM, LABEL_ENDMSG); putchecktag(c, f, wire_type, LABEL_DISPATCH); dispatchtarget(c, method, f, wire_type); putop(c, parse_type, sel); } } /* Adds bytecode for parsing the given message to the given decoderplan, * while adding all dispatch targets to this message's dispatch table. */ static void compile_method(compiler *c, upb_pbdecodermethod *method) { const upb_handlers *h; const upb_msgdef *md; uint32_t* start_pc; upb_msg_field_iter i; upb_value val; UPB_ASSERT(method); /* Clear all entries in the dispatch table. */ upb_inttable_uninit(&method->dispatch); upb_inttable_init(&method->dispatch, UPB_CTYPE_UINT64); h = upb_pbdecodermethod_desthandlers(method); md = upb_handlers_msgdef(h); method->code_base.ofs = pcofs(c); putop(c, OP_SETDISPATCH, &method->dispatch); putsel(c, OP_STARTMSG, UPB_STARTMSG_SELECTOR, h); label(c, LABEL_FIELD); start_pc = c->pc; for(upb_msg_field_begin(&i, md); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { const upb_fielddef *f = upb_msg_iter_field(&i); upb_fieldtype_t type = upb_fielddef_type(f); if (type == UPB_TYPE_MESSAGE && !(haslazyhandlers(h, f) && c->lazy)) { generate_msgfield(c, f, method); } else if (type == UPB_TYPE_STRING || type == UPB_TYPE_BYTES || type == UPB_TYPE_MESSAGE) { generate_delimfield(c, f, method); } else { generate_primitivefield(c, f, method); } } /* If there were no fields, or if no handlers were defined, we need to * generate a non-empty loop body so that we can at least dispatch for unknown * fields and check for the end of the message. */ if (c->pc == start_pc) { /* Check for end-of-message. */ putop(c, OP_CHECKDELIM, LABEL_ENDMSG); /* Unconditionally dispatch. */ putop(c, OP_DISPATCH, 0); } /* For now we just loop back to the last field of the message (or if none, * the DISPATCH opcode for the message). */ putop(c, OP_BRANCH, -LABEL_FIELD); /* Insert both a label and a dispatch table entry for this end-of-msg. */ label(c, LABEL_ENDMSG); val = upb_value_uint64(pcofs(c) - method->code_base.ofs); upb_inttable_insert(&method->dispatch, DISPATCH_ENDMSG, val); putsel(c, OP_ENDMSG, UPB_ENDMSG_SELECTOR, h); putop(c, OP_RET); upb_inttable_compact(&method->dispatch); } /* Populate "methods" with new upb_pbdecodermethod objects reachable from "h". * Returns the method for these handlers. * * Generates a new method for every destination handlers reachable from "h". */ static void find_methods(compiler *c, const upb_handlers *h) { upb_value v; upb_msg_field_iter i; const upb_msgdef *md; upb_pbdecodermethod *method; if (upb_inttable_lookupptr(&c->group->methods, h, &v)) return; method = newmethod(h, c->group); upb_inttable_insertptr(&c->group->methods, h, upb_value_ptr(method)); /* Find submethods. */ md = upb_handlers_msgdef(h); for(upb_msg_field_begin(&i, md); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { const upb_fielddef *f = upb_msg_iter_field(&i); const upb_handlers *sub_h; if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE && (sub_h = upb_handlers_getsubhandlers(h, f)) != NULL) { /* We only generate a decoder method for submessages with handlers. * Others will be parsed as unknown fields. */ find_methods(c, sub_h); } } } /* (Re-)compile bytecode for all messages in "msgs." * Overwrites any existing bytecode in "c". */ static void compile_methods(compiler *c) { upb_inttable_iter i; /* Start over at the beginning of the bytecode. */ c->pc = c->group->bytecode; upb_inttable_begin(&i, &c->group->methods); for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { upb_pbdecodermethod *method = upb_value_getptr(upb_inttable_iter_value(&i)); compile_method(c, method); } } static void set_bytecode_handlers(mgroup *g) { upb_inttable_iter i; upb_inttable_begin(&i, &g->methods); for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { upb_pbdecodermethod *m = upb_value_getptr(upb_inttable_iter_value(&i)); upb_byteshandler *h = &m->input_handler_; m->code_base.ptr = g->bytecode + m->code_base.ofs; upb_byteshandler_setstartstr(h, upb_pbdecoder_startbc, m->code_base.ptr); upb_byteshandler_setstring(h, upb_pbdecoder_decode, g); upb_byteshandler_setendstr(h, upb_pbdecoder_end, m); } } /* TODO(haberman): allow this to be constructed for an arbitrary set of dest * handlers and other mgroups (but verify we have a transitive closure). */ const mgroup *mgroup_new(const upb_handlers *dest, bool lazy) { mgroup *g; compiler *c; g = newgroup(); c = newcompiler(g, lazy); find_methods(c, dest); /* We compile in two passes: * 1. all messages are assigned relative offsets from the beginning of the * bytecode (saved in method->code_base). * 2. forwards OP_CALL instructions can be correctly linked since message * offsets have been previously assigned. * * Could avoid the second pass by linking OP_CALL instructions somehow. */ compile_methods(c); compile_methods(c); g->bytecode_end = c->pc; freecompiler(c); #ifdef UPB_DUMP_BYTECODE { FILE *f = fopen("/tmp/upb-bytecode", "w"); UPB_ASSERT(f); dumpbc(g->bytecode, g->bytecode_end, stderr); dumpbc(g->bytecode, g->bytecode_end, f); fclose(f); f = fopen("/tmp/upb-bytecode.bin", "wb"); UPB_ASSERT(f); fwrite(g->bytecode, 1, g->bytecode_end - g->bytecode, f); fclose(f); } #endif set_bytecode_handlers(g); return g; } /* upb_pbcodecache ************************************************************/ upb_pbcodecache *upb_pbcodecache_new(upb_handlercache *dest) { upb_pbcodecache *c = upb_gmalloc(sizeof(*c)); if (!c) return NULL; c->dest = dest; c->lazy = false; c->arena = upb_arena_new(); if (!upb_inttable_init(&c->groups, UPB_CTYPE_CONSTPTR)) return NULL; return c; } void upb_pbcodecache_free(upb_pbcodecache *c) { upb_inttable_iter i; upb_inttable_begin(&i, &c->groups); for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { upb_value val = upb_inttable_iter_value(&i); freegroup((void*)upb_value_getconstptr(val)); } upb_inttable_uninit(&c->groups); upb_arena_free(c->arena); upb_gfree(c); } void upb_pbdecodermethodopts_setlazy(upb_pbcodecache *c, bool lazy) { UPB_ASSERT(upb_inttable_count(&c->groups) == 0); c->lazy = lazy; } const upb_pbdecodermethod *upb_pbcodecache_get(upb_pbcodecache *c, const upb_msgdef *md) { upb_value v; bool ok; const upb_handlers *h; const mgroup *g; h = upb_handlercache_get(c->dest, md); if (upb_inttable_lookupptr(&c->groups, md, &v)) { g = upb_value_getconstptr(v); } else { g = mgroup_new(h, c->lazy); ok = upb_inttable_insertptr(&c->groups, md, upb_value_constptr(g)); UPB_ASSERT(ok); } ok = upb_inttable_lookupptr(&g->methods, h, &v); UPB_ASSERT(ok); return upb_value_getptr(v); } /* ** upb::Decoder (Bytecode Decoder VM) ** ** Bytecode must previously have been generated using the bytecode compiler in ** compile_decoder.c. This decoder then walks through the bytecode op-by-op to ** parse the input. ** ** Decoding is fully resumable; we just keep a pointer to the current bytecode ** instruction and resume from there. A fair amount of the logic here is to ** handle the fact that values can span buffer seams and we have to be able to ** be capable of suspending/resuming from any byte in the stream. This ** sometimes requires keeping a few trailing bytes from the last buffer around ** in the "residual" buffer. */ #include #include #ifdef UPB_DUMP_BYTECODE #include #endif #define CHECK_SUSPEND(x) if (!(x)) return upb_pbdecoder_suspend(d); /* Error messages that are shared between the bytecode and JIT decoders. */ const char *kPbDecoderStackOverflow = "Nesting too deep."; const char *kPbDecoderSubmessageTooLong = "Submessage end extends past enclosing submessage."; /* Error messages shared within this file. */ static const char *kUnterminatedVarint = "Unterminated varint."; /* upb_pbdecoder **************************************************************/ static opcode halt = OP_HALT; /* A dummy character we can point to when the user passes us a NULL buffer. * We need this because in C (NULL + 0) and (NULL - NULL) are undefined * behavior, which would invalidate functions like curbufleft(). */ static const char dummy_char; /* Whether an op consumes any of the input buffer. */ static bool consumes_input(opcode op) { switch (op) { case OP_SETDISPATCH: case OP_STARTMSG: case OP_ENDMSG: case OP_STARTSEQ: case OP_ENDSEQ: case OP_STARTSUBMSG: case OP_ENDSUBMSG: case OP_STARTSTR: case OP_ENDSTR: case OP_PUSHTAGDELIM: case OP_POP: case OP_SETDELIM: case OP_SETBIGGROUPNUM: case OP_CHECKDELIM: case OP_CALL: case OP_RET: case OP_BRANCH: return false; default: return true; } } static size_t stacksize(upb_pbdecoder *d, size_t entries) { UPB_UNUSED(d); return entries * sizeof(upb_pbdecoder_frame); } static size_t callstacksize(upb_pbdecoder *d, size_t entries) { UPB_UNUSED(d); return entries * sizeof(uint32_t*); } static bool in_residual_buf(const upb_pbdecoder *d, const char *p); /* It's unfortunate that we have to micro-manage the compiler with * UPB_FORCEINLINE and UPB_NOINLINE, especially since this tuning is necessarily * specific to one hardware configuration. But empirically on a Core i7, * performance increases 30-50% with these annotations. Every instance where * these appear, gcc 4.2.1 made the wrong decision and degraded performance in * benchmarks. */ static void seterr(upb_pbdecoder *d, const char *msg) { upb_status_seterrmsg(d->status, msg); } void upb_pbdecoder_seterr(upb_pbdecoder *d, const char *msg) { seterr(d, msg); } /* Buffering ******************************************************************/ /* We operate on one buffer at a time, which is either the user's buffer passed * to our "decode" callback or some residual bytes from the previous buffer. */ /* How many bytes can be safely read from d->ptr without reading past end-of-buf * or past the current delimited end. */ static size_t curbufleft(const upb_pbdecoder *d) { UPB_ASSERT(d->data_end >= d->ptr); return d->data_end - d->ptr; } /* How many bytes are available before end-of-buffer. */ static size_t bufleft(const upb_pbdecoder *d) { return d->end - d->ptr; } /* Overall stream offset of d->ptr. */ uint64_t offset(const upb_pbdecoder *d) { return d->bufstart_ofs + (d->ptr - d->buf); } /* How many bytes are available before the end of this delimited region. */ size_t delim_remaining(const upb_pbdecoder *d) { return d->top->end_ofs - offset(d); } /* Advances d->ptr. */ static void advance(upb_pbdecoder *d, size_t len) { UPB_ASSERT(curbufleft(d) >= len); d->ptr += len; } static bool in_buf(const char *p, const char *buf, const char *end) { return p >= buf && p <= end; } static bool in_residual_buf(const upb_pbdecoder *d, const char *p) { return in_buf(p, d->residual, d->residual_end); } /* Calculates the delim_end value, which is affected by both the current buffer * and the parsing stack, so must be called whenever either is updated. */ static void set_delim_end(upb_pbdecoder *d) { size_t delim_ofs = d->top->end_ofs - d->bufstart_ofs; if (delim_ofs <= (size_t)(d->end - d->buf)) { d->delim_end = d->buf + delim_ofs; d->data_end = d->delim_end; } else { d->data_end = d->end; d->delim_end = NULL; } } static void switchtobuf(upb_pbdecoder *d, const char *buf, const char *end) { d->ptr = buf; d->buf = buf; d->end = end; set_delim_end(d); } static void advancetobuf(upb_pbdecoder *d, const char *buf, size_t len) { UPB_ASSERT(curbufleft(d) == 0); d->bufstart_ofs += (d->end - d->buf); switchtobuf(d, buf, buf + len); } static void checkpoint(upb_pbdecoder *d) { /* The assertion here is in the interests of efficiency, not correctness. * We are trying to ensure that we don't checkpoint() more often than * necessary. */ UPB_ASSERT(d->checkpoint != d->ptr); d->checkpoint = d->ptr; } /* Skips "bytes" bytes in the stream, which may be more than available. If we * skip more bytes than are available, we return a long read count to the caller * indicating how many bytes can be skipped over before passing actual data * again. Skipped bytes can pass a NULL buffer and the decoder guarantees they * won't actually be read. */ static int32_t skip(upb_pbdecoder *d, size_t bytes) { UPB_ASSERT(!in_residual_buf(d, d->ptr) || d->size_param == 0); UPB_ASSERT(d->skip == 0); if (bytes > delim_remaining(d)) { seterr(d, "Skipped value extended beyond enclosing submessage."); return upb_pbdecoder_suspend(d); } else if (bufleft(d) >= bytes) { /* Skipped data is all in current buffer, and more is still available. */ advance(d, bytes); d->skip = 0; return DECODE_OK; } else { /* Skipped data extends beyond currently available buffers. */ d->pc = d->last; d->skip = bytes - curbufleft(d); d->bufstart_ofs += (d->end - d->buf); d->residual_end = d->residual; switchtobuf(d, d->residual, d->residual_end); return d->size_param + d->skip; } } /* Resumes the decoder from an initial state or from a previous suspend. */ int32_t upb_pbdecoder_resume(upb_pbdecoder *d, void *p, const char *buf, size_t size, const upb_bufhandle *handle) { UPB_UNUSED(p); /* Useless; just for the benefit of the JIT. */ /* d->skip and d->residual_end could probably elegantly be represented * as a single variable, to more easily represent this invariant. */ UPB_ASSERT(!(d->skip && d->residual_end > d->residual)); /* We need to remember the original size_param, so that the value we return * is relative to it, even if we do some skipping first. */ d->size_param = size; d->handle = handle; /* Have to handle this case specially (ie. not with skip()) because the user * is allowed to pass a NULL buffer here, which won't allow us to safely * calculate a d->end or use our normal functions like curbufleft(). */ if (d->skip && d->skip >= size) { d->skip -= size; d->bufstart_ofs += size; buf = &dummy_char; size = 0; /* We can't just return now, because we might need to execute some ops * like CHECKDELIM, which could call some callbacks and pop the stack. */ } /* We need to pretend that this was the actual buffer param, since some of the * calculations assume that d->ptr/d->buf is relative to this. */ d->buf_param = buf; if (!buf) { /* NULL buf is ok if its entire span is covered by the "skip" above, but * by this point we know that "skip" doesn't cover the buffer. */ seterr(d, "Passed NULL buffer over non-skippable region."); return upb_pbdecoder_suspend(d); } if (d->residual_end > d->residual) { /* We have residual bytes from the last buffer. */ UPB_ASSERT(d->ptr == d->residual); } else { switchtobuf(d, buf, buf + size); } d->checkpoint = d->ptr; /* Handle skips that don't cover the whole buffer (as above). */ if (d->skip) { size_t skip_bytes = d->skip; d->skip = 0; CHECK_RETURN(skip(d, skip_bytes)); checkpoint(d); } /* If we're inside an unknown group, continue to parse unknown values. */ if (d->top->groupnum < 0) { CHECK_RETURN(upb_pbdecoder_skipunknown(d, -1, 0)); checkpoint(d); } return DECODE_OK; } /* Suspends the decoder at the last checkpoint, without saving any residual * bytes. If there are any unconsumed bytes, returns a short byte count. */ size_t upb_pbdecoder_suspend(upb_pbdecoder *d) { d->pc = d->last; if (d->checkpoint == d->residual) { /* Checkpoint was in residual buf; no user bytes were consumed. */ d->ptr = d->residual; return 0; } else { size_t ret = d->size_param - (d->end - d->checkpoint); UPB_ASSERT(!in_residual_buf(d, d->checkpoint)); UPB_ASSERT(d->buf == d->buf_param || d->buf == &dummy_char); d->bufstart_ofs += (d->checkpoint - d->buf); d->residual_end = d->residual; switchtobuf(d, d->residual, d->residual_end); return ret; } } /* Suspends the decoder at the last checkpoint, and saves any unconsumed * bytes in our residual buffer. This is necessary if we need more user * bytes to form a complete value, which might not be contiguous in the * user's buffers. Always consumes all user bytes. */ static size_t suspend_save(upb_pbdecoder *d) { /* We hit end-of-buffer before we could parse a full value. * Save any unconsumed bytes (if any) to the residual buffer. */ d->pc = d->last; if (d->checkpoint == d->residual) { /* Checkpoint was in residual buf; append user byte(s) to residual buf. */ UPB_ASSERT((d->residual_end - d->residual) + d->size_param <= sizeof(d->residual)); if (!in_residual_buf(d, d->ptr)) { d->bufstart_ofs -= (d->residual_end - d->residual); } memcpy(d->residual_end, d->buf_param, d->size_param); d->residual_end += d->size_param; } else { /* Checkpoint was in user buf; old residual bytes not needed. */ size_t save; UPB_ASSERT(!in_residual_buf(d, d->checkpoint)); d->ptr = d->checkpoint; save = curbufleft(d); UPB_ASSERT(save <= sizeof(d->residual)); memcpy(d->residual, d->ptr, save); d->residual_end = d->residual + save; d->bufstart_ofs = offset(d); } switchtobuf(d, d->residual, d->residual_end); return d->size_param; } /* Copies the next "bytes" bytes into "buf" and advances the stream. * Requires that this many bytes are available in the current buffer. */ UPB_FORCEINLINE static void consumebytes(upb_pbdecoder *d, void *buf, size_t bytes) { UPB_ASSERT(bytes <= curbufleft(d)); memcpy(buf, d->ptr, bytes); advance(d, bytes); } /* Slow path for getting the next "bytes" bytes, regardless of whether they are * available in the current buffer or not. Returns a status code as described * in decoder.int.h. */ UPB_NOINLINE static int32_t getbytes_slow(upb_pbdecoder *d, void *buf, size_t bytes) { const size_t avail = curbufleft(d); consumebytes(d, buf, avail); bytes -= avail; UPB_ASSERT(bytes > 0); if (in_residual_buf(d, d->ptr)) { advancetobuf(d, d->buf_param, d->size_param); } if (curbufleft(d) >= bytes) { consumebytes(d, (char *)buf + avail, bytes); return DECODE_OK; } else if (d->data_end == d->delim_end) { seterr(d, "Submessage ended in the middle of a value or group"); return upb_pbdecoder_suspend(d); } else { return suspend_save(d); } } /* Gets the next "bytes" bytes, regardless of whether they are available in the * current buffer or not. Returns a status code as described in decoder.int.h. */ UPB_FORCEINLINE static int32_t getbytes(upb_pbdecoder *d, void *buf, size_t bytes) { if (curbufleft(d) >= bytes) { /* Buffer has enough data to satisfy. */ consumebytes(d, buf, bytes); return DECODE_OK; } else { return getbytes_slow(d, buf, bytes); } } UPB_NOINLINE static size_t peekbytes_slow(upb_pbdecoder *d, void *buf, size_t bytes) { size_t ret = curbufleft(d); memcpy(buf, d->ptr, ret); if (in_residual_buf(d, d->ptr)) { size_t copy = UPB_MIN(bytes - ret, d->size_param); memcpy((char *)buf + ret, d->buf_param, copy); ret += copy; } return ret; } UPB_FORCEINLINE static size_t peekbytes(upb_pbdecoder *d, void *buf, size_t bytes) { if (curbufleft(d) >= bytes) { memcpy(buf, d->ptr, bytes); return bytes; } else { return peekbytes_slow(d, buf, bytes); } } /* Decoding of wire types *****************************************************/ /* Slow path for decoding a varint from the current buffer position. * Returns a status code as described in decoder.int.h. */ UPB_NOINLINE int32_t upb_pbdecoder_decode_varint_slow(upb_pbdecoder *d, uint64_t *u64) { uint8_t byte = 0x80; int bitpos; *u64 = 0; for(bitpos = 0; bitpos < 70 && (byte & 0x80); bitpos += 7) { CHECK_RETURN(getbytes(d, &byte, 1)); *u64 |= (uint64_t)(byte & 0x7F) << bitpos; } if(bitpos == 70 && (byte & 0x80)) { seterr(d, kUnterminatedVarint); return upb_pbdecoder_suspend(d); } return DECODE_OK; } /* Decodes a varint from the current buffer position. * Returns a status code as described in decoder.int.h. */ UPB_FORCEINLINE static int32_t decode_varint(upb_pbdecoder *d, uint64_t *u64) { if (curbufleft(d) > 0 && !(*d->ptr & 0x80)) { *u64 = *d->ptr; advance(d, 1); return DECODE_OK; } else if (curbufleft(d) >= 10) { /* Fast case. */ upb_decoderet r = upb_vdecode_fast(d->ptr); if (r.p == NULL) { seterr(d, kUnterminatedVarint); return upb_pbdecoder_suspend(d); } advance(d, r.p - d->ptr); *u64 = r.val; return DECODE_OK; } else { /* Slow case -- varint spans buffer seam. */ return upb_pbdecoder_decode_varint_slow(d, u64); } } /* Decodes a 32-bit varint from the current buffer position. * Returns a status code as described in decoder.int.h. */ UPB_FORCEINLINE static int32_t decode_v32(upb_pbdecoder *d, uint32_t *u32) { uint64_t u64; int32_t ret = decode_varint(d, &u64); if (ret >= 0) return ret; if (u64 > UINT32_MAX) { seterr(d, "Unterminated 32-bit varint"); /* TODO(haberman) guarantee that this function return is >= 0 somehow, * so we know this path will always be treated as error by our caller. * Right now the size_t -> int32_t can overflow and produce negative values. */ *u32 = 0; return upb_pbdecoder_suspend(d); } *u32 = u64; return DECODE_OK; } /* Decodes a fixed32 from the current buffer position. * Returns a status code as described in decoder.int.h. * TODO: proper byte swapping for big-endian machines. */ UPB_FORCEINLINE static int32_t decode_fixed32(upb_pbdecoder *d, uint32_t *u32) { return getbytes(d, u32, 4); } /* Decodes a fixed64 from the current buffer position. * Returns a status code as described in decoder.int.h. * TODO: proper byte swapping for big-endian machines. */ UPB_FORCEINLINE static int32_t decode_fixed64(upb_pbdecoder *d, uint64_t *u64) { return getbytes(d, u64, 8); } /* Non-static versions of the above functions. * These are called by the JIT for fallback paths. */ int32_t upb_pbdecoder_decode_f32(upb_pbdecoder *d, uint32_t *u32) { return decode_fixed32(d, u32); } int32_t upb_pbdecoder_decode_f64(upb_pbdecoder *d, uint64_t *u64) { return decode_fixed64(d, u64); } static double as_double(uint64_t n) { double d; memcpy(&d, &n, 8); return d; } static float as_float(uint32_t n) { float f; memcpy(&f, &n, 4); return f; } /* Pushes a frame onto the decoder stack. */ static bool decoder_push(upb_pbdecoder *d, uint64_t end) { upb_pbdecoder_frame *fr = d->top; if (end > fr->end_ofs) { seterr(d, kPbDecoderSubmessageTooLong); return false; } else if (fr == d->limit) { seterr(d, kPbDecoderStackOverflow); return false; } fr++; fr->end_ofs = end; fr->dispatch = NULL; fr->groupnum = 0; d->top = fr; return true; } static bool pushtagdelim(upb_pbdecoder *d, uint32_t arg) { /* While we expect to see an "end" tag (either ENDGROUP or a non-sequence * field number) prior to hitting any enclosing submessage end, pushing our * existing delim end prevents us from continuing to parse values from a * corrupt proto that doesn't give us an END tag in time. */ if (!decoder_push(d, d->top->end_ofs)) return false; d->top->groupnum = arg; return true; } /* Pops a frame from the decoder stack. */ static void decoder_pop(upb_pbdecoder *d) { d->top--; } UPB_NOINLINE int32_t upb_pbdecoder_checktag_slow(upb_pbdecoder *d, uint64_t expected) { uint64_t data = 0; size_t bytes = upb_value_size(expected); size_t read = peekbytes(d, &data, bytes); if (read == bytes && data == expected) { /* Advance past matched bytes. */ int32_t ok = getbytes(d, &data, read); UPB_ASSERT(ok < 0); return DECODE_OK; } else if (read < bytes && memcmp(&data, &expected, read) == 0) { return suspend_save(d); } else { return DECODE_MISMATCH; } } int32_t upb_pbdecoder_skipunknown(upb_pbdecoder *d, int32_t fieldnum, uint8_t wire_type) { if (fieldnum >= 0) goto have_tag; while (true) { uint32_t tag; CHECK_RETURN(decode_v32(d, &tag)); wire_type = tag & 0x7; fieldnum = tag >> 3; have_tag: if (fieldnum == 0) { seterr(d, "Saw invalid field number (0)"); return upb_pbdecoder_suspend(d); } switch (wire_type) { case UPB_WIRE_TYPE_32BIT: CHECK_RETURN(skip(d, 4)); break; case UPB_WIRE_TYPE_64BIT: CHECK_RETURN(skip(d, 8)); break; case UPB_WIRE_TYPE_VARINT: { uint64_t u64; CHECK_RETURN(decode_varint(d, &u64)); break; } case UPB_WIRE_TYPE_DELIMITED: { uint32_t len; CHECK_RETURN(decode_v32(d, &len)); CHECK_RETURN(skip(d, len)); break; } case