// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "binary_json_conformance_suite.h"

#include <memory>
#include <string>
#include <utility>
#include <vector>

#include "google/protobuf/text_format.h"
#include "google/protobuf/util/json_util.h"
#include "google/protobuf/util/type_resolver_util.h"
#include "absl/log/absl_check.h