UPB_WIRE_TYPE_START_GROUP: CHECK_SUSPEND(pushtagdelim(d, -fieldnum)); break; case UPB_WIRE_TYPE_END_GROUP: if (fieldnum == -d->top->groupnum) { decoder_pop(d); } else if (fieldnum == d->top->groupnum) { return DECODE_ENDGROUP; } else { seterr(d, "Unmatched ENDGROUP tag."); return upb_pbdecoder_suspend(d); } break; default: seterr(d, "Invalid wire type"); return upb_pbdecoder_suspend(d); } if (d->top->groupnum >= 0) { /* TODO: More code needed for handling unknown groups. */ upb_sink_putunknown(d->top->sink, d->checkpoint, d->ptr - d->checkpoint); return DECODE_OK; } /* Unknown group -- continue looping over unknown fields. */ checkpoint(d); } } static void goto_endmsg(upb_pbdecoder *d) { upb_value v; bool found = upb_inttable_lookup32(d->top->dispatch, DISPATCH_ENDMSG, &v); UPB_ASSERT(found); d->pc = d->top->base + upb_value_getuint64(v); } /* Parses a tag and jumps to the corresponding bytecode instruction for this * field. * * If the tag is unknown (or the wire type doesn't match), parses the field as * unknown. If the tag is a valid ENDGROUP tag, jumps to the bytecode * instruction for the end of message. */ static int32_t dispatch(upb_pbdecoder *d) { upb_inttable *dispatch = d->top->dispatch; uint32_t tag; uint8_t wire_type; uint32_t fieldnum; upb_value val; int32_t retval; /* Decode tag. */ CHECK_RETURN(decode_v32(d, &tag)); wire_type = tag & 0x7; fieldnum = tag >> 3; /* Lookup tag. Because of packed/non-packed compatibility, we have to * check the wire type against two possibilities. */ if (fieldnum != DISPATCH_ENDMSG && upb_inttable_lookup32(dispatch, fieldnum, &val)) { uint64_t v = upb_value_getuint64(val); if (wire_type == (v & 0xff)) { d->pc = d->top->base + (v >> 16); return DECODE_OK; } else if (wire_type == ((v >> 8) & 0xff)) { bool found = upb_inttable_lookup(dispatch, fieldnum + UPB_MAX_FIELDNUMBER, &val); UPB_ASSERT(found); d->pc = d->top->base + upb_value_getuint64(val); return DECODE_OK; } } /* We have some unknown fields (or ENDGROUP) to parse. The DISPATCH or TAG * bytecode that triggered this is preceded by a CHECKDELIM bytecode which * we need to back up to, so that when we're done skipping unknown data we * can re-check the delimited end. */ d->last--; /* Necessary if we get suspended */ d->pc = d->last; UPB_ASSERT(getop(*d->last) == OP_CHECKDELIM); /* Unknown field or ENDGROUP. */ retval = upb_pbdecoder_skipunknown(d, fieldnum, wire_type); CHECK_RETURN(retval); if (retval == DECODE_ENDGROUP) { goto_endmsg(d); return DECODE_OK; } return DECODE_OK; } /* Callers know that the stack is more than one deep because the opcodes that * call this only occur after PUSH operations. */ upb_pbdecoder_frame *outer_frame(upb_pbdecoder *d) { UPB_ASSERT(d->top != d->stack); return d->top - 1; } /* The main decoding loop *****************************************************/ /* The main decoder VM function. Uses traditional bytecode dispatch loop with a * switch() statement. */ size_t run_decoder_vm(upb_pbdecoder *d, const mgroup *group, const upb_bufhandle* handle) { #define VMCASE(op, code) \ case op: { code; if (consumes_input(op)) checkpoint(d); break; } #define PRIMITIVE_OP(type, wt, name, convfunc, ctype) \ VMCASE(OP_PARSE_ ## type, { \ ctype val; \ CHECK_RETURN(decode_ ## wt(d, &val)); \ upb_sink_put ## name(d->top->sink, arg, (convfunc)(val)); \ }) while(1) { int32_t instruction; opcode op; uint32_t arg; int32_t longofs; d->last = d->pc; instruction = *d->pc++; op = getop(instruction); arg = instruction >> 8; longofs = arg; UPB_ASSERT(d->ptr != d->residual_end); UPB_UNUSED(group); #ifdef UPB_DUMP_BYTECODE fprintf(stderr, "s_ofs=%d buf_ofs=%d data_rem=%d buf_rem=%d delim_rem=%d " "%x %s (%d)\n", (int)offset(d), (int)(d->ptr - d->buf), (int)(d->data_end - d->ptr), (int)(d->end - d->ptr), (int)((d->top->end_ofs - d->bufstart_ofs) - (d->ptr - d->buf)), (int)(d->pc - 1 - group->bytecode), upb_pbdecoder_getopname(op), arg); #endif switch (op) { /* Technically, we are losing data if we see a 32-bit varint that is not * properly sign-extended. We could detect this and error about the data * loss, but proto2 does not do this, so we pass. */ PRIMITIVE_OP(INT32, varint, int32, int32_t, uint64_t) PRIMITIVE_OP(INT64, varint, int64, int64_t, uint64_t) PRIMITIVE_OP(UINT32, varint, uint32, uint32_t, uint64_t) PRIMITIVE_OP(UINT64, varint, uint64, uint64_t, uint64_t) PRIMITIVE_OP(FIXED32, fixed32, uint32, uint32_t, uint32_t) PRIMITIVE_OP(FIXED64, fixed64, uint64, uint64_t, uint64_t) PRIMITIVE_OP(SFIXED32, fixed32, int32, int32_t, uint32_t) PRIMITIVE_OP(SFIXED64, fixed64, int64, int64_t, uint64_t) PRIMITIVE_OP(BOOL, varint, bool, bool, uint64_t) PRIMITIVE_OP(DOUBLE, fixed64, double, as_double, uint64_t) PRIMITIVE_OP(FLOAT, fixed32, float, as_float, uint32_t) PRIMITIVE_OP(SINT32, varint, int32, upb_zzdec_32, uint64_t) PRIMITIVE_OP(SINT64, varint, int64, upb_zzdec_64, uint64_t) VMCASE(OP_SETDISPATCH, d->top->base = d->pc - 1; memcpy(&d->top->dispatch, d->pc, sizeof(void*)); d->pc += sizeof(void*) / sizeof(uint32_t); ) VMCASE(OP_STARTMSG, CHECK_SUSPEND(upb_sink_startmsg(d->top->sink)); ) VMCASE(OP_ENDMSG, CHECK_SUSPEND(upb_sink_endmsg(d->top->sink, d->status)); ) VMCASE(OP_STARTSEQ, upb_pbdecoder_frame *outer = outer_frame(d); CHECK_SUSPEND(upb_sink_startseq(outer->sink, arg, &d->top->sink)); ) VMCASE(OP_ENDSEQ, CHECK_SUSPEND(upb_sink_endseq(d->top->sink, arg)); ) VMCASE(OP_STARTSUBMSG, upb_pbdecoder_frame *outer = outer_frame(d); CHECK_SUSPEND(upb_sink_startsubmsg(outer->sink, arg, &d->top->sink)); ) VMCASE(OP_ENDSUBMSG, CHECK_SUSPEND(upb_sink_endsubmsg(d->top->sink, arg)); ) VMCASE(OP_STARTSTR, uint32_t len = delim_remaining(d); upb_pbdecoder_frame *outer = outer_frame(d); CHECK_SUSPEND(upb_sink_startstr(outer->sink, arg, len, &d->top->sink)); if (len == 0) { d->pc++; /* Skip OP_STRING. */ } ) VMCASE(OP_STRING, uint32_t len = curbufleft(d); size_t n = upb_sink_putstring(d->top->sink, arg, d->ptr, len, handle); if (n > len) { if (n > delim_remaining(d)) { seterr(d, "Tried to skip past end of string."); return upb_pbdecoder_suspend(d); } else { int32_t ret = skip(d, n); /* This shouldn't return DECODE_OK, because n > len. */ UPB_ASSERT(ret >= 0); return ret; } } advance(d, n); if (n < len || d->delim_end == NULL) { /* We aren't finished with this string yet. */ d->pc--; /* Repeat OP_STRING. */ if (n > 0) checkpoint(d); return upb_pbdecoder_suspend(d); } ) VMCASE(OP_ENDSTR, CHECK_SUSPEND(upb_sink_endstr(d->top->sink, arg)); ) VMCASE(OP_PUSHTAGDELIM, CHECK_SUSPEND(pushtagdelim(d, arg)); ) VMCASE(OP_SETBIGGROUPNUM, d->top->groupnum = *d->pc++; ) VMCASE(OP_POP, UPB_ASSERT(d->top > d->stack); decoder_pop(d); ) VMCASE(OP_PUSHLENDELIM, uint32_t len; CHECK_RETURN(decode_v32(d, &len)); CHECK_SUSPEND(decoder_push(d, offset(d) + len)); set_delim_end(d); ) VMCASE(OP_SETDELIM, set_delim_end(d); ) VMCASE(OP_CHECKDELIM, /* We are guaranteed of this assert because we never allow ourselves to * consume bytes beyond data_end, which covers delim_end when non-NULL. */ UPB_ASSERT(!(d->delim_end && d->ptr > d->delim_end)); if (d->ptr == d->delim_end) d->pc += longofs; ) VMCASE(OP_CALL, d->callstack[d->call_len++] = d->pc; d->pc += longofs; ) VMCASE(OP_RET, UPB_ASSERT(d->call_len > 0); d->pc = d->callstack[--d->call_len]; ) VMCASE(OP_BRANCH, d->pc += longofs; ) VMCASE(OP_TAG1, uint8_t expected; CHECK_SUSPEND(curbufleft(d) > 0); expected = (arg >> 8) & 0xff; if (*d->ptr == expected) { advance(d, 1); } else { int8_t shortofs; badtag: shortofs = arg; if (shortofs == LABEL_DISPATCH) { CHECK_RETURN(dispatch(d)); } else { d->pc += shortofs; break; /* Avoid checkpoint(). */ } } ) VMCASE(OP_TAG2, uint16_t expected; CHECK_SUSPEND(curbufleft(d) > 0); expected = (arg >> 8) & 0xffff; if (curbufleft(d) >= 2) { uint16_t actual; memcpy(&actual, d->ptr, 2); if (expected == actual) { advance(d, 2); } else { goto badtag; } } else { int32_t result = upb_pbdecoder_checktag_slow(d, expected); if (result == DECODE_MISMATCH) goto badtag; if (result >= 0) return result; } ) VMCASE(OP_TAGN, { uint64_t expected; int32_t result; memcpy(&expected, d->pc, 8); d->pc += 2; result = upb_pbdecoder_checktag_slow(d, expected); if (result == DECODE_MISMATCH) goto badtag; if (result >= 0) return result; }) VMCASE(OP_DISPATCH, { CHECK_RETURN(dispatch(d)); }) VMCASE(OP_HALT, { return d->size_param; }) } } } /* BytesHandler handlers ******************************************************/ void *upb_pbdecoder_startbc(void *closure, const void *pc, size_t size_hint) { upb_pbdecoder *d = closure; UPB_UNUSED(size_hint); d->top->end_ofs = UINT64_MAX; d->bufstart_ofs = 0; d->call_len = 1; d->callstack[0] = &halt; d->pc = pc; d->skip = 0; return d; } bool upb_pbdecoder_end(void *closure, const void *handler_data) { upb_pbdecoder *d = closure; const upb_pbdecodermethod *method = handler_data; uint64_t end; char dummy; if (d->residual_end > d->residual) { seterr(d, "Unexpected EOF: decoder still has buffered unparsed data"); return false; } if (d->skip) { seterr(d, "Unexpected EOF inside skipped data"); return false; } if (d->top->end_ofs != UINT64_MAX) { seterr(d, "Unexpected EOF inside delimited string"); return false; } /* The user's end() call indicates that the message ends here. */ end = offset(d); d->top->end_ofs = end; { const uint32_t *p = d->pc; d->stack->end_ofs = end; /* Check the previous bytecode, but guard against beginning. */ if (p != method->code_base.ptr) p--; if (getop(*p) == OP_CHECKDELIM) { /* Rewind from OP_TAG* to OP_CHECKDELIM. */ UPB_ASSERT(getop(*d->pc) == OP_TAG1 || getop(*d->pc) == OP_TAG2 || getop(*d->pc) == OP_TAGN || getop(*d->pc) == OP_DISPATCH); d->pc = p; } upb_pbdecoder_decode(closure, handler_data, &dummy, 0, NULL); } if (d->call_len != 0) { seterr(d, "Unexpected EOF inside submessage or group"); return false; } return true; } size_t upb_pbdecoder_decode(void *decoder, const void *group, const char *buf, size_t size, const upb_bufhandle *handle) { int32_t result = upb_pbdecoder_resume(decoder, NULL, buf, size, handle); if (result == DECODE_ENDGROUP) goto_endmsg(decoder); CHECK_RETURN(result); return run_decoder_vm(decoder, group, handle); } /* Public API *****************************************************************/ void upb_pbdecoder_reset(upb_pbdecoder *d) { d->top = d->stack; d->top->groupnum = 0; d->ptr = d->residual; d->buf = d->residual; d->end = d->residual; d->residual_end = d->residual; } upb_pbdecoder *upb_pbdecoder_create(upb_arena *a, const upb_pbdecodermethod *m, upb_sink sink, upb_status *status) { const size_t default_max_nesting = 64; #ifndef NDEBUG size_t size_before = upb_arena_bytesallocated(a); #endif upb_pbdecoder *d = upb_arena_malloc(a, sizeof(upb_pbdecoder)); if (!d) return NULL; d->method_ = m; d->callstack = upb_arena_malloc(a, callstacksize(d, default_max_nesting)); d->stack = upb_arena_malloc(a, stacksize(d, default_max_nesting)); if (!d->stack || !d->callstack) { return NULL; } d->arena = a; d->limit = d->stack + default_max_nesting - 1; d->stack_size = default_max_nesting; d->status = status; upb_pbdecoder_reset(d); upb_bytessink_reset(&d->input_, &m->input_handler_, d); if (d->method_->dest_handlers_) { if (sink.handlers != d->method_->dest_handlers_) return NULL; } d->top->sink = sink; /* If this fails, increase the value in decoder.h. */ UPB_ASSERT_DEBUGVAR(upb_arena_bytesallocated(a) - size_before <= UPB_PB_DECODER_SIZE); return d; } uint64_t upb_pbdecoder_bytesparsed(const upb_pbdecoder *d) { return offset(d); } const upb_pbdecodermethod *upb_pbdecoder_method(const upb_pbdecoder *d) { return d->method_; } upb_bytessink upb_pbdecoder_input(upb_pbdecoder *d) { return d->input_; } size_t upb_pbdecoder_maxnesting(const upb_pbdecoder *d) { return d->stack_size; } bool upb_pbdecoder_setmaxnesting(upb_pbdecoder *d, size_t max) { UPB_ASSERT(d->top >= d->stack); if (max < (size_t)(d->top - d->stack)) { /* Can't set a limit smaller than what we are currently at. */ return false; } if (max > d->stack_size) { /* Need to reallocate stack and callstack to accommodate. */ size_t old_size = stacksize(d, d->stack_size); size_t new_size = stacksize(d, max); void *p = upb_arena_realloc(d->arena, d->stack, old_size, new_size); if (!p) { return false; } d->stack = p; old_size = callstacksize(d, d->stack_size); new_size = callstacksize(d, max); p = upb_arena_realloc(d->arena, d->callstack, old_size, new_size); if (!p) { return false; } d->callstack = p; d->stack_size = max; } d->limit = d->stack + max - 1; return true; } /* ** upb::Encoder ** ** Since we are implementing pure handlers (ie. without any out-of-band access ** to pre-computed lengths), we have to buffer all submessages before we can ** emit even their first byte. ** ** Not knowing the size of submessages also means we can't write a perfect ** zero-copy implementation, even with buffering. Lengths are stored as ** varints, which means that we don't know how many bytes to reserve for the ** length until we know what the length is. ** ** This leaves us with three main choices: ** ** 1. buffer all submessage data in a temporary buffer, then copy it exactly ** once into the output buffer. ** ** 2. attempt to buffer data directly into the output buffer, estimating how ** many bytes each length will take. When our guesses are wrong, use ** memmove() to grow or shrink the allotted space. ** ** 3. buffer directly into the output buffer, allocating a max length ** ahead-of-time for each submessage length. If we overallocated, we waste ** space, but no memcpy() or memmove() is required. This approach requires ** defining a maximum size for submessages and rejecting submessages that ** exceed that size. ** ** (2) and (3) have the potential to have better performance, but they are more ** complicated and subtle to implement: ** ** (3) requires making an arbitrary choice of the maximum message size; it ** wastes space when submessages are shorter than this and fails ** completely when they are longer. This makes it more finicky and ** requires configuration based on the input. It also makes it impossible ** to perfectly match the output of reference encoders that always use the ** optimal amount of space for each length. ** ** (2) requires guessing the the size upfront, and if multiple lengths are ** guessed wrong the minimum required number of memmove() operations may ** be complicated to compute correctly. Implemented properly, it may have ** a useful amortized or average cost, but more investigation is required ** to determine this and what the optimal algorithm is to achieve it. ** ** (1) makes you always pay for exactly one copy, but its implementation is ** the simplest and its performance is predictable. ** ** So for now, we implement (1) only. If we wish to optimize later, we should ** be able to do it without affecting users. ** ** The strategy is to buffer the segments of data that do *not* depend on ** unknown lengths in one buffer, and keep a separate buffer of segment pointers ** and lengths. When the top-level submessage ends, we can go beginning to end, ** alternating the writing of lengths with memcpy() of the rest of the data. ** At the top level though, no buffering is required. */ /* The output buffer is divided into segments; a segment is a string of data * that is "ready to go" -- it does not need any varint lengths inserted into * the middle. The seams between segments are where varints will be inserted * once they are known. * * We also use the concept of a "run", which is a range of encoded bytes that * occur at a single submessage level. Every segment contains one or more runs. * * A segment can span messages. Consider: * * .--Submessage lengths---------. * | | | * | V V * V | |--------------- | |----------------- * Submessages: | |----------------------------------------------- * Top-level msg: ------------------------------------------------------------ * * Segments: ----- ------------------- ----------------- * Runs: *---- *--------------*--- *---------------- * (* marks the start) * * Note that the top-level menssage is not in any segment because it does not * have any length preceding it. * * A segment is only interrupted when another length needs to be inserted. So * observe how the second segment spans both the inner submessage and part of * the next enclosing message. */ typedef struct { uint32_t msglen; /* The length to varint-encode before this segment. */ uint32_t seglen; /* Length of the segment. */ } upb_pb_encoder_segment; struct upb_pb_encoder { upb_arena *arena; /* Our input and output. */ upb_sink input_; upb_bytessink output_; /* The "subclosure" -- used as the inner closure as part of the bytessink * protocol. */ void *subc; /* The output buffer and limit, and our current write position. "buf" * initially points to "initbuf", but is dynamically allocated if we need to * grow beyond the initial size. */ char *buf, *ptr, *limit; /* The beginning of the current run, or undefined if we are at the top * level. */ char *runbegin; /* The list of segments we are accumulating. */ upb_pb_encoder_segment *segbuf, *segptr, *seglimit; /* The stack of enclosing submessages. Each entry in the stack points to the * segment where this submessage's length is being accumulated. */ int *stack, *top, *stacklimit; /* Depth of startmsg/endmsg calls. */ int depth; }; /* low-level buffering ********************************************************/ /* Low-level functions for interacting with the output buffer. */ /* TODO(haberman): handle pushback */ static void putbuf(upb_pb_encoder *e, const char *buf, size_t len) { size_t n = upb_bytessink_putbuf(e->output_, e->subc, buf, len, NULL); UPB_ASSERT(n == len); } static upb_pb_encoder_segment *top(upb_pb_encoder *e) { return &e->segbuf[*e->top]; } /* Call to ensure that at least "bytes" bytes are available for writing at * e->ptr. Returns false if the bytes could not be allocated. */ static bool reserve(upb_pb_encoder *e, size_t bytes) { if ((size_t)(e->limit - e->ptr) < bytes) { /* Grow buffer. */ char *new_buf; size_t needed = bytes + (e->ptr - e->buf); size_t old_size = e->limit - e->buf; size_t new_size = old_size; while (new_size < needed) { new_size *= 2; } new_buf = upb_arena_realloc(e->arena, e->buf, old_size, new_size); if (new_buf == NULL) { return false; } e->ptr = new_buf + (e->ptr - e->buf); e->runbegin = new_buf + (e->runbegin - e->buf); e->limit = new_buf + new_size; e->buf = new_buf; } return true; } /* Call when "bytes" bytes have been writte at e->ptr. The caller *must* have * previously called reserve() with at least this many bytes. */ static void encoder_advance(upb_pb_encoder *e, size_t bytes) { UPB_ASSERT((size_t)(e->limit - e->ptr) >= bytes); e->ptr += bytes; } /* Call when all of the bytes for a handler have been written. Flushes the * bytes if possible and necessary, returning false if this failed. */ static bool commit(upb_pb_encoder *e) { if (!e->top) { /* We aren't inside a delimited region. Flush our accumulated bytes to * the output. * * TODO(haberman): in the future we may want to delay flushing for * efficiency reasons. */ putbuf(e, e->buf, e->ptr - e->buf); e->ptr = e->buf; } return true; } /* Writes the given bytes to the buffer, handling reserve/advance. */ static bool encode_bytes(upb_pb_encoder *e, const void *data, size_t len) { if (!reserve(e, len)) { return false; } memcpy(e->ptr, data, len); encoder_advance(e, len); return true; } /* Finish the current run by adding the run totals to the segment and message * length. */ static void accumulate(upb_pb_encoder *e) { size_t run_len; UPB_ASSERT(e->ptr >= e->runbegin); run_len = e->ptr - e->runbegin; e->segptr->seglen += run_len; top(e)->msglen += run_len; e->runbegin = e->ptr; } /* Call to indicate the start of delimited region for which the full length is * not yet known. All data will be buffered until the length is known. * Delimited regions may be nested; their lengths will all be tracked properly. */ static bool start_delim(upb_pb_encoder *e) { if (e->top) { /* We are already buffering, advance to the next segment and push it on the * stack. */ accumulate(e); if (++e->top == e->stacklimit) { /* TODO(haberman): grow stack? */ return false; } if (++e->segptr == e->seglimit) { /* Grow segment buffer. */ size_t old_size = (e->seglimit - e->segbuf) * sizeof(upb_pb_encoder_segment); size_t new_size = old_size * 2; upb_pb_encoder_segment *new_buf = upb_arena_realloc(e->arena, e->segbuf, old_size, new_size); if (new_buf == NULL) { return false; } e->segptr = new_buf + (e->segptr - e->segbuf); e->seglimit = new_buf + (new_size / sizeof(upb_pb_encoder_segment)); e->segbuf = new_buf; } } else { /* We were previously at the top level, start buffering. */ e->segptr = e->segbuf; e->top = e->stack; e->runbegin = e->ptr; } *e->top = e->segptr - e->segbuf; e->segptr->seglen = 0; e->segptr->msglen = 0; return true; } /* Call to indicate the end of a delimited region. We now know the length of * the delimited region. If we are not nested inside any other delimited * regions, we can now emit all of the buffered data we accumulated. */ static bool end_delim(upb_pb_encoder *e) { size_t msglen; accumulate(e); msglen = top(e)->msglen; if (e->top == e->stack) { /* All lengths are now available, emit all buffered data. */ char buf[UPB_PB_VARINT_MAX_LEN]; upb_pb_encoder_segment *s; const char *ptr = e->buf; for (s = e->segbuf; s <= e->segptr; s++) { size_t lenbytes = upb_vencode64(s->msglen, buf); putbuf(e, buf, lenbytes); putbuf(e, ptr, s->seglen); ptr += s->seglen; } e->ptr = e->buf; e->top = NULL; } else { /* Need to keep buffering; propagate length info into enclosing * submessages. */ --e->top; top(e)->msglen += msglen + upb_varint_size(msglen); } return true; } /* tag_t **********************************************************************/ /* A precomputed (pre-encoded) tag and length. */ typedef struct { uint8_t bytes; char tag[7]; } tag_t; /* Allocates a new tag for this field, and sets it in these handlerattr. */ static void new_tag(upb_handlers *h, const upb_fielddef *f, upb_wiretype_t wt, upb_handlerattr *attr) { uint32_t n = upb_fielddef_number(f); tag_t *tag = upb_gmalloc(sizeof(tag_t)); tag->bytes = upb_vencode64((n << 3) | wt, tag->tag); attr->handler_data = tag; upb_handlers_addcleanup(h, tag, upb_gfree); } static bool encode_tag(upb_pb_encoder *e, const tag_t *tag) { return encode_bytes(e, tag->tag, tag->bytes); } /* encoding of wire types *****************************************************/ static bool encode_fixed64(upb_pb_encoder *e, uint64_t val) { /* TODO(haberman): byte-swap for big endian. */ return encode_bytes(e, &val, sizeof(uint64_t)); } static bool encode_fixed32(upb_pb_encoder *e, uint32_t val) { /* TODO(haberman): byte-swap for big endian. */ return encode_bytes(e, &val, sizeof(uint32_t)); } static bool encode_varint(upb_pb_encoder *e, uint64_t val) { if (!reserve(e, UPB_PB_VARINT_MAX_LEN)) { return false; } encoder_advance(e, upb_vencode64(val, e->ptr)); return true; } static uint64_t dbl2uint64(double d) { uint64_t ret; memcpy(&ret, &d, sizeof(uint64_t)); return ret; } static uint32_t flt2uint32(float d) { uint32_t ret; memcpy(&ret, &d, sizeof(uint32_t)); return ret; } /* encoding of proto types ****************************************************/ static bool startmsg(void *c, const void *hd) { upb_pb_encoder *e = c; UPB_UNUSED(hd); if (e->depth++ == 0) { upb_bytessink_start(e->output_, 0, &e->subc); } return true; } static bool endmsg(void *c, const void *hd, upb_status *status) { upb_pb_encoder *e = c; UPB_UNUSED(hd); UPB_UNUSED(status); if (--e->depth == 0) { upb_bytessink_end(e->output_); } return true; } static void *encode_startdelimfield(void *c, const void *hd) { bool ok = encode_tag(c, hd) && commit(c) && start_delim(c); return ok ? c : UPB_BREAK; } static bool encode_unknown(void *c, const void *hd, const char *buf, size_t len) { UPB_UNUSED(hd); return encode_bytes(c, buf, len) && commit(c); } static bool encode_enddelimfield(void *c, const void *hd) { UPB_UNUSED(hd); return end_delim(c); } static void *encode_startgroup(void *c, const void *hd) { return (encode_tag(c, hd) && commit(c)) ? c : UPB_BREAK; } static bool encode_endgroup(void *c, const void *hd) { return encode_tag(c, hd) && commit(c); } static void *encode_startstr(void *c, const void *hd, size_t size_hint) { UPB_UNUSED(size_hint); return encode_startdelimfield(c, hd); } static size_t encode_strbuf(void *c, const void *hd, const char *buf, size_t len, const upb_bufhandle *h) { UPB_UNUSED(hd); UPB_UNUSED(h); return encode_bytes(c, buf, len) ? len : 0; } #define T(type, ctype, convert, encode) \ static bool encode_scalar_##type(void *e, const void *hd, ctype val) { \ return encode_tag(e, hd) && encode(e, (convert)(val)) && commit(e); \ } \ static bool encode_packed_##type(void *e, const void *hd, ctype val) { \ UPB_UNUSED(hd); \ return encode(e, (convert)(val)); \ } T(double, double, dbl2uint64, encode_fixed64) T(float, float, flt2uint32, encode_fixed32) T(int64, int64_t, uint64_t, encode_varint) T(int32, int32_t, int64_t, encode_varint) T(fixed64, uint64_t, uint64_t, encode_fixed64) T(fixed32, uint32_t, uint32_t, encode_fixed32) T(bool, bool, bool, encode_varint) T(uint32, uint32_t, uint32_t, encode_varint) T(uint64, uint64_t, uint64_t, encode_varint) T(enum, int32_t, uint32_t, encode_varint) T(sfixed32, int32_t, uint32_t, encode_fixed32) T(sfixed64, int64_t, uint64_t, encode_fixed64) T(sint32, int32_t, upb_zzenc_32, encode_varint) T(sint64, int64_t, upb_zzenc_64, encode_varint) #undef T /* code to build the handlers *************************************************/ #include static void newhandlers_callback(const void *closure, upb_handlers *h) { const upb_msgdef *m; upb_msg_field_iter i; UPB_UNUSED(closure); upb_handlers_setstartmsg(h, startmsg, NULL); upb_handlers_setendmsg(h, endmsg, NULL); upb_handlers_setunknown(h, encode_unknown, NULL); m = upb_handlers_msgdef(h); for(upb_msg_field_begin(&i, m); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { const upb_fielddef *f = upb_msg_iter_field(&i); bool packed = upb_fielddef_isseq(f) && upb_fielddef_isprimitive(f) && upb_fielddef_packed(f); upb_handlerattr attr = UPB_HANDLERATTR_INIT; upb_wiretype_t wt = packed ? UPB_WIRE_TYPE_DELIMITED : upb_pb_native_wire_types[upb_fielddef_descriptortype(f)]; /* Pre-encode the tag for this field. */ new_tag(h, f, wt, &attr); if (packed) { upb_handlers_setstartseq(h, f, encode_startdelimfield, &attr); upb_handlers_setendseq(h, f, encode_enddelimfield, &attr); } #define T(upper, lower, upbtype) \ case UPB_DESCRIPTOR_TYPE_##upper: \ if (packed) { \ upb_handlers_set##upbtype(h, f, encode_packed_##lower, &attr); \ } else { \ upb_handlers_set##upbtype(h, f, encode_scalar_##lower, &attr); \ } \ break; switch (upb_fielddef_descriptortype(f)) { T(DOUBLE, double, double); T(FLOAT, float, float); T(INT64, int64, int64); T(INT32, int32, int32); T(FIXED64, fixed64, uint64); T(FIXED32, fixed32, uint32); T(BOOL, bool, bool); T(UINT32, uint32, uint32); T(UINT64, uint64, uint64); T(ENUM, enum, int32); T(SFIXED32, sfixed32, int32); T(SFIXED64, sfixed64, int64); T(SINT32, sint32, int32); T(SINT64, sint64, int64); case UPB_DESCRIPTOR_TYPE_STRING: case UPB_DESCRIPTOR_TYPE_BYTES: upb_handlers_setstartstr(h, f, encode_startstr, &attr); upb_handlers_setendstr(h, f, encode_enddelimfield, &attr); upb_handlers_setstring(h, f, encode_strbuf, &attr); break; case UPB_DESCRIPTOR_TYPE_MESSAGE: upb_handlers_setstartsubmsg(h, f, encode_startdelimfield, &attr); upb_handlers_setendsubmsg(h, f, encode_enddelimfield, &attr); break; case UPB_DESCRIPTOR_TYPE_GROUP: { /* Endgroup takes a different tag (wire_type = END_GROUP). */ upb_handlerattr attr2 = UPB_HANDLERATTR_INIT; new_tag(h, f, UPB_WIRE_TYPE_END_GROUP, &attr2); upb_handlers_setstartsubmsg(h, f, encode_startgroup, &attr); upb_handlers_setendsubmsg(h, f, encode_endgroup, &attr2); break; } } #undef T } } void upb_pb_encoder_reset(upb_pb_encoder *e) { e->segptr = NULL; e->top = NULL; e->depth = 0; } /* public API *****************************************************************/ upb_handlercache *upb_pb_encoder_newcache(void) { return upb_handlercache_new(newhandlers_callback, NULL); } upb_pb_encoder *upb_pb_encoder_create(upb_arena *arena, const upb_handlers *h, upb_bytessink output) { const size_t initial_bufsize = 256; const size_t initial_segbufsize = 16; /* TODO(haberman): make this configurable. */ const size_t stack_size = 64; #ifndef NDEBUG const size_t size_before = upb_arena_bytesallocated(arena); #endif upb_pb_encoder *e = upb_arena_malloc(arena, sizeof(upb_pb_encoder)); if (!e) return NULL; e->buf = upb_arena_malloc(arena, initial_bufsize); e->segbuf = upb_arena_malloc(arena, initial_segbufsize * sizeof(*e->segbuf)); e->stack = upb_arena_malloc(arena, stack_size * sizeof(*e->stack)); if (!e->buf || !e->segbuf || !e->stack) { return NULL; } e->limit = e->buf + initial_bufsize; e->seglimit = e->segbuf + initial_segbufsize; e->stacklimit = e->stack + stack_size; upb_pb_encoder_reset(e); upb_sink_reset(&e->input_, h, e); e->arena = arena; e->output_ = output; e->subc = output.closure; e->ptr = e->buf; /* If this fails, increase the value in encoder.h. */ UPB_ASSERT_DEBUGVAR(upb_arena_bytesallocated(arena) - size_before <= UPB_PB_ENCODER_SIZE); return e; } upb_sink upb_pb_encoder_input(upb_pb_encoder *e) { return e->input_; } /* * upb::pb::TextPrinter * * OPT: This is not optimized at all. It uses printf() which parses the format * string every time, and it allocates memory for every put. */ #include #include #include #include #include #include struct upb_textprinter { upb_sink input_; upb_bytessink output_; int indent_depth_; bool single_line_; void *subc; }; #define CHECK(x) if ((x) < 0) goto err; static const char *shortname(const char *longname) { const char *last = strrchr(longname, '.'); return last ? last + 1 : longname; } static int indent(upb_textprinter *p) { int i; if (!p->single_line_) for (i = 0; i < p->indent_depth_; i++) upb_bytessink_putbuf(p->output_, p->subc, " ", 2, NULL); return 0; } static int endfield(upb_textprinter *p) { const char ch = (p->single_line_ ? ' ' : '\n'); upb_bytessink_putbuf(p->output_, p->subc, &ch, 1, NULL); return 0; } static int putescaped(upb_textprinter *p, const char *buf, size_t len, bool preserve_utf8) { /* Based on CEscapeInternal() from Google's protobuf release. */ char dstbuf[4096], *dst = dstbuf, *dstend = dstbuf + sizeof(dstbuf); const char *end = buf + len; /* I think hex is prettier and more useful, but proto2 uses octal; should * investigate whether it can parse hex also. */ const bool use_hex = false; bool last_hex_escape = false; /* true if last output char was \xNN */ for (; buf < end; buf++) { bool is_hex_escape; if (dstend - dst < 4) { upb_bytessink_putbuf(p->output_, p->subc, dstbuf, dst - dstbuf, NULL); dst = dstbuf; } is_hex_escape = false; switch (*buf) { case '\n': *(dst++) = '\\'; *(dst++) = 'n'; break; case '\r': *(dst++) = '\\'; *(dst++) = 'r'; break; case '\t': *(dst++) = '\\'; *(dst++) = 't'; break; case '\"': *(dst++) = '\\'; *(dst++) = '\"'; break; case '\'': *(dst++) = '\\'; *(dst++) = '\''; break; case '\\': *(dst++) = '\\'; *(dst++) = '\\'; break; default: /* Note that if we emit \xNN and the buf character after that is a hex * digit then that digit must be escaped too to prevent it being * interpreted as part of the character code by C. */ if ((!preserve_utf8 || (uint8_t)*buf < 0x80) && (!isprint(*buf) || (last_hex_escape && isxdigit(*buf)))) { sprintf(dst, (use_hex ? "\\x%02x" : "\\%03o"), (uint8_t)*buf); is_hex_escape = use_hex; dst += 4; } else { *(dst++) = *buf; break; } } last_hex_escape = is_hex_escape; } /* Flush remaining data. */ upb_bytessink_putbuf(p->output_, p->subc, dstbuf, dst - dstbuf, NULL); return 0; } bool putf(upb_textprinter *p, const char *fmt, ...) { va_list args; va_list args_copy; char *str; int written; int len; bool ok; va_start(args, fmt); /* Run once to get the length of the string. */ _upb_va_copy(args_copy, args); len = _upb_vsnprintf(NULL, 0, fmt, args_copy); va_end(args_copy); /* + 1 for NULL terminator (vsprintf() requires it even if we don't). */ str = upb_gmalloc(len + 1); if (!str) return false; written = vsprintf(str, fmt, args); va_end(args); UPB_ASSERT(written == len); ok = upb_bytessink_putbuf(p->output_, p->subc, str, len, NULL); upb_gfree(str); return ok; } /* handlers *******************************************************************/ static bool textprinter_startmsg(void *c, const void *hd) { upb_textprinter *p = c; UPB_UNUSED(hd); if (p->indent_depth_ == 0) { upb_bytessink_start(p->output_, 0, &p->subc); } return true; } static bool textprinter_endmsg(void *c, const void *hd, upb_status *s) { upb_textprinter *p = c; UPB_UNUSED(hd); UPB_UNUSED(s); if (p->indent_depth_ == 0) { upb_bytessink_end(p->output_); } return true; } #define TYPE(name, ctype, fmt) \ static bool textprinter_put ## name(void *closure, const void *handler_data, \ ctype val) { \ upb_textprinter *p = closure; \ const upb_fielddef *f = handler_data; \ CHECK(indent(p)); \ putf(p, "%s: " fmt, upb_fielddef_name(f), val); \ CHECK(endfield(p)); \ return true; \ err: \ return false; \ } static bool textprinter_putbool(void *closure, const void *handler_data, bool val) { upb_textprinter *p = closure; const upb_fielddef *f = handler_data; CHECK(indent(p)); putf(p, "%s: %s", upb_fielddef_name(f), val ? "true" : "false"); CHECK(endfield(p)); return true; err: return false; } #define STRINGIFY_HELPER(x) #x #define STRINGIFY_MACROVAL(x) STRINGIFY_HELPER(x) TYPE(int32, int32_t, "%" PRId32) TYPE(int64, int64_t, "%" PRId64) TYPE(uint32, uint32_t, "%" PRIu32) TYPE(uint64, uint64_t, "%" PRIu64) TYPE(float, float, "%." STRINGIFY_MACROVAL(FLT_DIG) "g") TYPE(double, double, "%." STRINGIFY_MACROVAL(DBL_DIG) "g") #undef TYPE /* Output a symbolic value from the enum if found, else just print as int32. */ static bool textprinter_putenum(void *closure, const void *handler_data, int32_t val) { upb_textprinter *p = closure; const upb_fielddef *f = handler_data; const upb_enumdef *enum_def = upb_fielddef_enumsubdef(f); const char *label = upb_enumdef_iton(enum_def, val); if (label) { indent(p); putf(p, "%s: %s", upb_fielddef_name(f), label); endfield(p); } else { if (!textprinter_putint32(closure, handler_data, val)) return false; } return true; } static void *textprinter_startstr(void *closure, const void *handler_data, size_t size_hint) { upb_textprinter *p = closure; const upb_fielddef *f = handler_data; UPB_UNUSED(size_hint); indent(p); putf(p, "%s: \"", upb_fielddef_name(f)); return p; } static bool textprinter_endstr(void *closure, const void *handler_data) { upb_textprinter *p = closure; UPB_UNUSED(handler_data); putf(p, "\""); endfield(p); return true; } static size_t textprinter_putstr(void *closure, const void *hd, const char *buf, size_t len, const upb_bufhandle *handle) { upb_textprinter *p = closure; const upb_fielddef *f = hd; UPB_UNUSED(handle); CHECK(putescaped(p, buf, len, upb_fielddef_type(f) == UPB_TYPE_STRING)); return len; err: return 0; } static void *textprinter_startsubmsg(void *closure, const void *handler_data) { upb_textprinter *p = closure; const char *name = handler_data; CHECK(indent(p)); putf(p, "%s {%c", name, p->single_line_ ? ' ' : '\n'); p->indent_depth_++; return p; err: return UPB_BREAK; } static bool textprinter_endsubmsg(void *closure, const void *handler_data) { upb_textprinter *p = closure; UPB_UNUSED(handler_data); p->indent_depth_--; CHECK(indent(p)); upb_bytessink_putbuf(p->output_, p->subc, "}", 1, NULL); CHECK(endfield(p)); return true; err: return false; } static void onmreg(const void *c, upb_handlers *h) { const upb_msgdef *m = upb_handlers_msgdef(h); upb_msg_field_iter i; UPB_UNUSED(c); upb_handlers_setstartmsg(h, textprinter_startmsg, NULL); upb_handlers_setendmsg(h, textprinter_endmsg, NULL); for(upb_msg_field_begin(&i, m); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { upb_fielddef *f = upb_msg_iter_field(&i); upb_handlerattr attr = UPB_HANDLERATTR_INIT; attr.handler_data = f; switch (upb_fielddef_type(f)) { case UPB_TYPE_INT32: upb_handlers_setint32(h, f, textprinter_putint32, &attr); break; case UPB_TYPE_INT64: upb_handlers_setint64(h, f, textprinter_putint64, &attr); break; case UPB_TYPE_UINT32: upb_handlers_setuint32(h, f, textprinter_putuint32, &attr); break; case UPB_TYPE_UINT64: upb_handlers_setuint64(h, f, textprinter_putuint64, &attr); break; case UPB_TYPE_FLOAT: upb_handlers_setfloat(h, f, textprinter_putfloat, &attr); break; case UPB_TYPE_DOUBLE: upb_handlers_setdouble(h, f, textprinter_putdouble, &attr); break; case UPB_TYPE_BOOL: upb_handlers_setbool(h, f, textprinter_putbool, &attr); break; case UPB_TYPE_STRING: case UPB_TYPE_BYTES: upb_handlers_setstartstr(h, f, textprinter_startstr, &attr); upb_handlers_setstring(h, f, textprinter_putstr, &attr); upb_handlers_setendstr(h, f, textprinter_endstr, &attr); break; case UPB_TYPE_MESSAGE: { const char *name = upb_fielddef_descriptortype(f) == UPB_DESCRIPTOR_TYPE_GROUP ? shortname(upb_msgdef_fullname(upb_fielddef_msgsubdef(f))) : upb_fielddef_name(f); attr.handler_data = name; upb_handlers_setstartsubmsg(h, f, textprinter_startsubmsg, &attr); upb_handlers_setendsubmsg(h, f, textprinter_endsubmsg, &attr); break; } case UPB_TYPE_ENUM: upb_handlers_setint32(h, f, textprinter_putenum, &attr); break; } } } static void textprinter_reset(upb_textprinter *p, bool single_line) { p->single_line_ = single_line; p->indent_depth_ = 0; } /* Public API *****************************************************************/ upb_textprinter *upb_textprinter_create(upb_arena *arena, const upb_handlers *h, upb_bytessink output) { upb_textprinter *p = upb_arena_malloc(arena, sizeof(upb_textprinter)); if (!p) return NULL; p->output_ = output; upb_sink_reset(&p->input_, h, p); textprinter_reset(p, false); return p; } upb_handlercache *upb_textprinter_newcache(void) { return upb_handlercache_new(&onmreg, NULL); } upb_sink upb_textprinter_input(upb_textprinter *p) { return p->input_; } void upb_textprinter_setsingleline(upb_textprinter *p, bool single_line) { p->single_line_ = single_line; } /* Index is descriptor type. */ const uint8_t upb_pb_native_wire_types[] = { UPB_WIRE_TYPE_END_GROUP, /* ENDGROUP */ UPB_WIRE_TYPE_64BIT, /* DOUBLE */ UPB_WIRE_TYPE_32BIT, /* FLOAT */ UPB_WIRE_TYPE_VARINT, /* INT64 */ UPB_WIRE_TYPE_VARINT, /* UINT64 */ UPB_WIRE_TYPE_VARINT, /* INT32 */ UPB_WIRE_TYPE_64BIT, /* FIXED64 */ UPB_WIRE_TYPE_32BIT, /* FIXED32 */ UPB_WIRE_TYPE_VARINT, /* BOOL */ UPB_WIRE_TYPE_DELIMITED, /* STRING */ UPB_WIRE_TYPE_START_GROUP, /* GROUP */ UPB_WIRE_TYPE_DELIMITED, /* MESSAGE */ UPB_WIRE_TYPE_DELIMITED, /* BYTES */ UPB_WIRE_TYPE_VARINT, /* UINT32 */ UPB_WIRE_TYPE_VARINT, /* ENUM */ UPB_WIRE_TYPE_32BIT, /* SFIXED32 */ UPB_WIRE_TYPE_64BIT, /* SFIXED64 */ UPB_WIRE_TYPE_VARINT, /* SINT32 */ UPB_WIRE_TYPE_VARINT, /* SINT64 */ }; /* A basic branch-based decoder, uses 32-bit values to get good performance * on 32-bit architectures (but performs well on 64-bits also). * This scheme comes from the original Google Protobuf implementation * (proto2). */ upb_decoderet upb_vdecode_max8_branch32(upb_decoderet r) { upb_decoderet err = {NULL, 0}; const char *p = r.p; uint32_t low = (uint32_t)r.val; uint32_t high = 0; uint32_t b; b = *(p++); low |= (b & 0x7fU) << 14; if (!(b & 0x80)) goto done; b = *(p++); low |= (b & 0x7fU) << 21; if (!(b & 0x80)) goto done; b = *(p++); low |= (b & 0x7fU) << 28; high = (b & 0x7fU) >> 4; if (!(b & 0x80)) goto done; b = *(p++); high |= (b & 0x7fU) << 3; if (!(b & 0x80)) goto done; b = *(p++); high |= (b & 0x7fU) << 10; if (!(b & 0x80)) goto done; b = *(p++); high |= (b & 0x7fU) << 17; if (!(b & 0x80)) goto done; b = *(p++); high |= (b & 0x7fU) << 24; if (!(b & 0x80)) goto done; b = *(p++); high |= (b & 0x7fU) << 31; if (!(b & 0x80)) goto done; return err; done: r.val = ((uint64_t)high << 32) | low; r.p = p; return r; } /* Like the previous, but uses 64-bit values. */ upb_decoderet upb_vdecode_max8_branch64(upb_decoderet r) { const char *p = r.p; uint64_t val = r.val; uint64_t b; upb_decoderet err = {NULL, 0}; b = *(p++); val |= (b & 0x7fU) << 14; if (!(b & 0x80)) goto done; b = *(p++); val |= (b & 0x7fU) << 21; if (!(b & 0x80)) goto done; b = *(p++); val |= (b & 0x7fU) << 28; if (!(b & 0x80)) goto done; b = *(p++); val |= (b & 0x7fU) << 35; if (!(b & 0x80)) goto done; b = *(p++); val |= (b & 0x7fU) << 42; if (!(b & 0x80)) goto done; b = *(p++); val |= (b & 0x7fU) << 49; if (!(b & 0x80)) goto done; b = *(p++); val |= (b & 0x7fU) << 56; if (!(b & 0x80)) goto done; b = *(p++); val |= (b & 0x7fU) << 63; if (!(b & 0x80)) goto done; return err; done: r.val = val; r.p = p; return r; } #line 1 "upb/json/parser.rl" /* ** upb::json::Parser (upb_json_parser) ** ** A parser that uses the Ragel State Machine Compiler to generate ** the finite automata. ** ** Ragel only natively handles regular languages, but we can manually ** program it a bit to handle context-free languages like JSON, by using ** the "fcall" and "fret" constructs. ** ** This parser can handle the basics, but needs several things to be fleshed ** out: ** ** - handling of unicode escape sequences (including high surrogate pairs). ** - properly check and report errors for unknown fields, stack overflow, ** improper array nesting (or lack of nesting). ** - handling of base64 sequences with padding characters. ** - handling of push-back (non-success returns from sink functions). ** - handling of keys/escape-sequences/etc that span input buffers. */ #include #include #include #include #include #include #include #include #include #define UPB_JSON_MAX_DEPTH 64 /* Type of value message */ enum { VALUE_NULLVALUE = 0, VALUE_NUMBERVALUE = 1, VALUE_STRINGVALUE = 2, VALUE_BOOLVALUE = 3, VALUE_STRUCTVALUE = 4, VALUE_LISTVALUE = 5 }; /* Forward declare */ static bool is_top_level(upb_json_parser *p); static bool is_wellknown_msg(upb_json_parser *p, upb_wellknowntype_t type); static bool is_wellknown_field(upb_json_parser *p, upb_wellknowntype_t type); static bool is_number_wrapper_object(upb_json_parser *p); static bool does_number_wrapper_start(upb_json_parser *p); static bool does_number_wrapper_end(upb_json_parser *p); static bool is_string_wrapper_object(upb_json_parser *p); static bool does_string_wrapper_start(upb_json_parser *p); static bool does_string_wrapper_end(upb_json_parser *p); static bool does_fieldmask_start(upb_json_parser *p); static bool does_fieldmask_end(upb_json_parser *p); static void start_fieldmask_object(upb_json_parser *p); static void end_fieldmask_object(upb_json_parser *p); static void start_wrapper_object(upb_json_parser *p); static void end_wrapper_object(upb_json_parser *p); static void start_value_object(upb_json_parser *p, int value_type); static void end_value_object(upb_json_parser *p); static void start_listvalue_object(upb_json_parser *p); static void end_listvalue_object(upb_json_parser *p); static void start_structvalue_object(upb_json_parser *p); static void end_structvalue_object(upb_json_parser *p); static void start_object(upb_json_parser *p); static void end_object(upb_json_parser *p); static void start_any_object(upb_json_parser *p, const char *ptr); static bool end_any_object(upb_json_parser *p, const char *ptr); static bool start_subobject(upb_json_parser *p); static void end_subobject(upb_json_parser *p); static void start_member(upb_json_parser *p); static void end_member(upb_json_parser *p); static bool end_membername(upb_json_parser *p); static void start_any_member(upb_json_parser *p, const char *ptr); static void end_any_member(upb_json_parser *p, const char *ptr); static bool end_any_membername(upb_json_parser *p); size_t parse(void *closure, const void *hd, const char *buf, size_t size, const upb_bufhandle *handle); static bool end(void *closure, const void *hd); static const char eof_ch = 'e'; /* stringsink */ typedef struct { upb_byteshandler handler; upb_bytessink sink; char *ptr; size_t len, size; } upb_stringsink; static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) { upb_stringsink *sink = _sink; sink->len = 0; UPB_UNUSED(hd); UPB_UNUSED(size_hint); return sink; } static size_t stringsink_string(void *_sink, const void *hd, const char *ptr, size_t len, const upb_bufhandle *handle) { upb_stringsink *sink = _sink; size_t new_size = sink->size; UPB_UNUSED(hd); UPB_UNUSED(handle); while (sink->len + len > new_size) { new_size *= 2; } if (new_size != sink->size) { sink->ptr = realloc(sink->ptr, new_size); sink->size = new_size; } memcpy(sink->ptr + sink->len, ptr, len); sink->len += len; return len; } void upb_stringsink_init(upb_stringsink *sink) { upb_byteshandler_init(&sink->handler); upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL); upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL); upb_bytessink_reset(&sink->sink, &sink->handler, sink); sink->size = 32; sink->ptr = malloc(sink->size); sink->len = 0; } void upb_stringsink_uninit(upb_stringsink *sink) { free(sink->ptr); } typedef struct { /* For encoding Any value field in binary format. */ upb_handlercache *encoder_handlercache; upb_stringsink stringsink; /* For decoding Any value field in json format. */ upb_json_codecache *parser_codecache; upb_sink sink; upb_json_parser *parser; /* Mark the range of uninterpreted values in json input before type url. */ const char *before_type_url_start; const char *before_type_url_end; /* Mark the range of uninterpreted values in json input after type url. */ const char *after_type_url_start; } upb_jsonparser_any_frame; typedef struct { upb_sink sink; /* The current message in which we're parsing, and the field whose value we're * expecting next. */ const upb_msgdef *m; const upb_fielddef *f; /* The table mapping json name to fielddef for this message. */ const upb_strtable *name_table; /* We are in a repeated-field context. We need this flag to decide whether to * handle the array as a normal repeated field or a * google.protobuf.ListValue/google.protobuf.Value. */ bool is_repeated; /* We are in a repeated-field context, ready to emit mapentries as * submessages. This flag alters the start-of-object (open-brace) behavior to * begin a sequence of mapentry messages rather than a single submessage. */ bool is_map; /* We are in a map-entry message context. This flag is set when parsing the * value field of a single map entry and indicates to all value-field parsers * (subobjects, strings, numbers, and bools) that the map-entry submessage * should end as soon as the value is parsed. */ bool is_mapentry; /* If |is_map| or |is_mapentry| is true, |mapfield| refers to the parent * message's map field that we're currently parsing. This differs from |f| * because |f| is the field in the *current* message (i.e., the map-entry * message itself), not the parent's field that leads to this map. */ const upb_fielddef *mapfield; /* We are in an Any message context. This flag is set when parsing the Any * message and indicates to all field parsers (subobjects, strings, numbers, * and bools) that the parsed field should be serialized as binary data or * cached (type url not found yet). */ bool is_any; /* The type of packed message in Any. */ upb_jsonparser_any_frame *any_frame; /* True if the field to be parsed is unknown. */ bool is_unknown_field; } upb_jsonparser_frame; static void init_frame(upb_jsonparser_frame* frame) { frame->m = NULL; frame->f = NULL; frame->name_table = NULL; frame->is_repeated = false; frame->is_map = false; frame->is_mapentry = false; frame->mapfield = NULL; frame->is_any = false; frame->any_frame = NULL; frame->is_unknown_field = false; } struct upb_json_parser { upb_arena *arena; const upb_json_parsermethod *method; upb_bytessink input_; /* Stack to track the JSON scopes we are in. */ upb_jsonparser_frame stack[UPB_JSON_MAX_DEPTH]; upb_jsonparser_frame *top; upb_jsonparser_frame *limit; upb_status *status; /* Ragel's internal parsing stack for the parsing state machine. */ int current_state; int parser_stack[UPB_JSON_MAX_DEPTH]; int parser_top; /* The handle for the current buffer. */ const upb_bufhandle *handle; /* Accumulate buffer. See details in parser.rl. */ const char *accumulated; size_t accumulated_len; char *accumulate_buf; size_t accumulate_buf_size; /* Multi-part text data. See details in parser.rl. */ int multipart_state; upb_selector_t string_selector; /* Input capture. See details in parser.rl. */ const char *capture; /* Intermediate result of parsing a unicode escape sequence. */ uint32_t digit; /* For resolve type url in Any. */ const upb_symtab *symtab; /* Whether to proceed if unknown field is met. */ bool ignore_json_unknown; /* Cache for parsing timestamp due to base and zone are handled in different * handlers. */ struct tm tm; }; static upb_jsonparser_frame* start_jsonparser_frame(upb_json_parser *p) { upb_jsonparser_frame *inner; inner = p->top + 1; init_frame(inner); return inner; } struct upb_json_codecache { upb_arena *arena; upb_inttable methods; /* upb_msgdef* -> upb_json_parsermethod* */ }; struct upb_json_parsermethod { const upb_json_codecache *cache; upb_byteshandler input_handler_; /* Maps json_name -> fielddef */ upb_strtable name_table; }; #define PARSER_CHECK_RETURN(x) if (!(x)) return false static upb_jsonparser_any_frame *json_parser_any_frame_new( upb_json_parser *p) { upb_jsonparser_any_frame *frame; frame = upb_arena_malloc(p->arena, sizeof(upb_jsonparser_any_frame)); frame->encoder_handlercache = upb_pb_encoder_newcache(); frame->parser_codecache = upb_json_codecache_new(); frame->parser = NULL; frame->before_type_url_start = NULL; frame->before_type_url_end = NULL; frame->after_type_url_start = NULL; upb_stringsink_init(&frame->stringsink); return frame; } static void json_parser_any_frame_set_payload_type( upb_json_parser *p, upb_jsonparser_any_frame *frame, const upb_msgdef *payload_type) { const upb_handlers *h; const upb_json_parsermethod *parser_method; upb_pb_encoder *encoder; /* Initialize encoder. */ h = upb_handlercache_get(frame->encoder_handlercache, payload_type); encoder = upb_pb_encoder_create(p->arena, h, frame->stringsink.sink); /* Initialize parser. */ parser_method = upb_json_codecache_get(frame->parser_codecache, payload_type); upb_sink_reset(&frame->sink, h, encoder); frame->parser = upb_json_parser_create(p->arena, parser_method, p->symtab, frame->sink, p->status, p->ignore_json_unknown); } static void json_parser_any_frame_free(upb_jsonparser_any_frame *frame) { upb_handlercache_free(frame->encoder_handlercache); upb_json_codecache_free(frame->parser_codecache); upb_stringsink_uninit(&frame->stringsink); } static bool json_parser_any_frame_has_type_url( upb_jsonparser_any_frame *frame) { return frame->parser != NULL; } static bool json_parser_any_frame_has_value_before_type_url( upb_jsonparser_any_frame *frame) { return frame->before_type_url_start != frame->before_type_url_end; } static bool json_parser_any_frame_has_value_after_type_url( upb_jsonparser_any_frame *frame) { return frame->after_type_url_start != NULL; } static bool json_parser_any_frame_has_value( upb_jsonparser_any_frame *frame) { return json_parser_any_frame_has_value_before_type_url(frame) || json_parser_any_frame_has_value_after_type_url(frame); } static void json_parser_any_frame_set_before_type_url_end( upb_jsonparser_any_frame *frame, const char *ptr) { if (frame->parser == NULL) { frame->before_type_url_end = ptr; } } static void json_parser_any_frame_set_after_type_url_start_once( upb_jsonparser_any_frame *frame, const char *ptr) { if (json_parser_any_frame_has_type_url(frame) && frame->after_type_url_start == NULL) { frame->after_type_url_start = ptr; } } /* Used to signal that a capture has been suspended. */ static char suspend_capture; static upb_selector_t getsel_for_handlertype(upb_json_parser *p, upb_handlertype_t type) { upb_selector_t sel; bool ok = upb_handlers_getselector(p->top->f, type, &sel); UPB_ASSERT(ok); return sel; } static upb_selector_t parser_getsel(upb_json_parser *p) { return getsel_for_handlertype( p, upb_handlers_getprimitivehandlertype(p->top->f)); } static bool check_stack(upb_json_parser *p) { if ((p->top + 1) == p->limit) { upb_status_seterrmsg(p->status, "Nesting too deep"); return false; } return true; } static void set_name_table(upb_json_parser *p, upb_jsonparser_frame *frame) { upb_value v; const upb_json_codecache *cache = p->method->cache; bool ok; const upb_json_parsermethod *method; ok = upb_inttable_lookupptr(&cache->methods, frame->m, &v); UPB_ASSERT(ok); method = upb_value_getconstptr(v); frame->name_table = &method->name_table; } /* There are GCC/Clang built-ins for overflow checking which we could start * using if there was any performance benefit to it. */ static bool checked_add(size_t a, size_t b, size_t *c) { if (SIZE_MAX - a < b) return false; *c = a + b; return true; } static size_t saturating_multiply(size_t a, size_t b) { /* size_t is unsigned, so this is defined behavior even on overflow. */ size_t ret = a * b; if (b != 0 && ret / b != a) { ret = SIZE_MAX; } return ret; } /* Base64 decoding ************************************************************/ /* TODO(haberman): make this streaming. */ static const signed char b64table[] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62/*+*/, -1, -1, -1, 63/*/ */, 52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/, 60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1, -1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/, 07/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/, 15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/, 23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, -1, -1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/, 33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/, 41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/, 49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; /* Returns the table value sign-extended to 32 bits. Knowing that the upper * bits will be 1 for unrecognized characters makes it easier to check for * this error condition later (see below). */ int32_t b64lookup(unsigned char ch) { return b64table[ch]; } /* Returns true if the given character is not a valid base64 character or * padding. */ bool nonbase64(unsigned char ch) { return b64lookup(ch) == -1 && ch != '='; } static bool base64_push(upb_json_parser *p, upb_selector_t sel, const char *ptr, size_t len) { const char *limit = ptr + len; for (; ptr < limit; ptr += 4) { uint32_t val; char output[3]; if (limit - ptr < 4) { upb_status_seterrf(p->status, "Base64 input for bytes field not a multiple of 4: %s", upb_fielddef_name(p->top->f)); return false; } val = b64lookup(ptr[0]) << 18 | b64lookup(ptr[1]) << 12 | b64lookup(ptr[2]) << 6 | b64lookup(ptr[3]); /* Test the upper bit; returns true if any of the characters returned -1. */ if (val & 0x80000000) { goto otherchar; } output[0] = val >> 16; output[1] = (val >> 8) & 0xff; output[2] = val & 0xff; upb_sink_putstring(p->top->sink, sel, output, 3, NULL); } return true; otherchar: if (nonbase64(ptr[0]) || nonbase64(ptr[1]) || nonbase64(ptr[2]) || nonbase64(ptr[3]) ) { upb_status_seterrf(p->status, "Non-base64 characters in bytes field: %s", upb_fielddef_name(p->top->f)); return false; } if (ptr[2] == '=') { uint32_t val; char output; /* Last group contains only two input bytes, one output byte. */ if (ptr[0] == '=' || ptr[1] == '=' || ptr[3] != '=') { goto badpadding; } val = b64lookup(ptr[0]) << 18 | b64lookup(ptr[1]) << 12; UPB_ASSERT(!(val & 0x80000000)); output = val >> 16; upb_sink_putstring(p->top->sink, sel, &output, 1, NULL); return true; } else { uint32_t val; char output[2]; /* Last group contains only three input bytes, two output bytes. */ if (ptr[0] == '=' || ptr[1] == '=' || ptr[2] == '=') { goto badpadding; } val = b64lookup(ptr[0]) << 18 | b64lookup(ptr[1]) << 12 | b64lookup(ptr[2]) << 6; output[0] = val >> 16; output[1] = (val >> 8) & 0xff; upb_sink_putstring(p->top->sink, sel, output, 2, NULL); return true; } badpadding: upb_status_seterrf(p->status, "Incorrect base64 padding for field: %s (%.*s)", upb_fielddef_name(p->top->f), 4, ptr); return false; } /* Accumulate buffer **********************************************************/ /* Functionality for accumulating a buffer. * * Some parts of the parser need an entire value as a contiguous string. For * example, to look up a member name in a hash table, or to turn a string into * a number, the relevant library routines need the input string to be in * contiguous memory, even if the value spanned two or more buffers in the * input. These routines handle that. * * In the common case we can just point to the input buffer to get this * contiguous string and avoid any actual copy. So we optimistically begin * this way. But there are a few cases where we must instead copy into a * separate buffer: * * 1. The string was not contiguous in the input (it spanned buffers). * * 2. The string included escape sequences that need to be interpreted to get * the true value in a contiguous buffer. */ static void assert_accumulate_empty(upb_json_parser *p) { UPB_ASSERT(p->accumulated == NULL); UPB_ASSERT(p->accumulated_len == 0); } static void accumulate_clear(upb_json_parser *p) { p->accumulated = NULL; p->accumulated_len = 0; } /* Used internally by accumulate_append(). */ static bool accumulate_realloc(upb_json_parser *p, size_t need) { void *mem; size_t old_size = p->accumulate_buf_size; size_t new_size = UPB_MAX(old_size, 128); while (new_size < need) { new_size = saturating_multiply(new_size, 2); } mem = upb_arena_realloc(p->arena, p->accumulate_buf, old_size, new_size); if (!mem) { upb_status_seterrmsg(p->status, "Out of memory allocating buffer."); return false; } p->accumulate_buf = mem; p->accumulate_buf_size = new_size; return true; } /* Logically appends the given data to the append buffer. * If "can_alias" is true, we will try to avoid actually copying, but the buffer * must be valid until the next accumulate_append() call (if any). */ static bool accumulate_append(upb_json_parser *p, const char *buf, size_t len, bool can_alias) { size_t need; if (!p->accumulated && can_alias) { p->accumulated = buf; p->accumulated_len = len; return true; } if (!checked_add(p->accumulated_len, len, &need)) { upb_status_seterrmsg(p->status, "Integer overflow."); return false; } if (need > p->accumulate_buf_size && !accumulate_realloc(p, need)) { return false; } if (p->accumulated != p->accumulate_buf) { memcpy(p->accumulate_buf, p->accumulated, p->accumulated_len); p->accumulated = p->accumulate_buf; } memcpy(p->accumulate_buf + p->accumulated_len, buf, len); p->accumulated_len += len; return true; } /* Returns a pointer to the data accumulated since the last accumulate_clear() * call, and writes the length to *len. This with point either to the input * buffer or a temporary accumulate buffer. */ static const char *accumulate_getptr(upb_json_parser *p, size_t *len) { UPB_ASSERT(p->accumulated); *len = p->accumulated_len; return p->accumulated; } /* Mult-part text data ********************************************************/ /* When we have text data in the input, it can often come in multiple segments. * For example, there may be some raw string data followed by an escape * sequence. The two segments are processed with different logic. Also buffer * seams in the input can cause multiple segments. * * As we see segments, there are two main cases for how we want to process them: * * 1. we want to push the captured input directly to string handlers. * * 2. we need to accumulate all the parts into a contiguous buffer for further * processing (field name lookup, string->number conversion, etc). */ /* This is the set of states for p->multipart_state. */ enum { /* We are not currently processing multipart data. */ MULTIPART_INACTIVE = 0, /* We are processing multipart data by accumulating it into a contiguous * buffer. */ MULTIPART_ACCUMULATE = 1, /* We are processing multipart data by pushing each part directly to the * current string handlers. */ MULTIPART_PUSHEAGERLY = 2 }; /* Start a multi-part text value where we accumulate the data for processing at * the end. */ static void multipart_startaccum(upb_json_parser *p) { assert_accumulate_empty(p); UPB_ASSERT(p->multipart_state == MULTIPART_INACTIVE); p->multipart_state = MULTIPART_ACCUMULATE; } /* Start a multi-part text value where we immediately push text data to a string * value with the given selector. */ static void multipart_start(upb_json_parser *p, upb_selector_t sel) { assert_accumulate_empty(p); UPB_ASSERT(p->multipart_state == MULTIPART_INACTIVE); p->multipart_state = MULTIPART_PUSHEAGERLY; p->string_selector = sel; } static bool multipart_text(upb_json_parser *p, const char *buf, size_t len, bool can_alias) { switch (p->multipart_state) { case MULTIPART_INACTIVE: upb_status_seterrmsg( p->status, "Internal error: unexpected state MULTIPART_INACTIVE"); return false; case MULTIPART_ACCUMULATE: if (!accumulate_append(p, buf, len, can_alias)) { return false; } break; case MULTIPART_PUSHEAGERLY: { const upb_bufhandle *handle = can_alias ? p->handle : NULL; upb_sink_putstring(p->top->sink, p->string_selector, buf, len, handle); break; } } return true; } /* Note: this invalidates the accumulate buffer! Call only after reading its * contents. */ static void multipart_end(upb_json_parser *p) { UPB_ASSERT(p->multipart_state != MULTIPART_INACTIVE); p->multipart_state = MULTIPART_INACTIVE; accumulate_clear(p); } /* Input capture **************************************************************/ /* Functionality for capturing a region of the input as text. Gracefully * handles the case where a buffer seam occurs in the middle of the captured * region. */ static void capture_begin(upb_json_parser *p, const char *ptr) { UPB_ASSERT(p->multipart_state != MULTIPART_INACTIVE); UPB_ASSERT(p->capture == NULL); p->capture = ptr; } static bool capture_end(upb_json_parser *p, const char *ptr) { UPB_ASSERT(p->capture); if (multipart_text(p, p->capture, ptr - p->capture, true)) { p->capture = NULL; return true; } else { return false; } } /* This is called at the end of each input buffer (ie. when we have hit a * buffer seam). If we are in the middle of capturing the input, this * processes the unprocessed capture region. */ static void capture_suspend(upb_json_parser *p, const char **ptr) { if (!p->capture) return; if (multipart_text(p, p->capture, *ptr - p->capture, false)) { /* We use this as a signal that we were in the middle of capturing, and * that capturing should resume at the beginning of the next buffer. * * We can't use *ptr here, because we have no guarantee that this pointer * will be valid when we resume (if the underlying memory is freed, then * using the pointer at all, even to compare to NULL, is likely undefined * behavior). */ p->capture = &suspend_capture; } else { /* Need to back up the pointer to the beginning of the capture, since * we were not able to actually preserve it. */ *ptr = p->capture; } } static void capture_resume(upb_json_parser *p, const char *ptr) { if (p->capture) { UPB_ASSERT(p->capture == &suspend_capture); p->capture = ptr; } } /* Callbacks from the parser **************************************************/ /* These are the functions called directly from the parser itself. * We define these in the same order as their declarations in the parser. */ static char escape_char(char in) { switch (in) { case 'r': return '\r'; case 't': return '\t'; case 'n': return '\n'; case 'f': return '\f'; case 'b': return '\b'; case '/': return '/'; case '"': return '"'; case '\\': return '\\'; default: UPB_ASSERT(0); return 'x'; } } static bool escape(upb_json_parser *p, const char *ptr) { char ch = escape_char(*ptr); return multipart_text(p, &ch, 1, false); } static void start_hex(upb_json_parser *p) { p->digit = 0; } static void hexdigit(upb_json_parser *p, const char *ptr) { char ch = *ptr; p->digit <<= 4; if (ch >= '0' && ch <= '9') { p->digit += (ch - '0'); } else if (ch >= 'a' && ch <= 'f') { p->digit += ((ch - 'a') + 10); } else { UPB_ASSERT(ch >= 'A' && ch <= 'F'); p->digit += ((ch - 'A') + 10); } } static bool end_hex(upb_json_parser *p) { uint32_t codepoint = p->digit; /* emit the codepoint as UTF-8. */ char utf8[3]; /* support \u0000 -- \uFFFF -- need only three bytes. */ int length = 0; if (codepoint <= 0x7F) { utf8[0] = codepoint; length = 1; } else if (codepoint <= 0x07FF) { utf8[1] = (codepoint & 0x3F) | 0x80; codepoint >>= 6; utf8[0] = (codepoint & 0x1F) | 0xC0; length = 2; } else /* codepoint <= 0xFFFF */ { utf8[2] = (codepoint & 0x3F) | 0x80; codepoint >>= 6; utf8[1] = (codepoint & 0x3F) | 0x80; codepoint >>= 6; utf8[0] = (codepoint & 0x0F) | 0xE0; length = 3; } /* TODO(haberman): Handle high surrogates: if codepoint is a high surrogate * we have to wait for the next escape to get the full code point). */ return multipart_text(p, utf8, length, false); } static void start_text(upb_json_parser *p, const char *ptr) { capture_begin(p, ptr); } static bool end_text(upb_json_parser *p, const char *ptr) { return capture_end(p, ptr); } static bool start_number(upb_json_parser *p, const char *ptr) { if (is_top_level(p)) { if (is_number_wrapper_object(p)) { start_wrapper_object(p); } else if (is_wellknown_msg(p, UPB_WELLKNOWN_VALUE)) { start_value_object(p, VALUE_NUMBERVALUE); } else { return false; } } else if (does_number_wrapper_start(p)) { if (!start_subobject(p)) { return false; } start_wrapper_object(p); } else if (is_wellknown_field(p, UPB_WELLKNOWN_VALUE)) { if (!start_subobject(p)) { return false; } start_value_object(p, VALUE_NUMBERVALUE); } multipart_startaccum(p); capture_begin(p, ptr); return true; } static bool parse_number(upb_json_parser *p, bool is_quoted); static bool end_number_nontop(upb_json_parser *p, const char *ptr) { if (!capture_end(p, ptr)) { return false; } if (p->top->f == NULL) { multipart_end(p); return true; } return parse_number(p, false); } static bool end_number(upb_json_parser *p, const char *ptr) { if (!end_number_nontop(p, ptr)) { return false; } if (does_number_wrapper_end(p)) { end_wrapper_object(p); if (!is_top_level(p)) { end_subobject(p); } return true; } if (is_wellknown_msg(p, UPB_WELLKNOWN_VALUE)) { end_value_object(p); if (!is_top_level(p)) { end_subobject(p); } return true; } return true; } /* |buf| is NULL-terminated. |buf| itself will never include quotes; * |is_quoted| tells us whether this text originally appeared inside quotes. */ static bool parse_number_from_buffer(upb_json_parser *p, const char *buf, bool is_quoted) { size_t len = strlen(buf); const char *bufend = buf + len; char *end; upb_fieldtype_t type = upb_fielddef_type(p->top->f); double val; double dummy; double inf = UPB_INFINITY; errno = 0; if (len == 0 || buf[0] == ' ') { return false; } /* For integer types, first try parsing with integer-specific routines. * If these succeed, they will be more accurate for int64/uint64 than * strtod(). */ switch (type) { case UPB_TYPE_ENUM: case UPB_TYPE_INT32: { long val = strtol(buf, &end, 0); if (errno == ERANGE || end != bufend) { break; } else if (val > INT32_MAX || val < INT32_MIN) { return false; } else { upb_sink_putint32(p->top->sink, parser_getsel(p), val); return true; } } case UPB_TYPE_UINT32: { unsigned long val = strtoul(buf, &end, 0); if (end != bufend) { break; } else if (val > UINT32_MAX || errno == ERANGE) { return false; } else { upb_sink_putuint32(p->top->sink, parser_getsel(p), val); return true; } } /* XXX: We can't handle [u]int64 properly on 32-bit machines because * strto[u]ll isn't in C89. */ case UPB_TYPE_INT64: { long val = strtol(buf, &end, 0); if (errno == ERANGE || end != bufend) { break; } else { upb_sink_putint64(p->top->sink, parser_getsel(p), val); return true; } } case UPB_TYPE_UINT64: { unsigned long val = strtoul(p->accumulated, &end, 0); if (end != bufend) { break; } else if (errno == ERANGE) { return false; } else { upb_sink_putuint64(p->top->sink, parser_getsel(p), val); return true; } } default: break; } if (type != UPB_TYPE_DOUBLE && type != UPB_TYPE_FLOAT && is_quoted) { /* Quoted numbers for integer types are not allowed to be in double form. */ return false; } if (len == strlen("Infinity") && strcmp(buf, "Infinity") == 0) { /* C89 does not have an INFINITY macro. */ val = inf; } else if (len == strlen("-Infinity") && strcmp(buf, "-Infinity") == 0) { val = -inf; } else { val = strtod(buf, &end); if (errno == ERANGE || end != bufend) { return false; } } switch (type) { #define CASE(capitaltype, smalltype, ctype, min, max) \ case UPB_TYPE_ ## capitaltype: { \ if (modf(val, &dummy) != 0 || val > max || val < min) { \ return false; \ } else { \ upb_sink_put ## smalltype(p->top->sink, parser_getsel(p), \ (ctype)val); \ return true; \ } \ break; \ } case UPB_TYPE_ENUM: CASE(INT32, int32, int32_t, INT32_MIN, INT32_MAX); CASE(INT64, int64, int64_t, INT64_MIN, INT64_MAX); CASE(UINT32, uint32, uint32_t, 0, UINT32_MAX); CASE(UINT64, uint64, uint64_t, 0, UINT64_MAX); #undef CASE case UPB_TYPE_DOUBLE: upb_sink_putdouble(p->top->sink, parser_getsel(p), val); return true; case UPB_TYPE_FLOAT: if ((val > FLT_MAX || val < -FLT_MAX) && val != inf && val != -inf) { return false; } else { upb_sink_putfloat(p->top->sink, parser_getsel(p), val); return true; } default: return false; } } static bool parse_number(upb_json_parser *p, bool is_quoted) { size_t len; const char *buf; /* strtol() and friends unfortunately do not support specifying the length of * the input string, so we need to force a copy into a NULL-terminated buffer. */ if (!multipart_text(p, "\0", 1, false)) { return false; } buf = accumulate_getptr(p, &len); if (parse_number_from_buffer(p, buf, is_quoted)) { multipart_end(p); return true; } else { upb_status_seterrf(p->status, "error parsing number: %s", buf); multipart_end(p); return false; } } static bool parser_putbool(upb_json_parser *p, bool val) { bool ok; if (p->top->f == NULL) { return true; } if (upb_fielddef_type(p->top->f) != UPB_TYPE_BOOL) { upb_status_seterrf(p->status, "Boolean value specified for non-bool field: %s", upb_fielddef_name(p->top->f)); return false; } ok = upb_sink_putbool(p->top->sink, parser_getsel(p), val); UPB_ASSERT(ok); return true; } static bool end_bool(upb_json_parser *p, bool val) { if (is_top_level(p)) { if (is_wellknown_msg(p, UPB_WELLKNOWN_BOOLVALUE)) { start_wrapper_object(p); } else if (is_wellknown_msg(p, UPB_WELLKNOWN_VALUE)) { start_value_object(p, VALUE_BOOLVALUE); } else { return false; } } else if (is_wellknown_field(p, UPB_WELLKNOWN_BOOLVALUE)) { if (!start_subobject(p)) { return false; } start_wrapper_object(p); } else if (is_wellknown_field(p, UPB_WELLKNOWN_VALUE)) { if (!start_subobject(p)) { return false; } start_value_object(p, VALUE_BOOLVALUE); } if (p->top->is_unknown_field) { return true; } if (!parser_putbool(p, val)) { return false; } if (is_wellknown_msg(p, UPB_WELLKNOWN_BOOLVALUE)) { end_wrapper_object(p); if (!is_top_level(p)) { end_subobject(p); } return true; } if (is_wellknown_msg(p, UPB_WELLKNOWN_VALUE)) { end_value_object(p); if (!is_top_level(p)) { end_subobject(p); } return true; } return true; } static bool end_null(upb_json_parser *p) { const char *zero_ptr = "0"; if (is_top_level(p)) { if (is_wellknown_msg(p, UPB_WELLKNOWN_VALUE)) { start_value_object(p, VALUE_NULLVALUE); } else { return true; } } else if (is_wellknown_field(p, UPB_WELLKNOWN_VALUE)) { if (!start_subobject(p)) { return false; } start_value_object(p, VALUE_NULLVALUE); } else { return true; } /* Fill null_value field. */ multipart_startaccum(p); capture_begin(p, zero_ptr); capture_end(p, zero_ptr + 1); parse_number(p, false); end_value_object(p); if (!is_top_level(p)) { end_subobject(p); } return true; } static bool start_any_stringval(upb_json_parser *p) { multipart_startaccum(p); return true; } static bool start_stringval(upb_json_parser *p) { if (is_top_level(p)) { if (is_string_wrapper_object(p) || is_number_wrapper_object(p)) { start_wrapper_object(p); } else if (is_wellknown_msg(p, UPB_WELLKNOWN_FIELDMASK)) { start_fieldmask_object(p); return true; } else if (is_wellknown_msg(p, UPB_WELLKNOWN_TIMESTAMP) || is_wellknown_msg(p, UPB_WELLKNOWN_DURATION)) { start_object(p); } else if (is_wellknown_msg(p, UPB_WELLKNOWN_VALUE)) { start_value_object(p, VALUE_STRINGVALUE); } else { return false; } } else if (does_string_wrapper_start(p) || does_number_wrapper_start(p)) { if (!start_subobject(p)) { return false; } start_wrapper_object(p); } else if (does_fieldmask_start(p)) { if (!start_subobject(p)) { return false; } start_fieldmask_object(p); return true; } else if (is_wellknown_field(p, UPB_WELLKNOWN_TIMESTAMP) || is_wellknown_field(p, UPB_WELLKNOWN_DURATION)) { if (!start_subobject(p)) { return false; } start_object(p); } else if (is_wellknown_field(p, UPB_WELLKNOWN_VALUE)) { if (!start_subobject(p)) { return false; } start_value_object(p, VALUE_STRINGVALUE); } if (p->top->f == NULL) { multipart_startaccum(p); return true; } if (p->top->is_any) { return start_any_stringval(p); } if (upb_fielddef_isstring(p->top->f)) { upb_jsonparser_frame *inner; upb_selector_t sel; if (!check_stack(p)) return false; /* Start a new parser frame: parser frames correspond one-to-one with * handler frames, and string events occur in a sub-frame. */ inner = start_jsonparser_frame(p); sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR); upb_sink_startstr(p->top->sink, sel, 0, &inner->sink); inner->m = p->top->m; inner->f = p->top->f; p->top = inner; if (upb_fielddef_type(p->top->f) == UPB_TYPE_STRING) { /* For STRING fields we push data directly to the handlers as it is * parsed. We don't do this yet for BYTES fields, because our base64 * decoder is not streaming. * * TODO(haberman): make base64 decoding streaming also. */ multipart_start(p, getsel_for_handlertype(p, UPB_HANDLER_STRING)); return true; } else { multipart_startaccum(p); return true; } } else if (upb_fielddef_type(p->top->f) != UPB_TYPE_BOOL && upb_fielddef_type(p->top->f) != UPB_TYPE_MESSAGE) { /* No need to push a frame -- numeric values in quotes remain in the * current parser frame. These values must accmulate so we can convert * them all at once at the end. */ multipart_startaccum(p); return true; } else { upb_status_seterrf(p->status, "String specified for bool or submessage field: %s", upb_fielddef_name(p->top->f)); return false; } } static bool end_any_stringval(upb_json_parser *p) { size_t len; const char *buf = accumulate_getptr(p, &len); /* Set type_url */ upb_selector_t sel; upb_jsonparser_frame *inner; if (!check_stack(p)) return false; inner = p->top + 1; sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR); upb_sink_startstr(p->top->sink, sel, 0, &inner->sink); sel = getsel_for_handlertype(p, UPB_HANDLER_STRING); upb_sink_putstring(inner->sink, sel, buf, len, NULL); sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR); upb_sink_endstr(inner->sink, sel); multipart_end(p); /* Resolve type url */ if (strncmp(buf, "type.googleapis.com/", 20) == 0 && len > 20) { const upb_msgdef *payload_type = NULL; buf += 20; len -= 20; payload_type = upb_symtab_lookupmsg2(p->symtab, buf, len); if (payload_type == NULL) { upb_status_seterrf( p->status, "Cannot find packed type: %.*s\n", (int)len, buf); return false; } json_parser_any_frame_set_payload_type(p, p->top->any_frame, payload_type); return true; } else { upb_status_seterrf( p->status, "Invalid type url: %.*s\n", (int)len, buf); return false; } } static bool end_stringval_nontop(upb_json_parser *p) { bool ok = true; if (is_wellknown_msg(p, UPB_WELLKNOWN_TIMESTAMP) || is_wellknown_msg(p, UPB_WELLKNOWN_DURATION)) { multipart_end(p); return true; } if (p->top->f == NULL) { multipart_end(p); return true; } if (p->top->is_any) { return end_any_stringval(p); } switch (upb_fielddef_type(p->top->f)) { case UPB_TYPE_BYTES: if (!base64_push(p, getsel_for_handlertype(p, UPB_HANDLER_STRING), p->accumulated, p->accumulated_len)) { return false; } /* Fall through. */ case UPB_TYPE_STRING: { upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR); upb_sink_endstr(p->top->sink, sel); p->top--; break; } case UPB_TYPE_ENUM: { /* Resolve enum symbolic name to integer value. */ const upb_enumdef *enumdef = upb_fielddef_enumsubdef(p->top->f); size_t len; const char *buf = accumulate_getptr(p, &len); int32_t int_val = 0; ok = upb_enumdef_ntoi(enumdef, buf, len, &int_val); if (ok) { upb_selector_t sel = parser_getsel(p); upb_sink_putint32(p->top->sink, sel, int_val); } else { upb_status_seterrf(p->status, "Enum value unknown: '%.*s'", len, buf); } break; } case UPB_TYPE_INT32: case UPB_TYPE_INT64: case UPB_TYPE_UINT32: case UPB_TYPE_UINT64: case UPB_TYPE_DOUBLE: case UPB_TYPE_FLOAT: ok = parse_number(p, true); break; default: UPB_ASSERT(false); upb_status_seterrmsg(p->status, "Internal error in JSON decoder"); ok = false; break; } multipart_end(p); return ok; } static bool end_stringval(upb_json_parser *p) { /* FieldMask's stringvals have been ended when handling them. Only need to * close FieldMask here.*/ if (does_fieldmask_end(p)) { end_fieldmask_object(p); if (!is_top_level(p)) { end_subobject(p); } return true; } if (!end_stringval_nontop(p)) { return false; } if (does_string_wrapper_end(p) || does_number_wrapper_end(p)) { end_wrapper_object(p); if (!is_top_level(p)) { end_subobject(p); } return true; } if (is_wellknown_msg(p, UPB_WELLKNOWN_VALUE)) { end_value_object(p); if (!is_top_level(p)) { end_subobject(p); } return true; } if (is_wellknown_msg(p, UPB_WELLKNOWN_TIMESTAMP) || is_wellknown_msg(p, UPB_WELLKNOWN_DURATION) || is_wellknown_msg(p, UPB_WELLKNOWN_FIELDMASK)) { end_object(p); if (!is_top_level(p)) { end_subobject(p); } return true; } return true; } static void start_duration_base(upb_json_parser *p, const char *ptr) { capture_begin(p, ptr); } static bool end_duration_base(upb_json_parser *p, const char *ptr) { size_t len; const char *buf; char seconds_buf[14]; char nanos_buf[12]; char *end; int64_t seconds = 0; int32_t nanos = 0; double val = 0.0; const char *seconds_membername = "seconds"; const char *nanos_membername = "nanos"; size_t fraction_start; if (!capture_end(p, ptr)) { return false; } buf = accumulate_getptr(p, &len); memset(seconds_buf, 0, 14); memset(nanos_buf, 0, 12); /* Find out base end. The maximus duration is 315576000000, which cannot be * represented by double without losing precision. Thus, we need to handle * fraction and base separately. */ for (fraction_start = 0; fraction_start < len && buf[fraction_start] != '.'; fraction_start++); /* Parse base */ memcpy(seconds_buf, buf, fraction_start); seconds = strtol(seconds_buf, &end, 10); if (errno == ERANGE || end != seconds_buf + fraction_start) { upb_status_seterrf(p->status, "error parsing duration: %s", seconds_buf); return false; } if (seconds > 315576000000) { upb_status_seterrf(p->status, "error parsing duration: " "maximum acceptable value is " "315576000000"); return false; } if (seconds < -315576000000) { upb_status_seterrf(p->status, "error parsing duration: " "minimum acceptable value is " "-315576000000"); return false; } /* Parse fraction */ nanos_buf[0] = '0'; memcpy(nanos_buf + 1, buf + fraction_start, len - fraction_start); val = strtod(nanos_buf, &end); if (errno == ERANGE || end != nanos_buf + len - fraction_start + 1) { upb_status_seterrf(p->status, "error parsing duration: %s", nanos_buf); return false; } nanos = val * 1000000000; if (seconds < 0) nanos = -nanos; /* Clean up buffer */ multipart_end(p); /* Set seconds */ start_member(p); capture_begin(p, seconds_membername); capture_end(p, seconds_membername + 7); end_membername(p); upb_sink_putint64(p->top->sink, parser_getsel(p), seconds); end_member(p); /* Set nanos */ start_member(p); capture_begin(p, nanos_membername); capture_end(p, nanos_membername + 5); end_membername(p); upb_sink_putint32(p->top->sink, parser_getsel(p), nanos); end_member(p); /* Continue previous arena */ multipart_startaccum(p); return true; } static int parse_timestamp_number(upb_json_parser *p) { size_t len; const char *buf; int val; /* atoi() and friends unfortunately do not support specifying the length of * the input string, so we need to force a copy into a NULL-terminated buffer. */ multipart_text(p, "\0", 1, false); buf = accumulate_getptr(p, &len); val = atoi(buf); multipart_end(p); multipart_startaccum(p); return val; } static void start_year(upb_json_parser *p, const char *ptr) { capture_begin(p, ptr); } static bool end_year(upb_json_parser *p, const char *ptr) { if (!capture_end(p, ptr)) { return false; } p->tm.tm_year = parse_timestamp_number(p) - 1900; return true; } static void start_month(upb_json_parser *p, const char *ptr) { capture_begin(p, ptr); } static bool end_month(upb_json_parser *p, const char *ptr) { if (!capture_end(p, ptr)) { return false; } p->tm.tm_mon = parse_timestamp_number(p) - 1; return true; } static void start_day(upb_json_parser *p, const char *ptr) { capture_begin(p, ptr); } static bool end_day(upb_json_parser *p, const char *ptr) { if (!capture_end(p, ptr)) { return false; } p->tm.tm_mday = parse_timestamp_number(p); return true; } static void start_hour(upb_json_parser *p, const char *ptr) { capture_begin(p, ptr); } static bool end_hour(upb_json_parser *p, const char *ptr) { if (!capture_end(p, ptr)) { return false; } p->tm.tm_hour = parse_timestamp_number(p); return true; } static void start_minute(upb_json_parser *p, const char *ptr) { capture_begin(p, ptr); } static bool end_minute(upb_json_parser *p, const char *ptr) { if (!capture_end(p, ptr)) { return false; } p->tm.tm_min = parse_timestamp_number(p); return true; } static void start_second(upb_json_parser *p, const char *ptr) { capture_begin(p, ptr); } static bool end_second(upb_json_parser *p, const char *ptr) { if (!capture_end(p, ptr)) { return false; } p->tm.tm_sec = parse_timestamp_number(p); return true; } static void start_timestamp_base(upb_json_parser *p) { memset(&p->tm, 0, sizeof(struct tm)); } static void start_timestamp_fraction(upb_json_parser *p, const char *ptr) { capture_begin(p, ptr); } static bool end_timestamp_fraction(upb_json_parser *p, const char *ptr) { size_t len; const char *buf; char nanos_buf[12]; char *end; double val = 0.0; int32_t nanos; const char *nanos_membername = "nanos"; memset(nanos_buf, 0, 12); if (!capture_end(p, ptr)) { return false; } buf = accumulate_getptr(p, &len); if (len > 10) { upb_status_seterrf(p->status, "error parsing timestamp: at most 9-digit fraction."); return false; } /* Parse nanos */ nanos_buf[0] = '0'; memcpy(nanos_buf + 1, buf, len); val = strtod(nanos_buf, &end); if (errno == ERANGE || end != nanos_buf + len + 1) { upb_status_seterrf(p->status, "error parsing timestamp nanos: %s", nanos_buf); return false; } nanos = val * 1000000000; /* Clean up previous environment */ multipart_end(p); /* Set nanos */ start_member(p); capture_begin(p, nanos_membername); capture_end(p, nanos_membername + 5); end_membername(p); upb_sink_putint32(p->top->sink, parser_getsel(p), nanos); end_member(p); /* Continue previous environment */ multipart_startaccum(p); return true; } static void start_timestamp_zone(upb_json_parser *p, const char *ptr) { capture_begin(p, ptr); } #define EPOCH_YEAR 1970 #define TM_YEAR_BASE 1900 static bool isleap(int year) { return (year % 4) == 0 && (year % 100 != 0 || (year % 400) == 0); } const unsigned short int __mon_yday[2][13] = { /* Normal years. */ { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 }, /* Leap years. */ { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 } }; int64_t epoch(int year, int yday, int hour, int min, int sec) { int64_t years = year - EPOCH_YEAR; int64_t leap_days = years / 4 - years / 100 + years / 400; int64_t days = years * 365 + yday + leap_days; int64_t hours = days * 24 + hour; int64_t mins = hours * 60 + min; int64_t secs = mins * 60 + sec; return secs; } static int64_t upb_mktime(const struct tm *tp) { int sec = tp->tm_sec; int min = tp->tm_min; int hour = tp->tm_hour; int mday = tp->tm_mday; int mon = tp->tm_mon; int year = tp->tm_year + TM_YEAR_BASE; /* Calculate day of year from year, month, and day of month. */ int mon_yday = ((__mon_yday[isleap(year)][mon]) - 1); int yday = mon_yday + mday; return epoch(year, yday, hour, min, sec); } static bool end_timestamp_zone(upb_json_parser *p, const char *ptr) { size_t len; const char *buf; int hours; int64_t seconds; const char *seconds_membername = "seconds"; if (!capture_end(p, ptr)) { return false; } buf = accumulate_getptr(p, &len); if (buf[0] != 'Z') { if (sscanf(buf + 1, "%2d:00", &hours) != 1) { upb_status_seterrf(p->status, "error parsing timestamp offset"); return false; } if (buf[0] == '+') { hours = -hours; } p->tm.tm_hour += hours; } /* Normalize tm */ seconds = upb_mktime(&p->tm); /* Check timestamp boundary */ if (seconds < -62135596800) { upb_status_seterrf(p->status, "error parsing timestamp: " "minimum acceptable value is " "0001-01-01T00:00:00Z"); return false; } /* Clean up previous environment */ multipart_end(p); /* Set seconds */ start_member(p); capture_begin(p, seconds_membername); capture_end(p, seconds_membername + 7); end_membername(p); upb_sink_putint64(p->top->sink, parser_getsel(p), seconds); end_member(p); /* Continue previous environment */ multipart_startaccum(p); return true; } static void start_fieldmask_path_text(upb_json_parser *p, const char *ptr) { capture_begin(p, ptr); } static bool end_fieldmask_path_text(upb_json_parser *p, const char *ptr) { return capture_end(p, ptr); } static bool start_fieldmask_path(upb_json_parser *p) { upb_jsonparser_frame *inner; upb_selector_t sel; if (!check_stack(p)) return false; /* Start a new parser frame: parser frames correspond one-to-one with * handler frames, and string events occur in a sub-frame. */ inner = start_jsonparser_frame(p); sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR); upb_sink_startstr(p->top->sink, sel, 0, &inner->sink); inner->m = p->top->m; inner->f = p->top->f; p->top = inner; multipart_startaccum(p); return true; } static bool lower_camel_push( upb_json_parser *p, upb_selector_t sel, const char *ptr, size_t len) { const char *limit = ptr + len; bool first = true; for (;ptr < limit; ptr++) { if (*ptr >= 'A' && *ptr <= 'Z' && !first) { char lower = tolower(*ptr); upb_sink_putstring(p->top->sink, sel, "_", 1, NULL); upb_sink_putstring(p->top->sink, sel, &lower, 1, NULL); } else { upb_sink_putstring(p->top->sink, sel, ptr, 1, NULL); } first = false; } return true; } static bool end_fieldmask_path(upb_json_parser *p) { upb_selector_t sel; if (!lower_camel_push( p, getsel_for_handlertype(p, UPB_HANDLER_STRING), p->accumulated, p->accumulated_len)) { return false; } sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR); upb_sink_endstr(p->top->sink, sel); p->top--; multipart_end(p); return true; } static void start_member(upb_json_parser *p) { UPB_ASSERT(!p->top->f); multipart_startaccum(p); } /* Helper: invoked during parse_mapentry() to emit the mapentry message's key * field based on the current contents of the accumulate buffer. */ static bool parse_mapentry_key(upb_json_parser *p) { size_t len; const char *buf = accumulate_getptr(p, &len); /* Emit the key field. We do a bit of ad-hoc parsing here because the * parser state machine has already decided that this is a string field * name, and we are reinterpreting it as some arbitrary key type. In * particular, integer and bool keys are quoted, so we need to parse the * quoted string contents here. */ p->top->f = upb_msgdef_itof(p->top->m, UPB_MAPENTRY_KEY); if (p->top->f == NULL) { upb_status_seterrmsg(p->status, "mapentry message has no key"); return false; } switch (upb_fielddef_type(p->top->f)) { case UPB_TYPE_INT32: case UPB_TYPE_INT64: case UPB_TYPE_UINT32: case UPB_TYPE_UINT64: /* Invoke end_number. The accum buffer has the number's text already. */ if (!parse_number(p, true)) { return false; } break; case UPB_TYPE_BOOL: if (len == 4 && !strncmp(buf, "true", 4)) { if (!parser_putbool(p, true)) { return false; } } else if (len == 5 && !strncmp(buf, "false", 5)) { if (!parser_putbool(p, false)) { return false; } } else { upb_status_seterrmsg(p->status, "Map bool key not 'true' or 'false'"); return false; } multipart_end(p); break; case UPB_TYPE_STRING: case UPB_TYPE_BYTES: { upb_sink subsink; upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR); upb_sink_startstr(p->top->sink, sel, len, &subsink); sel = getsel_for_handlertype(p, UPB_HANDLER_STRING); upb_sink_putstring(subsink, sel, buf, len, NULL); sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR); upb_sink_endstr(subsink, sel); multipart_end(p); break; } default: upb_status_seterrmsg(p->status, "Invalid field type for map key"); return false; } return true; } /* Helper: emit one map entry (as a submessage in the map field sequence). This * is invoked from end_membername(), at the end of the map entry's key string, * with the map key in the accumulate buffer. It parses the key from that * buffer, emits the handler calls to start the mapentry submessage (setting up * its subframe in the process), and sets up state in the subframe so that the * value parser (invoked next) will emit the mapentry's value field and then * end the mapentry message. */ static bool handle_mapentry(upb_json_parser *p) { const upb_fielddef *mapfield; const upb_msgdef *mapentrymsg; upb_jsonparser_frame *inner; upb_selector_t sel; /* Map entry: p->top->sink is the seq frame, so we need to start a frame * for the mapentry itself, and then set |f| in that frame so that the map * value field is parsed, and also set a flag to end the frame after the * map-entry value is parsed. */ if (!check_stack(p)) return false; mapfield = p->top->mapfield; mapentrymsg = upb_fielddef_msgsubdef(mapfield); inner = start_jsonparser_frame(p); p->top->f = mapfield; sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSUBMSG); upb_sink_startsubmsg(p->top->sink, sel, &inner->sink); inner->m = mapentrymsg; inner->mapfield = mapfield; /* Don't set this to true *yet* -- we reuse parsing handlers below to push * the key field value to the sink, and these handlers will pop the frame * if they see is_mapentry (when invoked by the parser state machine, they * would have just seen the map-entry value, not key). */ inner->is_mapentry = false; p->top = inner; /* send STARTMSG in submsg frame. */ upb_sink_startmsg(p->top->sink); parse_mapentry_key(p); /* Set up the value field to receive the map-entry value. */ p->top->f = upb_msgdef_itof(p->top->m, UPB_MAPENTRY_VALUE); p->top->is_mapentry = true; /* set up to pop frame after value is parsed. */ p->top->mapfield = mapfield; if (p->top->f == NULL) { upb_status_seterrmsg(p->status, "mapentry message has no value"); return false; } return true; } static bool end_membername(upb_json_parser *p) { UPB_ASSERT(!p->top->f); if (!p->top->m) { p->top->is_unknown_field = true; multipart_end(p); return true; } if (p->top->is_any) { return end_any_membername(p); } else if (p->top->is_map) { return handle_mapentry(p); } else { size_t len; const char *buf = accumulate_getptr(p, &len); upb_value v; if (upb_strtable_lookup2(p->top->name_table, buf, len, &v)) { p->top->f = upb_value_getconstptr(v); multipart_end(p); return true; } else if (p->ignore_json_unknown) { p->top->is_unknown_field = true; multipart_end(p); return true; } else { upb_status_seterrf(p->status, "No such field: %.*s\n", (int)len, buf); return false; } } } static bool end_any_membername(upb_json_parser *p) { size_t len; const char *buf = accumulate_getptr(p, &len); upb_value v; if (len == 5 && strncmp(buf, "@type", len) == 0) { upb_strtable_lookup2(p->top->name_table, "type_url", 8, &v); p->top->f = upb_value_getconstptr(v); multipart_end(p); return true; } else { p->top->is_unknown_field = true; multipart_end(p); return true; } } static void end_member(upb_json_parser *p) { /* If we just parsed a map-entry value, end that frame too. */ if (p->top->is_mapentry) { upb_selector_t sel; bool ok; const upb_fielddef *mapfield; UPB_ASSERT(p->top > p->stack); /* send ENDMSG on submsg. */ upb_sink_endmsg(p->top->sink, p->status); mapfield = p->top->mapfield; /* send ENDSUBMSG in repeated-field-of-mapentries frame. */ p->top--; ok = upb_handlers_getselector(mapfield, UPB_HANDLER_ENDSUBMSG, &sel); UPB_ASSERT(ok); upb_sink_endsubmsg(p->top->sink, sel); } p->top->f = NULL; p->top->is_unknown_field = false; } static void start_any_member(upb_json_parser *p, const char *ptr) { start_member(p); json_parser_any_frame_set_after_type_url_start_once(p->top->any_frame, ptr); } static void end_any_member(upb_json_parser *p, const char *ptr) { json_parser_any_frame_set_before_type_url_end(p->top->any_frame, ptr); end_member(p); } static bool start_subobject(upb_json_parser *p) { if (p->top->is_unknown_field) { if (!check_stack(p)) return false; p->top = start_jsonparser_frame(p); return true; } if (upb_fielddef_ismap(p->top->f)) { upb_jsonparser_frame *inner; upb_selector_t sel; /* Beginning of a map. Start a new parser frame in a repeated-field * context. */ if (!check_stack(p)) return false; inner = start_jsonparser_frame(p); sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSEQ); upb_sink_startseq(p->top->sink, sel, &inner->sink); inner->m = upb_fielddef_msgsubdef(p->top->f); inner->mapfield = p->top->f; inner->is_map = true; p->top = inner; return true; } else if (upb_fielddef_issubmsg(p->top->f)) { upb_jsonparser_frame *inner; upb_selector_t sel; /* Beginning of a subobject. Start a new parser frame in the submsg * context. */ if (!check_stack(p)) return false; inner = start_jsonparser_frame(p); sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSUBMSG); upb_sink_startsubmsg(p->top->sink, sel, &inner->sink); inner->m = upb_fielddef_msgsubdef(p->top->f); set_name_table(p, inner); p->top = inner; if (is_wellknown_msg(p, UPB_WELLKNOWN_ANY)) { p->top->is_any = true; p->top->any_frame = json_parser_any_frame_new(p); } else { p->top->is_any = false; p->top->any_frame = NULL; } return true; } else { upb_status_seterrf(p->status, "Object specified for non-message/group field: %s", upb_fielddef_name(p->top->f)); return false; } } static bool start_subobject_full(upb_json_parser *p) { if (is_top_level(p)) { if (is_wellknown_msg(p, UPB_WELLKNOWN_VALUE)) { start_value_object(p, VALUE_STRUCTVALUE); if (!start_subobject(p)) return false; start_structvalue_object(p); } else if (is_wellknown_msg(p, UPB_WELLKNOWN_STRUCT)) { start_structvalue_object(p); } else { return true; } } else if (is_wellknown_field(p, UPB_WELLKNOWN_STRUCT)) { if (!start_subobject(p)) return false; start_structvalue_object(p); } else if (is_wellknown_field(p, UPB_WELLKNOWN_VALUE)) { if (!start_subobject(p)) return false; start_value_object(p, VALUE_STRUCTVALUE); if (!start_subobject(p)) return false; start_structvalue_object(p); } return start_subobject(p); } static void end_subobject(upb_json_parser *p) { if (is_top_level(p)) { return; } if (p->top->is_map) { upb_selector_t sel; p->top--; sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSEQ); upb_sink_endseq(p->top->sink, sel); } else { upb_selector_t sel; bool is_unknown = p->top->m == NULL; p->top--; if (!is_unknown) { sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSUBMSG); upb_sink_endsubmsg(p->top->sink, sel); } } } static void end_subobject_full(upb_json_parser *p) { end_subobject(p); if (is_wellknown_msg(p, UPB_WELLKNOWN_STRUCT)) { end_structvalue_object(p); if (!is_top_level(p)) { end_subobject(p); } } if (is_wellknown_msg(p, UPB_WELLKNOWN_VALUE)) { end_value_object(p); if (!is_top_level(p)) { end_subobject(p); } } } static bool start_array(upb_json_parser *p) { upb_jsonparser_frame *inner; upb_selector_t sel; if (is_top_level(p)) { if (is_wellknown_msg(p, UPB_WELLKNOWN_VALUE)) { start_value_object(p, VALUE_LISTVALUE); if (!start_subobject(p)) return false; start_listvalue_object(p); } else if (is_wellknown_msg(p, UPB_WELLKNOWN_LISTVALUE)) { start_listvalue_object(p); } else { return false; } } else if (is_wellknown_field(p, UPB_WELLKNOWN_LISTVALUE) && (!upb_fielddef_isseq(p->top->f) || p->top->is_repeated)) { if (!start_subobject(p)) return false; start_listvalue_object(p); } else if (is_wellknown_field(p, UPB_WELLKNOWN_VALUE) && (!upb_fielddef_isseq(p->top->f) || p->top->is_repeated)) { if (!start_subobject(p)) return false; start_value_object(p, VALUE_LISTVALUE); if (!start_subobject(p)) return false; start_listvalue_object(p); } if (p->top->is_unknown_field) { inner = start_jsonparser_frame(p); inner->is_unknown_field = true; p->top = inner; return true; } if (!upb_fielddef_isseq(p->top->f)) { upb_status_seterrf(p->status, "Array specified for non-repeated field: %s", upb_fielddef_name(p->top->f)); return false; } if (!check_stack(p)) return false; inner = start_jsonparser_frame(p); sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSEQ); upb_sink_startseq(p->top->sink, sel, &inner->sink); inner->m = p->top->m; inner->f = p->top->f; inner->is_repeated = true; p->top = inner; return true; } static void end_array(upb_json_parser *p) { upb_selector_t sel; UPB_ASSERT(p->top > p->stack); p->top--; if (p->top->is_unknown_field) { return; } sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSEQ); upb_sink_endseq(p->top->sink, sel); if (is_wellknown_msg(p, UPB_WELLKNOWN_LISTVALUE)) { end_listvalue_object(p); if (!is_top_level(p)) { end_subobject(p); } } if (is_wellknown_msg(p, UPB_WELLKNOWN_VALUE)) { end_value_object(p); if (!is_top_level(p)) { end_subobject(p); } } } static void start_object(upb_json_parser *p) { if (!p->top->is_map && p->top->m != NULL) { upb_sink_startmsg(p->top->sink); } } static void end_object(upb_json_parser *p) { if (!p->top->is_map && p->top->m != NULL) { upb_sink_endmsg(p->top->sink, p->status); } } static void start_any_object(upb_json_parser *p, const char *ptr) { start_object(p); p->top->any_frame->before_type_url_start = ptr; p->top->any_frame->before_type_url_end = ptr; } static bool end_any_object(upb_json_parser *p, const char *ptr) { const char *value_membername = "value"; bool is_well_known_packed = false; const char *packed_end = ptr + 1; upb_selector_t sel; upb_jsonparser_frame *inner; if (json_parser_any_frame_has_value(p->top->any_frame) && !json_parser_any_frame_has_type_url(p->top->any_frame)) { upb_status_seterrmsg(p->status, "No valid type url"); return false; } /* Well known types data is represented as value field. */ if (upb_msgdef_wellknowntype(p->top->any_frame->parser->top->m) != UPB_WELLKNOWN_UNSPECIFIED) { is_well_known_packed = true; if (json_parser_any_frame_has_value_before_type_url(p->top->any_frame)) { p->top->any_frame->before_type_url_start = memchr(p->top->any_frame->before_type_url_start, ':', p->top->any_frame->before_type_url_end - p->top->any_frame->before_type_url_start); if (p->top->any_frame->before_type_url_start == NULL) { upb_status_seterrmsg(p->status, "invalid data for well known type."); return false; } p->top->any_frame->before_type_url_start++; } if (json_parser_any_frame_has_value_after_type_url(p->top->any_frame)) { p->top->any_frame->after_type_url_start = memchr(p->top->any_frame->after_type_url_start, ':', (ptr + 1) - p->top->any_frame->after_type_url_start); if (p->top->any_frame->after_type_url_start == NULL) { upb_status_seterrmsg(p->status, "Invalid data for well known type."); return false; } p->top->any_frame->after_type_url_start++; packed_end = ptr; } } if (json_parser_any_frame_has_value_before_type_url(p->top->any_frame)) { if (!parse(p->top->any_frame->parser, NULL, p->top->any_frame->before_type_url_start, p->top->any_frame->before_type_url_end - p->top->any_frame->before_type_url_start, NULL)) { return false; } } else { if (!is_well_known_packed) { if (!parse(p->top->any_frame->parser, NULL, "{", 1, NULL)) { return false; } } } if (json_parser_any_frame_has_value_before_type_url(p->top->any_frame) && json_parser_any_frame_has_value_after_type_url(p->top->any_frame)) { if (!parse(p->top->any_frame->parser, NULL, ",", 1, NULL)) { return false; } } if (json_parser_any_frame_has_value_after_type_url(p->top->any_frame)) { if (!parse(p->top->any_frame->parser, NULL, p->top->any_frame->after_type_url_start, packed_end - p->top->any_frame->after_type_url_start, NULL)) { return false; } } else { if (!is_well_known_packed) { if (!parse(p->top->any_frame->parser, NULL, "}", 1, NULL)) { return false; } } } if (!end(p->top->any_frame->parser, NULL)) { return false; } p->top->is_any = false; /* Set value */ start_member(p); capture_begin(p, value_membername); capture_end(p, value_membername + 5); end_membername(p); if (!check_stack(p)) return false; inner = p->top + 1; sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR); upb_sink_startstr(p->top->sink, sel, 0, &inner->sink); sel = getsel_for_handlertype(p, UPB_HANDLER_STRING); upb_sink_putstring(inner->sink, sel, p->top->any_frame->stringsink.ptr, p->top->any_frame->stringsink.len, NULL); sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR); upb_sink_endstr(inner->sink, sel); end_member(p); end_object(p); /* Deallocate any parse frame. */ json_parser_any_frame_free(p->top->any_frame); return true; } static bool is_string_wrapper(const upb_msgdef *m) { upb_wellknowntype_t type = upb_msgdef_wellknowntype(m); return type == UPB_WELLKNOWN_STRINGVALUE || type == UPB_WELLKNOWN_BYTESVALUE; } static bool is_fieldmask(const upb_msgdef *m) { upb_wellknowntype_t type = upb_msgdef_wellknowntype(m); return type == UPB_WELLKNOWN_FIELDMASK; } static void start_fieldmask_object(upb_json_parser *p) { const char *membername = "paths"; start_object(p); /* Set up context for parsing value */ start_member(p); capture_begin(p, membername); capture_end(p, membername + 5); end_membername(p); start_array(p); } static void end_fieldmask_object(upb_json_parser *p) { end_array(p); end_member(p); end_object(p); } static void start_wrapper_object(upb_json_parser *p) { const char *membername = "value"; start_object(p); /* Set up context for parsing value */ start_member(p); capture_begin(p, membername); capture_end(p, membername + 5); end_membername(p); } static void end_wrapper_object(upb_json_parser *p) { end_member(p); end_object(p); } static void start_value_object(upb_json_parser *p, int value_type) { const char *nullmember = "null_value"; const char *numbermember = "number_value"; const char *stringmember = "string_value"; const char *boolmember = "bool_value"; const char *structmember = "struct_value"; const char *listmember = "list_value"; const char *membername = ""; switch (value_type) { case VALUE_NULLVALUE: membername = nullmember; break; case VALUE_NUMBERVALUE: membername = numbermember; break; case VALUE_STRINGVALUE: membername = stringmember; break; case VALUE_BOOLVALUE: membername = boolmember; break; case VALUE_STRUCTVALUE: membername = structmember; break; case VALUE_LISTVALUE: membername = listmember; break; } start_object(p); /* Set up context for parsing value */ start_member(p); capture_begin(p, membername); capture_end(p, membername + strlen(membername)); end_membername(p); } static void end_value_object(upb_json_parser *p) { end_member(p); end_object(p); } static void start_listvalue_object(upb_json_parser *p) { const char *membername = "values"; start_object(p); /* Set up context for parsing value */ start_member(p); capture_begin(p, membername); capture_end(p, membername + strlen(membername)); end_membername(p); } static void end_listvalue_object(upb_json_parser *p) { end_member(p); end_object(p); } static void start_structvalue_object(upb_json_parser *p) { const char *membername = "fields"; start_object(p); /* Set up context for parsing value */ start_member(p); capture_begin(p, membername); capture_end(p, membername + strlen(membername)); end_membername(p); } static void end_structvalue_object(upb_json_parser *p) { end_member(p); end_object(p); } static bool is_top_level(upb_json_parser *p) { return p->top == p->stack && p->top->f == NULL && !p->top->is_unknown_field; } static bool is_wellknown_msg(upb_json_parser *p, upb_wellknowntype_t type) { return p->top->m != NULL && upb_msgdef_wellknowntype(p->top->m) == type; } static bool is_wellknown_field(upb_json_parser *p, upb_wellknowntype_t type) { return p->top->f != NULL && upb_fielddef_issubmsg(p->top->f) && (upb_msgdef_wellknowntype(upb_fielddef_msgsubdef(p->top->f)) == type); } static bool does_number_wrapper_start(upb_json_parser *p) { return p->top->f != NULL && upb_fielddef_issubmsg(p->top->f) && upb_msgdef_isnumberwrapper(upb_fielddef_msgsubdef(p->top->f)); } static bool does_number_wrapper_end(upb_json_parser *p) { return p->top->m != NULL && upb_msgdef_isnumberwrapper(p->top->m); } static bool is_number_wrapper_object(upb_json_parser *p) { return p->top->m != NULL && upb_msgdef_isnumberwrapper(p->top->m); } static bool does_string_wrapper_start(upb_json_parser *p) { return p->top->f != NULL && upb_fielddef_issubmsg(p->top->f) && is_string_wrapper(upb_fielddef_msgsubdef(p->top->f)); } static bool does_string_wrapper_end(upb_json_parser *p) { return p->top->m != NULL && is_string_wrapper(p->top->m); } static bool is_string_wrapper_object(upb_json_parser *p) { return p->top->m != NULL && is_string_wrapper(p->top->m); } static bool does_fieldmask_start(upb_json_parser *p) { return p->top->f != NULL && upb_fielddef_issubmsg(p->top->f) && is_fieldmask(upb_fielddef_msgsubdef(p->top->f)); } static bool does_fieldmask_end(upb_json_parser *p) { return p->top->m != NULL && is_fieldmask(p->top->m); } #define CHECK_RETURN_TOP(x) if (!(x)) goto error /* The actual parser **********************************************************/ /* What follows is the Ragel parser itself. The language is specified in Ragel * and the actions call our C functions above. * * Ragel has an extensive set of functionality, and we use only a small part of * it. There are many action types but we only use a few: * * ">" -- transition into a machine * "%" -- transition out of a machine * "@" -- transition into a final state of a machine. * * "@" transitions are tricky because a machine can transition into a final * state repeatedly. But in some cases we know this can't happen, for example * a string which is delimited by a final '"' can only transition into its * final state once, when the closing '"' is seen. */ #line 2794 "upb/json/parser.rl" #line 2597 "upb/json/parser.c" static const char _json_actions[] = { 0, 1, 0, 1, 1, 1, 3, 1, 4, 1, 6, 1, 7, 1, 8, 1, 9, 1, 11, 1, 12, 1, 13, 1, 14, 1, 15, 1, 16, 1, 17, 1, 18, 1, 19, 1, 20, 1, 22, 1, 23, 1, 24, 1, 35, 1, 37, 1, 39, 1, 40, 1, 42, 1, 43, 1, 44, 1, 46, 1, 48, 1, 49, 1, 50, 1, 51, 1, 53, 1, 54, 2, 4, 9, 2, 5, 6, 2, 7, 3, 2, 7, 9, 2, 21, 26, 2, 25, 10, 2, 27, 28, 2, 29, 30, 2, 32, 34, 2, 33, 31, 2, 38, 36, 2, 40, 42, 2, 45, 2, 2, 46, 54, 2, 47, 36, 2, 49, 54, 2, 50, 54, 2, 51, 54, 2, 52, 41, 2, 53, 54, 3, 32, 34, 35, 4, 21, 26, 27, 28 }; static const short _json_key_offsets[] = { 0, 0, 12, 13, 18, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 48, 53, 58, 63, 67, 71, 74, 77, 79, 83, 87, 89, 91, 96, 98, 100, 109, 115, 121, 127, 133, 135, 139, 142, 144, 146, 149, 150, 154, 156, 158, 160, 162, 163, 165, 167, 168, 170, 172, 173, 175, 177, 178, 180, 182, 183, 185, 187, 191, 193, 195, 196, 197, 198, 199, 201, 206, 208, 210, 212, 221, 222, 222, 222, 227, 232, 237, 238, 239, 240, 241, 241, 242, 243, 244, 244, 245, 246, 247, 247, 252, 253, 257, 262, 267, 272, 276, 276, 279, 282, 285, 288, 291, 294, 294, 294, 294, 294, 294 }; static const char _json_trans_keys[] = { 32, 34, 45, 91, 102, 110, 116, 123, 9, 13, 48, 57, 34, 32, 93, 125, 9, 13, 32, 44, 93, 9, 13, 32, 93, 125, 9, 13, 97, 108, 115, 101, 117, 108, 108, 114, 117, 101, 32, 34, 125, 9, 13, 34, 32, 58, 9, 13, 32, 93, 125, 9, 13, 32, 44, 125, 9, 13, 32, 44, 125, 9, 13, 32, 34, 9, 13, 45, 48, 49, 57, 48, 49, 57, 46, 69, 101, 48, 57, 69, 101, 48, 57, 43, 45, 48, 57, 48, 57, 48, 57, 46, 69, 101, 48, 57, 34, 92, 34, 92, 34, 47, 92, 98, 102, 110, 114, 116, 117, 48, 57, 65, 70, 97, 102, 48, 57, 65, 70, 97, 102, 48, 57, 65, 70, 97, 102, 48, 57, 65, 70, 97, 102, 34, 92, 45, 48, 49, 57, 48, 49, 57, 46, 115, 48, 57, 115, 48, 57, 34, 46, 115, 48, 57, 48, 57, 48, 57, 48, 57, 48, 57, 45, 48, 57, 48, 57, 45, 48, 57, 48, 57, 84, 48, 57, 48, 57, 58, 48, 57, 48, 57, 58, 48, 57, 48, 57, 43, 45, 46, 90, 48, 57, 48, 57, 58, 48, 48, 34, 48, 57, 43, 45, 90, 48, 57, 34, 44, 34, 44, 34, 44, 34, 45, 91, 102, 110, 116, 123, 48, 57, 34, 32, 93, 125, 9, 13, 32, 44, 93, 9, 13, 32, 93, 125, 9, 13, 97, 108, 115, 101, 117, 108, 108, 114, 117, 101, 32, 34, 125, 9, 13, 34, 32, 58, 9, 13, 32, 93, 125, 9, 13, 32, 44, 125, 9, 13, 32, 44, 125, 9, 13, 32, 34, 9, 13, 32, 9, 13, 32, 9, 13, 32, 9, 13, 32, 9, 13, 32, 9, 13, 32, 9, 13, 0 }; static const char _json_single_lengths[] = { 0, 8, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 3, 3, 3, 2, 2, 1, 3, 0, 2, 2, 0, 0, 3, 2, 2, 9, 0, 0, 0, 0, 2, 2, 1, 2, 0, 1, 1, 2, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 4, 0, 0, 1, 1, 1, 1, 0, 3, 2, 2, 2, 7, 1, 0, 0, 3, 3, 3, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 3, 1, 2, 3, 3, 3, 2, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 }; static const char _json_range_lengths[] = { 0, 2, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 3, 3, 3, 3, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 }; static const short _json_index_offsets[] = { 0, 0, 11, 13, 18, 23, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 53, 55, 59, 64, 69, 74, 78, 82, 85, 89, 91, 95, 99, 101, 103, 108, 111, 114, 124, 128, 132, 136, 140, 143, 147, 150, 153, 155, 158, 160, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 207, 209, 211, 213, 215, 217, 219, 221, 226, 229, 232, 235, 244, 246, 247, 248, 253, 258, 263, 265, 267, 269, 271, 272, 274, 276, 278, 279, 281, 283, 285, 286, 291, 293, 297, 302, 307, 312, 316, 317, 320, 323, 326, 329, 332, 335, 336, 337, 338, 339, 340 }; static const unsigned char _json_indicies[] = { 0, 2, 3, 4, 5, 6, 7, 8, 0, 3, 1, 9, 1, 11, 12, 1, 11, 10, 13, 14, 12, 13, 1, 14, 1, 1, 14, 10, 15, 1, 16, 1, 17, 1, 18, 1, 19, 1, 20, 1, 21, 1, 22, 1, 23, 1, 24, 1, 25, 26, 27, 25, 1, 28, 1, 29, 30, 29, 1, 30, 1, 1, 30, 31, 32, 33, 34, 32, 1, 35, 36, 27, 35, 1, 36, 26, 36, 1, 37, 38, 39, 1, 38, 39, 1, 41, 42, 42, 40, 43, 1, 42, 42, 43, 40, 44, 44, 45, 1, 45, 1, 45, 40, 41, 42, 42, 39, 40, 47, 48, 46, 50, 51, 49, 52, 52, 52, 52, 52, 52, 52, 52, 53, 1, 54, 54, 54, 1, 55, 55, 55, 1, 56, 56, 56, 1, 57, 57, 57, 1, 59, 60, 58, 61, 62, 63, 1, 64, 65, 1, 66, 67, 1, 68, 1, 67, 68, 1, 69, 1, 66, 67, 65, 1, 70, 1, 71, 1, 72, 1, 73, 1, 74, 1, 75, 1, 76, 1, 77, 1, 78, 1, 79, 1, 80, 1, 81, 1, 82, 1, 83, 1, 84, 1, 85, 1, 86, 1, 87, 1, 88, 1, 89, 89, 90, 91, 1, 92, 1, 93, 1, 94, 1, 95, 1, 96, 1, 97, 1, 98, 1, 99, 99, 100, 98, 1, 102, 1, 101, 104, 105, 103, 1, 1, 101, 106, 107, 108, 109, 110, 111, 112, 107, 1, 113, 1, 114, 115, 117, 118, 1, 117, 116, 119, 120, 118, 119, 1, 120, 1, 1, 120, 116, 121, 1, 122, 1, 123, 1, 124, 1, 125, 126, 1, 127, 1, 128, 1, 129, 130, 1, 131, 1, 132, 1, 133, 134, 135, 136, 134, 1, 137, 1, 138, 139, 138, 1, 139, 1, 1, 139, 140, 141, 142, 143, 141, 1, 144, 145, 136, 144, 1, 145, 135, 145, 1, 146, 147, 147, 1, 148, 148, 1, 149, 149, 1, 150, 150, 1, 151, 151, 1, 152, 152, 1, 1, 1, 1, 1, 1, 1, 0 }; static const char _json_trans_targs[] = { 1, 0, 2, 107, 3, 6, 10, 13, 16, 106, 4, 3, 106, 4, 5, 7, 8, 9, 108, 11, 12, 109, 14, 15, 110, 16, 17, 111, 18, 18, 19, 20, 21, 22, 111, 21, 22, 24, 25, 31, 112, 26, 28, 27, 29, 30, 33, 113, 34, 33, 113, 34, 32, 35, 36, 37, 38, 39, 33, 113, 34, 41, 42, 46, 42, 46, 43, 45, 44, 114, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 73, 72, 68, 69, 70, 71, 72, 115, 74, 67, 72, 76, 116, 76, 116, 77, 79, 81, 82, 85, 90, 94, 98, 80, 117, 117, 83, 82, 80, 83, 84, 86, 87, 88, 89, 117, 91, 92, 93, 117, 95, 96, 97, 117, 98, 99, 105, 100, 100, 101, 102, 103, 104, 105, 103, 104, 117, 106, 106, 106, 106, 106, 106 }; static const unsigned char _json_trans_actions[] = { 0, 0, 113, 107, 53, 0, 0, 0, 125, 59, 45, 0, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 101, 51, 47, 0, 0, 45, 49, 49, 104, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 5, 15, 0, 0, 71, 7, 13, 0, 74, 9, 9, 9, 77, 80, 11, 37, 37, 37, 0, 0, 0, 39, 0, 41, 86, 0, 0, 0, 17, 19, 0, 21, 23, 0, 25, 27, 0, 29, 31, 0, 33, 35, 0, 135, 83, 135, 0, 0, 0, 0, 0, 92, 0, 89, 89, 98, 43, 0, 131, 95, 113, 107, 53, 0, 0, 0, 125, 59, 69, 110, 45, 0, 55, 0, 0, 0, 0, 0, 0, 119, 0, 0, 0, 122, 0, 0, 0, 116, 0, 101, 51, 47, 0, 0, 45, 49, 49, 104, 0, 0, 128, 0, 57, 63, 65, 61, 67 }; static const unsigned char _json_eof_actions[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 57, 63, 65, 61, 67, 0, 0, 0, 0, 0, 0 }; static const int json_start = 1; static const int json_en_number_machine = 23; static const int json_en_string_machine = 32; static const int json_en_duration_machine = 40; static const int json_en_timestamp_machine = 47; static const int json_en_fieldmask_machine = 75; static const int json_en_value_machine = 78; static const int json_en_main = 1; #line 2797 "upb/json/parser.rl" size_t parse(void *closure, const void *hd, const char *buf, size_t size, const upb_bufhandle *handle) { upb_json_parser *parser = closure; /* Variables used by Ragel's generated code. */ int cs = parser->current_state; int *stack = parser->parser_stack; int top = parser->parser_top; const char *p = buf; const char *pe = buf + size; const char *eof = &eof_ch; parser->handle = handle; UPB_UNUSED(hd); UPB_UNUSED(handle); capture_resume(parser, buf); #line 2875 "upb/json/parser.c" { int _klen; unsigned int _trans; const char *_acts; unsigned int _nacts; const char *_keys; if ( p == pe ) goto _test_eof; if ( cs == 0 ) goto _out; _resume: _keys = _json_trans_keys + _json_key_offsets[cs]; _trans = _json_index_offsets[cs]; _klen = _json_single_lengths[cs]; if ( _klen > 0 ) { const char *_lower = _keys; const char *_mid; const char *_upper = _keys + _klen - 1; while (1) { if ( _upper < _lower ) break; _mid = _lower + ((_upper-_lower) >> 1); if ( (*p) < *_mid ) _upper = _mid - 1; else if ( (*p) > *_mid ) _lower = _mid + 1; else { _trans += (unsigned int)(_mid - _keys); goto _match; } } _keys += _klen; _trans += _klen; } _klen = _json_range_lengths[cs]; if ( _klen > 0 ) { const char *_lower = _keys; const char *_mid; const char *_upper = _keys + (_klen<<1) - 2; while (1) { if ( _upper < _lower ) break; _mid = _lower + (((_upper-_lower) >> 1) & ~1); if ( (*p) < _mid[0] ) _upper = _mid - 2; else if ( (*p) > _mid[1] ) _lower = _mid + 2; else { _trans += (unsigned int)((_mid - _keys)>>1); goto _match; } } _trans += _klen; } _match: _trans = _json_indicies[_trans]; cs = _json_trans_targs[_trans]; if ( _json_trans_actions[_trans] == 0 ) goto _again; _acts = _json_actions + _json_trans_actions[_trans]; _nacts = (unsigned int) *_acts++; while ( _nacts-- > 0 ) { switch ( *_acts++ ) { case 1: #line 2602 "upb/json/parser.rl" { p--; {cs = stack[--top]; goto _again;} } break; case 2: #line 2604 "upb/json/parser.rl" { p--; {stack[top++] = cs; cs = 23;goto _again;} } break; case 3: #line 2608 "upb/json/parser.rl" { start_text(parser, p); } break; case 4: #line 2609 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_text(parser, p)); } break; case 5: #line 2615 "upb/json/parser.rl" { start_hex(parser); } break; case 6: #line 2616 "upb/json/parser.rl" { hexdigit(parser, p); } break; case 7: #line 2617 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_hex(parser)); } break; case 8: #line 2623 "upb/json/parser.rl" { CHECK_RETURN_TOP(escape(parser, p)); } break; case 9: #line 2629 "upb/json/parser.rl" { p--; {cs = stack[--top]; goto _again;} } break; case 10: #line 2634 "upb/json/parser.rl" { start_year(parser, p); } break; case 11: #line 2635 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_year(parser, p)); } break; case 12: #line 2639 "upb/json/parser.rl" { start_month(parser, p); } break; case 13: #line 2640 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_month(parser, p)); } break; case 14: #line 2644 "upb/json/parser.rl" { start_day(parser, p); } break; case 15: #line 2645 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_day(parser, p)); } break; case 16: #line 2649 "upb/json/parser.rl" { start_hour(parser, p); } break; case 17: #line 2650 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_hour(parser, p)); } break; case 18: #line 2654 "upb/json/parser.rl" { start_minute(parser, p); } break; case 19: #line 2655 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_minute(parser, p)); } break; case 20: #line 2659 "upb/json/parser.rl" { start_second(parser, p); } break; case 21: #line 2660 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_second(parser, p)); } break; case 22: #line 2665 "upb/json/parser.rl" { start_duration_base(parser, p); } break; case 23: #line 2666 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_duration_base(parser, p)); } break; case 24: #line 2668 "upb/json/parser.rl" { p--; {cs = stack[--top]; goto _again;} } break; case 25: #line 2673 "upb/json/parser.rl" { start_timestamp_base(parser); } break; case 26: #line 2675 "upb/json/parser.rl" { start_timestamp_fraction(parser, p); } break; case 27: #line 2676 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_timestamp_fraction(parser, p)); } break; case 28: #line 2678 "upb/json/parser.rl" { start_timestamp_zone(parser, p); } break; case 29: #line 2679 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_timestamp_zone(parser, p)); } break; case 30: #line 2681 "upb/json/parser.rl" { p--; {cs = stack[--top]; goto _again;} } break; case 31: #line 2686 "upb/json/parser.rl" { start_fieldmask_path_text(parser, p); } break; case 32: #line 2687 "upb/json/parser.rl" { end_fieldmask_path_text(parser, p); } break; case 33: #line 2692 "upb/json/parser.rl" { start_fieldmask_path(parser); } break; case 34: #line 2693 "upb/json/parser.rl" { end_fieldmask_path(parser); } break; case 35: #line 2699 "upb/json/parser.rl" { p--; {cs = stack[--top]; goto _again;} } break; case 36: #line 2704 "upb/json/parser.rl" { if (is_wellknown_msg(parser, UPB_WELLKNOWN_TIMESTAMP)) { {stack[top++] = cs; cs = 47;goto _again;} } else if (is_wellknown_msg(parser, UPB_WELLKNOWN_DURATION)) { {stack[top++] = cs; cs = 40;goto _again;} } else if (is_wellknown_msg(parser, UPB_WELLKNOWN_FIELDMASK)) { {stack[top++] = cs; cs = 75;goto _again;} } else { {stack[top++] = cs; cs = 32;goto _again;} } } break; case 37: #line 2717 "upb/json/parser.rl" { p--; {stack[top++] = cs; cs = 78;goto _again;} } break; case 38: #line 2722 "upb/json/parser.rl" { if (is_wellknown_msg(parser, UPB_WELLKNOWN_ANY)) { start_any_member(parser, p); } else { start_member(parser); } } break; case 39: #line 2729 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_membername(parser)); } break; case 40: #line 2732 "upb/json/parser.rl" { if (is_wellknown_msg(parser, UPB_WELLKNOWN_ANY)) { end_any_member(parser, p); } else { end_member(parser); } } break; case 41: #line 2743 "upb/json/parser.rl" { if (is_wellknown_msg(parser, UPB_WELLKNOWN_ANY)) { start_any_object(parser, p); } else { start_object(parser); } } break; case 42: #line 2752 "upb/json/parser.rl" { if (is_wellknown_msg(parser, UPB_WELLKNOWN_ANY)) { CHECK_RETURN_TOP(end_any_object(parser, p)); } else { end_object(parser); } } break; case 43: #line 2764 "upb/json/parser.rl" { CHECK_RETURN_TOP(start_array(parser)); } break; case 44: #line 2768 "upb/json/parser.rl" { end_array(parser); } break; case 45: #line 2773 "upb/json/parser.rl" { CHECK_RETURN_TOP(start_number(parser, p)); } break; case 46: #line 2774 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_number(parser, p)); } break; case 47: #line 2776 "upb/json/parser.rl" { CHECK_RETURN_TOP(start_stringval(parser)); } break; case 48: #line 2777 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_stringval(parser)); } break; case 49: #line 2779 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_bool(parser, true)); } break; case 50: #line 2781 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_bool(parser, false)); } break; case 51: #line 2783 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_null(parser)); } break; case 52: #line 2785 "upb/json/parser.rl" { CHECK_RETURN_TOP(start_subobject_full(parser)); } break; case 53: #line 2786 "upb/json/parser.rl" { end_subobject_full(parser); } break; case 54: #line 2791 "upb/json/parser.rl" { p--; {cs = stack[--top]; goto _again;} } break; #line 3199 "upb/json/parser.c" } } _again: if ( cs == 0 ) goto _out; if ( ++p != pe ) goto _resume; _test_eof: {} if ( p == eof ) { const char *__acts = _json_actions + _json_eof_actions[cs]; unsigned int __nacts = (unsigned int) *__acts++; while ( __nacts-- > 0 ) { switch ( *__acts++ ) { case 0: #line 2600 "upb/json/parser.rl" { p--; {cs = stack[--top]; if ( p == pe ) goto _test_eof; goto _again;} } break; case 46: #line 2774 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_number(parser, p)); } break; case 49: #line 2779 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_bool(parser, true)); } break; case 50: #line 2781 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_bool(parser, false)); } break; case 51: #line 2783 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_null(parser)); } break; case 53: #line 2786 "upb/json/parser.rl" { end_subobject_full(parser); } break; #line 3241 "upb/json/parser.c" } } } _out: {} } #line 2819 "upb/json/parser.rl" if (p != pe) { upb_status_seterrf(parser->status, "Parse error at '%.*s'\n", pe - p, p); } else { capture_suspend(parser, &p); } error: /* Save parsing state back to parser. */ parser->current_state = cs; parser->parser_top = top; return p - buf; } static bool end(void *closure, const void *hd) { upb_json_parser *parser = closure; /* Prevent compile warning on unused static constants. */ UPB_UNUSED(json_start); UPB_UNUSED(json_en_duration_machine); UPB_UNUSED(json_en_fieldmask_machine); UPB_UNUSED(json_en_number_machine); UPB_UNUSED(json_en_string_machine); UPB_UNUSED(json_en_timestamp_machine); UPB_UNUSED(json_en_value_machine); UPB_UNUSED(json_en_main); parse(parser, hd, &eof_ch, 0, NULL); return parser->current_state >= 106; } static void json_parser_reset(upb_json_parser *p) { int cs; int top; p->top = p->stack; init_frame(p->top); /* Emit Ragel initialization of the parser. */ #line 3292 "upb/json/parser.c" { cs = json_start; top = 0; } #line 2861 "upb/json/parser.rl" p->current_state = cs; p->parser_top = top; accumulate_clear(p); p->multipart_state = MULTIPART_INACTIVE; p->capture = NULL; p->accumulated = NULL; } static upb_json_parsermethod *parsermethod_new(upb_json_codecache *c, const upb_msgdef *md) { upb_msg_field_iter i; upb_alloc *alloc = upb_arena_alloc(c->arena); upb_json_parsermethod *m = upb_malloc(alloc, sizeof(*m)); m->cache = c; upb_byteshandler_init(&m->input_handler_); upb_byteshandler_setstring(&m->input_handler_, parse, m); upb_byteshandler_setendstr(&m->input_handler_, end, m); upb_strtable_init2(&m->name_table, UPB_CTYPE_CONSTPTR, alloc); /* Build name_table */ for(upb_msg_field_begin(&i, md); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { const upb_fielddef *f = upb_msg_iter_field(&i); upb_value v = upb_value_constptr(f); char *buf; /* Add an entry for the JSON name. */ size_t len = upb_fielddef_getjsonname(f, NULL, 0); buf = upb_malloc(alloc, len); upb_fielddef_getjsonname(f, buf, len); upb_strtable_insert3(&m->name_table, buf, strlen(buf), v, alloc); if (strcmp(buf, upb_fielddef_name(f)) != 0) { /* Since the JSON name is different from the regular field name, add an * entry for the raw name (compliant proto3 JSON parsers must accept * both). */ const char *name = upb_fielddef_name(f); upb_strtable_insert3(&m->name_table, name, strlen(name), v, alloc); } } return m; } /* Public API *****************************************************************/ upb_json_parser *upb_json_parser_create(upb_arena *arena, const upb_json_parsermethod *method, const upb_symtab* symtab, upb_sink output, upb_status *status, bool ignore_json_unknown) { #ifndef NDEBUG const size_t size_before = upb_arena_bytesallocated(arena); #endif upb_json_parser *p = upb_arena_malloc(arena, sizeof(upb_json_parser)); if (!p) return false; p->arena = arena; p->method = method; p->status = status; p->limit = p->stack + UPB_JSON_MAX_DEPTH; p->accumulate_buf = NULL; p->accumulate_buf_size = 0; upb_bytessink_reset(&p->input_, &method->input_handler_, p); json_parser_reset(p); p->top->sink = output; p->top->m = upb_handlers_msgdef(output.handlers); if (is_wellknown_msg(p, UPB_WELLKNOWN_ANY)) { p->top->is_any = true; p->top->any_frame = json_parser_any_frame_new(p); } else { p->top->is_any = false; p->top->any_frame = NULL; } set_name_table(p, p->top); p->symtab = symtab; p->ignore_json_unknown = ignore_json_unknown; /* If this fails, uncomment and increase the value in parser.h. */ /* fprintf(stderr, "%zd\n", upb_arena_bytesallocated(arena) - size_before); */ UPB_ASSERT_DEBUGVAR(upb_arena_bytesallocated(arena) - size_before <= UPB_JSON_PARSER_SIZE); return p; } upb_bytessink upb_json_parser_input(upb_json_parser *p) { return p->input_; } const upb_byteshandler *upb_json_parsermethod_inputhandler( const upb_json_parsermethod *m) { return &m->input_handler_; } upb_json_codecache *upb_json_codecache_new(void) { upb_alloc *alloc; upb_json_codecache *c; c = upb_gmalloc(sizeof(*c)); c->arena = upb_arena_new(); alloc = upb_arena_alloc(c->arena); upb_inttable_init2(&c->methods, UPB_CTYPE_CONSTPTR, alloc); return c; } void upb_json_codecache_free(upb_json_codecache *c) { upb_arena_free(c->arena); upb_gfree(c); } const upb_json_parsermethod *upb_json_codecache_get(upb_json_codecache *c, const upb_msgdef *md) { upb_json_parsermethod *m; upb_value v; upb_msg_field_iter i; upb_alloc *alloc = upb_arena_alloc(c->arena); if (upb_inttable_lookupptr(&c->methods, md, &v)) { return upb_value_getconstptr(v); } m = parsermethod_new(c, md); v = upb_value_constptr(m); if (!m) return NULL; if (!upb_inttable_insertptr2(&c->methods, md, v, alloc)) return NULL; /* Populate parser methods for all submessages, so the name tables will * be available during parsing. */ for(upb_msg_field_begin(&i, md); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { upb_fielddef *f = upb_msg_iter_field(&i); if (upb_fielddef_issubmsg(f)) { const upb_msgdef *subdef = upb_fielddef_msgsubdef(f); const upb_json_parsermethod *sub_method = upb_json_codecache_get(c, subdef); if (!sub_method) return NULL; } } return m; } /* ** This currently uses snprintf() to format primitives, and could be optimized ** further. */ #include #include #include #include struct upb_json_printer { upb_sink input_; /* BytesSink closure. */ void *subc_; upb_bytessink output_; /* We track the depth so that we know when to emit startstr/endstr on the * output. */ int depth_; /* Have we emitted the first element? This state is necessary to emit commas * without leaving a trailing comma in arrays/maps. We keep this state per * frame depth. * * Why max_depth * 2? UPB_MAX_HANDLER_DEPTH counts depth as nested messages. * We count frames (contexts in which we separate elements by commas) as both * repeated fields and messages (maps), and the worst case is a * message->repeated field->submessage->repeated field->... nesting. */ bool first_elem_[UPB_MAX_HANDLER_DEPTH * 2]; /* To print timestamp, printer needs to cache its seconds and nanos values * and convert them when ending timestamp message. See comments of * printer_sethandlers_timestamp for more detail. */ int64_t seconds; int32_t nanos; }; /* StringPiece; a pointer plus a length. */ typedef struct { char *ptr; size_t len; } strpc; void freestrpc(void *ptr) { strpc *pc = ptr; upb_gfree(pc->ptr); upb_gfree(pc); } typedef struct { bool preserve_fieldnames; } upb_json_printercache; /* Convert fielddef name to JSON name and return as a string piece. */ strpc *newstrpc(upb_handlers *h, const upb_fielddef *f, bool preserve_fieldnames) { /* TODO(haberman): handle malloc failure. */ strpc *ret = upb_gmalloc(sizeof(*ret)); if (preserve_fieldnames) { ret->ptr = upb_gstrdup(upb_fielddef_name(f)); ret->len = strlen(ret->ptr); } else { size_t len; ret->len = upb_fielddef_getjsonname(f, NULL, 0); ret->ptr = upb_gmalloc(ret->len); len = upb_fielddef_getjsonname(f, ret->ptr, ret->len); UPB_ASSERT(len == ret->len); ret->len--; /* NULL */ } upb_handlers_addcleanup(h, ret, freestrpc); return ret; } /* Convert a null-terminated const char* to a string piece. */ strpc *newstrpc_str(upb_handlers *h, const char * str) { strpc * ret = upb_gmalloc(sizeof(*ret)); ret->ptr = upb_gstrdup(str); ret->len = strlen(str); upb_handlers_addcleanup(h, ret, freestrpc); return ret; } /* ------------ JSON string printing: values, maps, arrays ------------------ */ static void print_data( upb_json_printer *p, const char *buf, unsigned int len) { /* TODO: Will need to change if we support pushback from the sink. */ size_t n = upb_bytessink_putbuf(p->output_, p->subc_, buf, len, NULL); UPB_ASSERT(n == len); } static void print_comma(upb_json_printer *p) { if (!p->first_elem_[p->depth_]) { print_data(p, ",", 1); } p->first_elem_[p->depth_] = false; } /* Helpers that print properly formatted elements to the JSON output stream. */ /* Used for escaping control chars in strings. */ static const char kControlCharLimit = 0x20; UPB_INLINE bool is_json_escaped(char c) { /* See RFC 4627. */ unsigned char uc = (unsigned char)c; return uc < kControlCharLimit || uc == '"' || uc == '\\'; } UPB_INLINE const char* json_nice_escape(char c) { switch (c) { case '"': return "\\\""; case '\\': return "\\\\"; case '\b': return "\\b"; case '\f': return "\\f"; case '\n': return "\\n"; case '\r': return "\\r"; case '\t': return "\\t"; default: return NULL; } } /* Write a properly escaped string chunk. The surrounding quotes are *not* * printed; this is so that the caller has the option of emitting the string * content in chunks. */ static void putstring(upb_json_printer *p, const char *buf, unsigned int len) { const char* unescaped_run = NULL; unsigned int i; for (i = 0; i < len; i++) { char c = buf[i]; /* Handle escaping. */ if (is_json_escaped(c)) { /* Use a "nice" escape, like \n, if one exists for this character. */ const char* escape = json_nice_escape(c); /* If we don't have a specific 'nice' escape code, use a \uXXXX-style * escape. */ char escape_buf[8]; if (!escape) { unsigned char byte = (unsigned char)c; _upb_snprintf(escape_buf, sizeof(escape_buf), "\\u%04x", (int)byte); escape = escape_buf; } /* N.B. that we assume that the input encoding is equal to the output * encoding (both UTF-8 for now), so for chars >= 0x20 and != \, ", we * can simply pass the bytes through. */ /* If there's a current run of unescaped chars, print that run first. */ if (unescaped_run) { print_data(p, unescaped_run, &buf[i] - unescaped_run); unescaped_run = NULL; } /* Then print the escape code. */ print_data(p, escape, strlen(escape)); } else { /* Add to the current unescaped run of characters. */ if (unescaped_run == NULL) { unescaped_run = &buf[i]; } } } /* If the string ended in a run of unescaped characters, print that last run. */ if (unescaped_run) { print_data(p, unescaped_run, &buf[len] - unescaped_run); } } #define CHKLENGTH(x) if (!(x)) return -1; /* Helpers that format floating point values according to our custom formats. * Right now we use %.8g and %.17g for float/double, respectively, to match * proto2::util::JsonFormat's defaults. May want to change this later. */ const char neginf[] = "\"-Infinity\""; const char inf[] = "\"Infinity\""; static size_t fmt_double(double val, char* buf, size_t length) { if (val == UPB_INFINITY) { CHKLENGTH(length >= strlen(inf)); strcpy(buf, inf); return strlen(inf); } else if (val == -UPB_INFINITY) { CHKLENGTH(length >= strlen(neginf)); strcpy(buf, neginf); return strlen(neginf); } else { size_t n = _upb_snprintf(buf, length, "%.17g", val); CHKLENGTH(n > 0 && n < length); return n; } } static size_t fmt_float(float val, char* buf, size_t length) { size_t n = _upb_snprintf(buf, length, "%.8g", val); CHKLENGTH(n > 0 && n < length); return n; } static size_t fmt_bool(bool val, char* buf, size_t length) { size_t n = _upb_snprintf(buf, length, "%s", (val ? "true" : "false")); CHKLENGTH(n > 0 && n < length); return n; } static size_t fmt_int64_as_number(long long val, char* buf, size_t length) { size_t n = _upb_snprintf(buf, length, "%lld", val); CHKLENGTH(n > 0 && n < length); return n; } static size_t fmt_uint64_as_number( unsigned long long val, char* buf, size_t length) { size_t n = _upb_snprintf(buf, length, "%llu", val); CHKLENGTH(n > 0 && n < length); return n; } static size_t fmt_int64_as_string(long long val, char* buf, size_t length) { size_t n = _upb_snprintf(buf, length, "\"%lld\"", val); CHKLENGTH(n > 0 && n < length); return n; } static size_t fmt_uint64_as_string( unsigned long long val, char* buf, size_t length) { size_t n = _upb_snprintf(buf, length, "\"%llu\"", val); CHKLENGTH(n > 0 && n < length); return n; } /* Print a map key given a field name. Called by scalar field handlers and by * startseq for repeated fields. */ static bool putkey(void *closure, const void *handler_data) { upb_json_printer *p = closure; const strpc *key = handler_data; print_comma(p); print_data(p, "\"", 1); putstring(p, key->ptr, key->len); print_data(p, "\":", 2); return true; } #define CHKFMT(val) if ((val) == (size_t)-1) return false; #define CHK(val) if (!(val)) return false; #define TYPE_HANDLERS(type, fmt_func) \ static bool put##type(void *closure, const void *handler_data, type val) { \ upb_json_printer *p = closure; \ char data[64]; \ size_t length = fmt_func(val, data, sizeof(data)); \ UPB_UNUSED(handler_data); \ CHKFMT(length); \ print_data(p, data, length); \ return true; \ } \ static bool scalar_##type(void *closure, const void *handler_data, \ type val) { \ CHK(putkey(closure, handler_data)); \ CHK(put##type(closure, handler_data, val)); \ return true; \ } \ static bool repeated_##type(void *closure, const void *handler_data, \ type val) { \ upb_json_printer *p = closure; \ print_comma(p); \ CHK(put##type(closure, handler_data, val)); \ return true; \ } #define TYPE_HANDLERS_MAPKEY(type, fmt_func) \ static bool putmapkey_##type(void *closure, const void *handler_data, \ type val) { \ upb_json_printer *p = closure; \ char data[64]; \ size_t length = fmt_func(val, data, sizeof(data)); \ UPB_UNUSED(handler_data); \ print_data(p, "\"", 1); \ print_data(p, data, length); \ print_data(p, "\":", 2); \ return true; \ } TYPE_HANDLERS(double, fmt_double) TYPE_HANDLERS(float, fmt_float) TYPE_HANDLERS(bool, fmt_bool) TYPE_HANDLERS(int32_t, fmt_int64_as_number) TYPE_HANDLERS(uint32_t, fmt_int64_as_number) TYPE_HANDLERS(int64_t, fmt_int64_as_string) TYPE_HANDLERS(uint64_t, fmt_uint64_as_string) /* double and float are not allowed to be map keys. */ TYPE_HANDLERS_MAPKEY(bool, fmt_bool) TYPE_HANDLERS_MAPKEY(int32_t, fmt_int64_as_number) TYPE_HANDLERS_MAPKEY(uint32_t, fmt_int64_as_number) TYPE_HANDLERS_MAPKEY(int64_t, fmt_int64_as_number) TYPE_HANDLERS_MAPKEY(uint64_t, fmt_uint64_as_number) #undef TYPE_HANDLERS #undef TYPE_HANDLERS_MAPKEY typedef struct { void *keyname; const upb_enumdef *enumdef; } EnumHandlerData; static bool scalar_enum(void *closure, const void *handler_data, int32_t val) { const EnumHandlerData *hd = handler_data; upb_json_printer *p = closure; const char *symbolic_name; CHK(putkey(closure, hd->keyname)); symbolic_name = upb_enumdef_iton(hd->enumdef, val); if (symbolic_name) { print_data(p, "\"", 1); putstring(p, symbolic_name, strlen(symbolic_name)); print_data(p, "\"", 1); } else { putint32_t(closure, NULL, val); } return true; } static void print_enum_symbolic_name(upb_json_printer *p, const upb_enumdef *def, int32_t val) { const char *symbolic_name = upb_enumdef_iton(def, val); if (symbolic_name) { print_data(p, "\"", 1); putstring(p, symbolic_name, strlen(symbolic_name)); print_data(p, "\"", 1); } else { putint32_t(p, NULL, val); } } static bool repeated_enum(void *closure, const void *handler_data, int32_t val) { const EnumHandlerData *hd = handler_data; upb_json_printer *p = closure; print_comma(p); print_enum_symbolic_name(p, hd->enumdef, val); return true; } static bool mapvalue_enum(void *closure, const void *handler_data, int32_t val) { const EnumHandlerData *hd = handler_data; upb_json_printer *p = closure; print_enum_symbolic_name(p, hd->enumdef, val); return true; } static void *scalar_startsubmsg(void *closure, const void *handler_data) { return putkey(closure, handler_data) ? closure : UPB_BREAK; } static void *repeated_startsubmsg(void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); print_comma(p); return closure; } static void start_frame(upb_json_printer *p) { p->depth_++; p->first_elem_[p->depth_] = true; print_data(p, "{", 1); } static void end_frame(upb_json_printer *p) { print_data(p, "}", 1); p->depth_--; } static bool printer_startmsg(void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); if (p->depth_ == 0) { upb_bytessink_start(p->output_, 0, &p->subc_); } start_frame(p); return true; } static bool printer_endmsg(void *closure, const void *handler_data, upb_status *s) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); UPB_UNUSED(s); end_frame(p); if (p->depth_ == 0) { upb_bytessink_end(p->output_); } return true; } static void *startseq(void *closure, const void *handler_data) { upb_json_printer *p = closure; CHK(putkey(closure, handler_data)); p->depth_++; p->first_elem_[p->depth_] = true; print_data(p, "[", 1); return closure; } static bool endseq(void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); print_data(p, "]", 1); p->depth_--; return true; } static void *startmap(void *closure, const void *handler_data) { upb_json_printer *p = closure; CHK(putkey(closure, handler_data)); p->depth_++; p->first_elem_[p->depth_] = true; print_data(p, "{", 1); return closure; } static bool endmap(void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); print_data(p, "}", 1); p->depth_--; return true; } static size_t putstr(void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); UPB_UNUSED(handle); putstring(p, str, len); return len; } /* This has to Base64 encode the bytes, because JSON has no "bytes" type. */ static size_t putbytes(void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { upb_json_printer *p = closure; /* This is the regular base64, not the "web-safe" version. */ static const char base64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; /* Base64-encode. */ char data[16000]; const char *limit = data + sizeof(data); const unsigned char *from = (const unsigned char*)str; char *to = data; size_t remaining = len; size_t bytes; UPB_UNUSED(handler_data); UPB_UNUSED(handle); print_data(p, "\"", 1); while (remaining > 2) { if (limit - to < 4) { bytes = to - data; putstring(p, data, bytes); to = data; } to[0] = base64[from[0] >> 2]; to[1] = base64[((from[0] & 0x3) << 4) | (from[1] >> 4)]; to[2] = base64[((from[1] & 0xf) << 2) | (from[2] >> 6)]; to[3] = base64[from[2] & 0x3f]; remaining -= 3; to += 4; from += 3; } switch (remaining) { case 2: to[0] = base64[from[0] >> 2]; to[1] = base64[((from[0] & 0x3) << 4) | (from[1] >> 4)]; to[2] = base64[(from[1] & 0xf) << 2]; to[3] = '='; to += 4; from += 2; break; case 1: to[0] = base64[from[0] >> 2]; to[1] = base64[((from[0] & 0x3) << 4)]; to[2] = '='; to[3] = '='; to += 4; from += 1; break; } bytes = to - data; putstring(p, data, bytes); print_data(p, "\"", 1); return len; } static void *scalar_startstr(void *closure, const void *handler_data, size_t size_hint) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); UPB_UNUSED(size_hint); CHK(putkey(closure, handler_data)); print_data(p, "\"", 1); return p; } static size_t scalar_str(void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { CHK(putstr(closure, handler_data, str, len, handle)); return len; } static bool scalar_endstr(void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); print_data(p, "\"", 1); return true; } static void *repeated_startstr(void *closure, const void *handler_data, size_t size_hint) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); UPB_UNUSED(size_hint); print_comma(p); print_data(p, "\"", 1); return p; } static size_t repeated_str(void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { CHK(putstr(closure, handler_data, str, len, handle)); return len; } static bool repeated_endstr(void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); print_data(p, "\"", 1); return true; } static void *mapkeyval_startstr(void *closure, const void *handler_data, size_t size_hint) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); UPB_UNUSED(size_hint); print_data(p, "\"", 1); return p; } static size_t mapkey_str(void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { CHK(putstr(closure, handler_data, str, len, handle)); return len; } static bool mapkey_endstr(void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); print_data(p, "\":", 2); return true; } static bool mapvalue_endstr(void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); print_data(p, "\"", 1); return true; } static size_t scalar_bytes(void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { CHK(putkey(closure, handler_data)); CHK(putbytes(closure, handler_data, str, len, handle)); return len; } static size_t repeated_bytes(void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { upb_json_printer *p = closure; print_comma(p); CHK(putbytes(closure, handler_data, str, len, handle)); return len; } static size_t mapkey_bytes(void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { upb_json_printer *p = closure; CHK(putbytes(closure, handler_data, str, len, handle)); print_data(p, ":", 1); return len; } static void set_enum_hd(upb_handlers *h, const upb_fielddef *f, bool preserve_fieldnames, upb_handlerattr *attr) { EnumHandlerData *hd = upb_gmalloc(sizeof(EnumHandlerData)); hd->enumdef = upb_fielddef_enumsubdef(f); hd->keyname = newstrpc(h, f, preserve_fieldnames); upb_handlers_addcleanup(h, hd, upb_gfree); attr->handler_data = hd; } /* Set up handlers for a mapentry submessage (i.e., an individual key/value pair * in a map). * * TODO: Handle missing key, missing value, out-of-order key/value, or repeated * key or value cases properly. The right way to do this is to allocate a * temporary structure at the start of a mapentry submessage, store key and * value data in it as key and value handlers are called, and then print the * key/value pair once at the end of the submessage. If we don't do this, we * should at least detect the case and throw an error. However, so far all of * our sources that emit mapentry messages do so canonically (with one key * field, and then one value field), so this is not a pressing concern at the * moment. */ void printer_sethandlers_mapentry(const void *closure, bool preserve_fieldnames, upb_handlers *h) { const upb_msgdef *md = upb_handlers_msgdef(h); /* A mapentry message is printed simply as '"key": value'. Rather than * special-case key and value for every type below, we just handle both * fields explicitly here. */ const upb_fielddef* key_field = upb_msgdef_itof(md, UPB_MAPENTRY_KEY); const upb_fielddef* value_field = upb_msgdef_itof(md, UPB_MAPENTRY_VALUE); upb_handlerattr empty_attr = UPB_HANDLERATTR_INIT; UPB_UNUSED(closure); switch (upb_fielddef_type(key_field)) { case UPB_TYPE_INT32: upb_handlers_setint32(h, key_field, putmapkey_int32_t, &empty_attr); break; case UPB_TYPE_INT64: upb_handlers_setint64(h, key_field, putmapkey_int64_t, &empty_attr); break; case UPB_TYPE_UINT32: upb_handlers_setuint32(h, key_field, putmapkey_uint32_t, &empty_attr); break; case UPB_TYPE_UINT64: upb_handlers_setuint64(h, key_field, putmapkey_uint64_t, &empty_attr); break; case UPB_TYPE_BOOL: upb_handlers_setbool(h, key_field, putmapkey_bool, &empty_attr); break; case UPB_TYPE_STRING: upb_handlers_setstartstr(h, key_field, mapkeyval_startstr, &empty_attr); upb_handlers_setstring(h, key_field, mapkey_str, &empty_attr); upb_handlers_setendstr(h, key_field, mapkey_endstr, &empty_attr); break; case UPB_TYPE_BYTES: upb_handlers_setstring(h, key_field, mapkey_bytes, &empty_attr); break; default: UPB_ASSERT(false); break; } switch (upb_fielddef_type(value_field)) { case UPB_TYPE_INT32: upb_handlers_setint32(h, value_field, putint32_t, &empty_attr); break; case UPB_TYPE_INT64: upb_handlers_setint64(h, value_field, putint64_t, &empty_attr); break; case UPB_TYPE_UINT32: upb_handlers_setuint32(h, value_field, putuint32_t, &empty_attr); break; case UPB_TYPE_UINT64: upb_handlers_setuint64(h, value_field, putuint64_t, &empty_attr); break; case UPB_TYPE_BOOL: upb_handlers_setbool(h, value_field, putbool, &empty_attr); break; case UPB_TYPE_FLOAT: upb_handlers_setfloat(h, value_field, putfloat, &empty_attr); break; case UPB_TYPE_DOUBLE: upb_handlers_setdouble(h, value_field, putdouble, &empty_attr); break; case UPB_TYPE_STRING: upb_handlers_setstartstr(h, value_field, mapkeyval_startstr, &empty_attr); upb_handlers_setstring(h, value_field, putstr, &empty_attr); upb_handlers_setendstr(h, value_field, mapvalue_endstr, &empty_attr); break; case UPB_TYPE_BYTES: upb_handlers_setstring(h, value_field, putbytes, &empty_attr); break; case UPB_TYPE_ENUM: { upb_handlerattr enum_attr = UPB_HANDLERATTR_INIT; set_enum_hd(h, value_field, preserve_fieldnames, &enum_attr); upb_handlers_setint32(h, value_field, mapvalue_enum, &enum_attr); break; } case UPB_TYPE_MESSAGE: /* No handler necessary -- the submsg handlers will print the message * as appropriate. */ break; } } static bool putseconds(void *closure, const void *handler_data, int64_t seconds) { upb_json_printer *p = closure; p->seconds = seconds; UPB_UNUSED(handler_data); return true; } static bool putnanos(void *closure, const void *handler_data, int32_t nanos) { upb_json_printer *p = closure; p->nanos = nanos; UPB_UNUSED(handler_data); return true; } static void *scalar_startstr_nokey(void *closure, const void *handler_data, size_t size_hint) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); UPB_UNUSED(size_hint); print_data(p, "\"", 1); return p; } static size_t putstr_nokey(void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); UPB_UNUSED(handle); print_data(p, "\"", 1); putstring(p, str, len); print_data(p, "\"", 1); return len + 2; } static void *startseq_nokey(void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); p->depth_++; p->first_elem_[p->depth_] = true; print_data(p, "[", 1); return closure; } static void *startseq_fieldmask(void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); p->depth_++; p->first_elem_[p->depth_] = true; return closure; } static bool endseq_fieldmask(void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); p->depth_--; return true; } static void *repeated_startstr_fieldmask( void *closure, const void *handler_data, size_t size_hint) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); UPB_UNUSED(size_hint); print_comma(p); return p; } static size_t repeated_str_fieldmask( void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { const char* limit = str + len; bool upper = false; size_t result_len = 0; for (; str < limit; str++) { if (*str == '_') { upper = true; continue; } if (upper && *str >= 'a' && *str <= 'z') { char upper_char = toupper(*str); CHK(putstr(closure, handler_data, &upper_char, 1, handle)); } else { CHK(putstr(closure, handler_data, str, 1, handle)); } upper = false; result_len++; } return result_len; } static void *startmap_nokey(void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); p->depth_++; p->first_elem_[p->depth_] = true; print_data(p, "{", 1); return closure; } static bool putnull(void *closure, const void *handler_data, int32_t null) { upb_json_printer *p = closure; print_data(p, "null", 4); UPB_UNUSED(handler_data); UPB_UNUSED(null); return true; } static bool printer_startdurationmsg(void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); if (p->depth_ == 0) { upb_bytessink_start(p->output_, 0, &p->subc_); } return true; } #define UPB_DURATION_MAX_JSON_LEN 23 #define UPB_DURATION_MAX_NANO_LEN 9 static bool printer_enddurationmsg(void *closure, const void *handler_data, upb_status *s) { upb_json_printer *p = closure; char buffer[UPB_DURATION_MAX_JSON_LEN]; size_t base_len; size_t curr; size_t i; memset(buffer, 0, UPB_DURATION_MAX_JSON_LEN); if (p->seconds < -315576000000) { upb_status_seterrf(s, "error parsing duration: " "minimum acceptable value is " "-315576000000"); return false; } if (p->seconds > 315576000000) { upb_status_seterrf(s, "error serializing duration: " "maximum acceptable value is " "315576000000"); return false; } _upb_snprintf(buffer, sizeof(buffer), "%ld", (long)p->seconds); base_len = strlen(buffer); if (p->nanos != 0) { char nanos_buffer[UPB_DURATION_MAX_NANO_LEN + 3]; _upb_snprintf(nanos_buffer, sizeof(nanos_buffer), "%.9f", p->nanos / 1000000000.0); /* Remove trailing 0. */ for (i = UPB_DURATION_MAX_NANO_LEN + 2; nanos_buffer[i] == '0'; i--) { nanos_buffer[i] = 0; } strcpy(buffer + base_len, nanos_buffer + 1); } curr = strlen(buffer); strcpy(buffer + curr, "s"); p->seconds = 0; p->nanos = 0; print_data(p, "\"", 1); print_data(p, buffer, strlen(buffer)); print_data(p, "\"", 1); if (p->depth_ == 0) { upb_bytessink_end(p->output_); } UPB_UNUSED(handler_data); return true; } static bool printer_starttimestampmsg(void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); if (p->depth_ == 0) { upb_bytessink_start(p->output_, 0, &p->subc_); } return true; } #define UPB_TIMESTAMP_MAX_JSON_LEN 31 #define UPB_TIMESTAMP_BEFORE_NANO_LEN 19 #define UPB_TIMESTAMP_MAX_NANO_LEN 9 static bool printer_endtimestampmsg(void *closure, const void *handler_data, upb_status *s) { upb_json_printer *p = closure; char buffer[UPB_TIMESTAMP_MAX_JSON_LEN]; time_t time = p->seconds; size_t curr; size_t i; size_t year_length = strftime(buffer, UPB_TIMESTAMP_MAX_JSON_LEN, "%Y", gmtime(&time)); if (p->seconds < -62135596800) { upb_status_seterrf(s, "error parsing timestamp: " "minimum acceptable value is " "0001-01-01T00:00:00Z"); return false; } if (p->seconds > 253402300799) { upb_status_seterrf(s, "error parsing timestamp: " "maximum acceptable value is " "9999-12-31T23:59:59Z"); return false; } /* strftime doesn't guarantee 4 digits for year. Prepend 0 by ourselves. */ for (i = 0; i < 4 - year_length; i++) { buffer[i] = '0'; } strftime(buffer + (4 - year_length), UPB_TIMESTAMP_MAX_JSON_LEN, "%Y-%m-%dT%H:%M:%S", gmtime(&time)); if (p->nanos != 0) { char nanos_buffer[UPB_TIMESTAMP_MAX_NANO_LEN + 3]; _upb_snprintf(nanos_buffer, sizeof(nanos_buffer), "%.9f", p->nanos / 1000000000.0); /* Remove trailing 0. */ for (i = UPB_TIMESTAMP_MAX_NANO_LEN + 2; nanos_buffer[i] == '0'; i--) { nanos_buffer[i] = 0; } strcpy(buffer + UPB_TIMESTAMP_BEFORE_NANO_LEN, nanos_buffer + 1); } curr = strlen(buffer); strcpy(buffer + curr, "Z"); p->seconds = 0; p->nanos = 0; print_data(p, "\"", 1); print_data(p, buffer, strlen(buffer)); print_data(p, "\"", 1); if (p->depth_ == 0) { upb_bytessink_end(p->output_); } UPB_UNUSED(handler_data); UPB_UNUSED(s); return true; } static bool printer_startmsg_noframe(void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); if (p->depth_ == 0) { upb_bytessink_start(p->output_, 0, &p->subc_); } return true; } static bool printer_endmsg_noframe( void *closure, const void *handler_data, upb_status *s) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); UPB_UNUSED(s); if (p->depth_ == 0) { upb_bytessink_end(p->output_); } return true; } static bool printer_startmsg_fieldmask( void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); if (p->depth_ == 0) { upb_bytessink_start(p->output_, 0, &p->subc_); } print_data(p, "\"", 1); return true; } static bool printer_endmsg_fieldmask( void *closure, const void *handler_data, upb_status *s) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); UPB_UNUSED(s); print_data(p, "\"", 1); if (p->depth_ == 0) { upb_bytessink_end(p->output_); } return true; } static void *scalar_startstr_onlykey( void *closure, const void *handler_data, size_t size_hint) { upb_json_printer *p = closure; UPB_UNUSED(size_hint); CHK(putkey(closure, handler_data)); return p; } /* Set up handlers for an Any submessage. */ void printer_sethandlers_any(const void *closure, upb_handlers *h) { const upb_msgdef *md = upb_handlers_msgdef(h); const upb_fielddef* type_field = upb_msgdef_itof(md, UPB_ANY_TYPE); const upb_fielddef* value_field = upb_msgdef_itof(md, UPB_ANY_VALUE); upb_handlerattr empty_attr = UPB_HANDLERATTR_INIT; /* type_url's json name is "@type" */ upb_handlerattr type_name_attr = UPB_HANDLERATTR_INIT; upb_handlerattr value_name_attr = UPB_HANDLERATTR_INIT; strpc *type_url_json_name = newstrpc_str(h, "@type"); strpc *value_json_name = newstrpc_str(h, "value"); type_name_attr.handler_data = type_url_json_name; value_name_attr.handler_data = value_json_name; /* Set up handlers. */ upb_handlers_setstartmsg(h, printer_startmsg, &empty_attr); upb_handlers_setendmsg(h, printer_endmsg, &empty_attr); upb_handlers_setstartstr(h, type_field, scalar_startstr, &type_name_attr); upb_handlers_setstring(h, type_field, scalar_str, &empty_attr); upb_handlers_setendstr(h, type_field, scalar_endstr, &empty_attr); /* This is not the full and correct JSON encoding for the Any value field. It * requires further processing by the wrapper code based on the type URL. */ upb_handlers_setstartstr(h, value_field, scalar_startstr_onlykey, &value_name_attr); UPB_UNUSED(closure); } /* Set up handlers for a fieldmask submessage. */ void printer_sethandlers_fieldmask(const void *closure, upb_handlers *h) { const upb_msgdef *md = upb_handlers_msgdef(h); const upb_fielddef* f = upb_msgdef_itof(md, 1); upb_handlerattr empty_attr = UPB_HANDLERATTR_INIT; upb_handlers_setstartseq(h, f, startseq_fieldmask, &empty_attr); upb_handlers_setendseq(h, f, endseq_fieldmask, &empty_attr); upb_handlers_setstartmsg(h, printer_startmsg_fieldmask, &empty_attr); upb_handlers_setendmsg(h, printer_endmsg_fieldmask, &empty_attr); upb_handlers_setstartstr(h, f, repeated_startstr_fieldmask, &empty_attr); upb_handlers_setstring(h, f, repeated_str_fieldmask, &empty_attr); UPB_UNUSED(closure); } /* Set up handlers for a duration submessage. */ void printer_sethandlers_duration(const void *closure, upb_handlers *h) { const upb_msgdef *md = upb_handlers_msgdef(h); const upb_fielddef* seconds_field = upb_msgdef_itof(md, UPB_DURATION_SECONDS); const upb_fielddef* nanos_field = upb_msgdef_itof(md, UPB_DURATION_NANOS); upb_handlerattr empty_attr = UPB_HANDLERATTR_INIT; upb_handlers_setstartmsg(h, printer_startdurationmsg, &empty_attr); upb_handlers_setint64(h, seconds_field, putseconds, &empty_attr); upb_handlers_setint32(h, nanos_field, putnanos, &empty_attr); upb_handlers_setendmsg(h, printer_enddurationmsg, &empty_attr); UPB_UNUSED(closure); } /* Set up handlers for a timestamp submessage. Instead of printing fields * separately, the json representation of timestamp follows RFC 3339 */ void printer_sethandlers_timestamp(const void *closure, upb_handlers *h) { const upb_msgdef *md = upb_handlers_msgdef(h); const upb_fielddef* seconds_field = upb_msgdef_itof(md, UPB_TIMESTAMP_SECONDS); const upb_fielddef* nanos_field = upb_msgdef_itof(md, UPB_TIMESTAMP_NANOS); upb_handlerattr empty_attr = UPB_HANDLERATTR_INIT; upb_handlers_setstartmsg(h, printer_starttimestampmsg, &empty_attr); upb_handlers_setint64(h, seconds_field, putseconds, &empty_attr); upb_handlers_setint32(h, nanos_field, putnanos, &empty_attr); upb_handlers_setendmsg(h, printer_endtimestampmsg, &empty_attr); UPB_UNUSED(closure); } void printer_sethandlers_value(const void *closure, upb_handlers *h) { const upb_msgdef *md = upb_handlers_msgdef(h); upb_msg_field_iter i; upb_handlerattr empty_attr = UPB_HANDLERATTR_INIT; upb_handlers_setstartmsg(h, printer_startmsg_noframe, &empty_attr); upb_handlers_setendmsg(h, printer_endmsg_noframe, &empty_attr); upb_msg_field_begin(&i, md); for(; !upb_msg_field_done(&i); upb_msg_field_next(&i)) { const upb_fielddef *f = upb_msg_iter_field(&i); switch (upb_fielddef_type(f)) { case UPB_TYPE_ENUM: upb_handlers_setint32(h, f, putnull, &empty_attr); break; case UPB_TYPE_DOUBLE: upb_handlers_setdouble(h, f, putdouble, &empty_attr); break; case UPB_TYPE_STRING: upb_handlers_setstartstr(h, f, scalar_startstr_nokey, &empty_attr); upb_handlers_setstring(h, f, scalar_str, &empty_attr); upb_handlers_setendstr(h, f, scalar_endstr, &empty_attr); break; case UPB_TYPE_BOOL: upb_handlers_setbool(h, f, putbool, &empty_attr); break; case UPB_TYPE_MESSAGE: break; default: UPB_ASSERT(false); break; } } UPB_UNUSED(closure); } #define WRAPPER_SETHANDLERS(wrapper, type, putmethod) \ void printer_sethandlers_##wrapper(const void *closure, upb_handlers *h) { \ const upb_msgdef *md = upb_handlers_msgdef(h); \ const upb_fielddef* f = upb_msgdef_itof(md, 1); \ upb_handlerattr empty_attr = UPB_HANDLERATTR_INIT; \ upb_handlers_setstartmsg(h, printer_startmsg_noframe, &empty_attr); \ upb_handlers_setendmsg(h, printer_endmsg_noframe, &empty_attr); \ upb_handlers_set##type(h, f, putmethod, &empty_attr); \ UPB_UNUSED(closure); \ } WRAPPER_SETHANDLERS(doublevalue, double, putdouble) WRAPPER_SETHANDLERS(floatvalue, float, putfloat) WRAPPER_SETHANDLERS(int64value, int64, putint64_t) WRAPPER_SETHANDLERS(uint64value, uint64, putuint64_t) WRAPPER_SETHANDLERS(int32value, int32, putint32_t) WRAPPER_SETHANDLERS(uint32value, uint32, putuint32_t) WRAPPER_SETHANDLERS(boolvalue, bool, putbool) WRAPPER_SETHANDLERS(stringvalue, string, putstr_nokey) WRAPPER_SETHANDLERS(bytesvalue, string, putbytes) #undef WRAPPER_SETHANDLERS void printer_sethandlers_listvalue(const void *closure, upb_handlers *h) { const upb_msgdef *md = upb_handlers_msgdef(h); const upb_fielddef* f = upb_msgdef_itof(md, 1); upb_handlerattr empty_attr = UPB_HANDLERATTR_INIT; upb_handlers_setstartseq(h, f, startseq_nokey, &empty_attr); upb_handlers_setendseq(h, f, endseq, &empty_attr); upb_handlers_setstartmsg(h, printer_startmsg_noframe, &empty_attr); upb_handlers_setendmsg(h, printer_endmsg_noframe, &empty_attr); upb_handlers_setstartsubmsg(h, f, repeated_startsubmsg, &empty_attr); UPB_UNUSED(closure); } void printer_sethandlers_structvalue(const void *closure, upb_handlers *h) { const upb_msgdef *md = upb_handlers_msgdef(h); const upb_fielddef* f = upb_msgdef_itof(md, 1); upb_handlerattr empty_attr = UPB_HANDLERATTR_INIT; upb_handlers_setstartseq(h, f, startmap_nokey, &empty_attr); upb_handlers_setendseq(h, f, endmap, &empty_attr); upb_handlers_setstartmsg(h, printer_startmsg_noframe, &empty_attr); upb_handlers_setendmsg(h, printer_endmsg_noframe, &empty_attr); upb_handlers_setstartsubmsg(h, f, repeated_startsubmsg, &empty_attr); UPB_UNUSED(closure); } void printer_sethandlers(const void *closure, upb_handlers *h) { const upb_msgdef *md = upb_handlers_msgdef(h); bool is_mapentry = upb_msgdef_mapentry(md); upb_handlerattr empty_attr = UPB_HANDLERATTR_INIT; upb_msg_field_iter i; const upb_json_printercache *cache = closure; const bool preserve_fieldnames = cache->preserve_fieldnames; if (is_mapentry) { /* mapentry messages are sufficiently different that we handle them * separately. */ printer_sethandlers_mapentry(closure, preserve_fieldnames, h); return; } switch (upb_msgdef_wellknowntype(md)) { case UPB_WELLKNOWN_UNSPECIFIED: break; case UPB_WELLKNOWN_ANY: printer_sethandlers_any(closure, h); return; case UPB_WELLKNOWN_FIELDMASK: printer_sethandlers_fieldmask(closure, h); return; case UPB_WELLKNOWN_DURATION: printer_sethandlers_duration(closure, h); return; case UPB_WELLKNOWN_TIMESTAMP: printer_sethandlers_timestamp(closure, h); return; case UPB_WELLKNOWN_VALUE: printer_sethandlers_value(closure, h); return; case UPB_WELLKNOWN_LISTVALUE: printer_sethandlers_listvalue(closure, h); return; case UPB_WELLKNOWN_STRUCT: printer_sethandlers_structvalue(closure, h); return; #define WRAPPER(wellknowntype, name) \ case wellknowntype: \ printer_sethandlers_##name(closure, h); \ return; \ WRAPPER(UPB_WELLKNOWN_DOUBLEVALUE, doublevalue); WRAPPER(UPB_WELLKNOWN_FLOATVALUE, floatvalue); WRAPPER(UPB_WELLKNOWN_INT64VALUE, int64value); WRAPPER(UPB_WELLKNOWN_UINT64VALUE, uint64value); WRAPPER(UPB_WELLKNOWN_INT32VALUE, int32value); WRAPPER(UPB_WELLKNOWN_UINT32VALUE, uint32value); WRAPPER(UPB_WELLKNOWN_BOOLVALUE, boolvalue); WRAPPER(UPB_WELLKNOWN_STRINGVALUE, stringvalue); WRAPPER(UPB_WELLKNOWN_BYTESVALUE, bytesvalue); #undef WRAPPER } upb_handlers_setstartmsg(h, printer_startmsg, &empty_attr); upb_handlers_setendmsg(h, printer_endmsg, &empty_attr); #define TYPE(type, name, ctype) \ case type: \ if (upb_fielddef_isseq(f)) { \ upb_handlers_set##name(h, f, repeated_##ctype, &empty_attr); \ } else { \ upb_handlers_set##name(h, f, scalar_##ctype, &name_attr); \ } \ break; upb_msg_field_begin(&i, md); for(; !upb_msg_field_done(&i); upb_msg_field_next(&i)) { const upb_fielddef *f = upb_msg_iter_field(&i); upb_handlerattr name_attr = UPB_HANDLERATTR_INIT; name_attr.handler_data = newstrpc(h, f, preserve_fieldnames); if (upb_fielddef_ismap(f)) { upb_handlers_setstartseq(h, f, startmap, &name_attr); upb_handlers_setendseq(h, f, endmap, &name_attr); } else if (upb_fielddef_isseq(f)) { upb_handlers_setstartseq(h, f, startseq, &name_attr); upb_handlers_setendseq(h, f, endseq, &empty_attr); } switch (upb_fielddef_type(f)) { TYPE(UPB_TYPE_FLOAT, float, float); TYPE(UPB_TYPE_DOUBLE, double, double); TYPE(UPB_TYPE_BOOL, bool, bool); TYPE(UPB_TYPE_INT32, int32, int32_t); TYPE(UPB_TYPE_UINT32, uint32, uint32_t); TYPE(UPB_TYPE_INT64, int64, int64_t); TYPE(UPB_TYPE_UINT64, uint64, uint64_t); case UPB_TYPE_ENUM: { /* For now, we always emit symbolic names for enums. We may want an * option later to control this behavior, but we will wait for a real * need first. */ upb_handlerattr enum_attr = UPB_HANDLERATTR_INIT; set_enum_hd(h, f, preserve_fieldnames, &enum_attr); if (upb_fielddef_isseq(f)) { upb_handlers_setint32(h, f, repeated_enum, &enum_attr); } else { upb_handlers_setint32(h, f, scalar_enum, &enum_attr); } break; } case UPB_TYPE_STRING: if (upb_fielddef_isseq(f)) { upb_handlers_setstartstr(h, f, repeated_startstr, &empty_attr); upb_handlers_setstring(h, f, repeated_str, &empty_attr); upb_handlers_setendstr(h, f, repeated_endstr, &empty_attr); } else { upb_handlers_setstartstr(h, f, scalar_startstr, &name_attr); upb_handlers_setstring(h, f, scalar_str, &empty_attr); upb_handlers_setendstr(h, f, scalar_endstr, &empty_attr); } break; case UPB_TYPE_BYTES: /* XXX: this doesn't support strings that span buffers yet. The base64 * encoder will need to be made resumable for this to work properly. */ if (upb_fielddef_isseq(f)) { upb_handlers_setstring(h, f, repeated_bytes, &empty_attr); } else { upb_handlers_setstring(h, f, scalar_bytes, &name_attr); } break; case UPB_TYPE_MESSAGE: if (upb_fielddef_isseq(f)) { upb_handlers_setstartsubmsg(h, f, repeated_startsubmsg, &name_attr); } else { upb_handlers_setstartsubmsg(h, f, scalar_startsubmsg, &name_attr); } break; } } #undef TYPE } static void json_printer_reset(upb_json_printer *p) { p->depth_ = 0; } /* Public API *****************************************************************/ upb_json_printer *upb_json_printer_create(upb_arena *a, const upb_handlers *h, upb_bytessink output) { #ifndef NDEBUG size_t size_before = upb_arena_bytesallocated(a); #endif upb_json_printer *p = upb_arena_malloc(a, sizeof(upb_json_printer)); if (!p) return NULL; p->output_ = output; json_printer_reset(p); upb_sink_reset(&p->input_, h, p); p->seconds = 0; p->nanos = 0; /* If this fails, increase the value in printer.h. */ UPB_ASSERT_DEBUGVAR(upb_arena_bytesallocated(a) - size_before <= UPB_JSON_PRINTER_SIZE); return p; } upb_sink upb_json_printer_input(upb_json_printer *p) { return p->input_; } upb_handlercache *upb_json_printer_newcache(bool preserve_proto_fieldnames) { upb_json_printercache *cache = upb_gmalloc(sizeof(*cache)); upb_handlercache *ret = upb_handlercache_new(printer_sethandlers, cache); cache->preserve_fieldnames = preserve_proto_fieldnames; upb_handlercache_addcleanup(ret, cache, upb_gfree); return ret; } /* See port_def.inc. This should #undef all macros #defined there. */ #undef UPB_SIZE #undef UPB_FIELD_AT #undef UPB_READ_ONEOF #undef UPB_WRITE_ONEOF #undef UPB_INLINE #undef UPB_FORCEINLINE #undef UPB_NOINLINE #undef UPB_NORETURN #undef UPB_MAX #undef UPB_MIN #undef UPB_UNUSED #undef UPB_ASSERT #undef UPB_ASSERT_DEBUGVAR #undef UPB_UNREACHABLE #undef UPB_INFINITY #undef UPB_MSVC_VSNPRINTF #undef _upb_snprintf #undef _upb_vsnprintf #undef _upb_va_copy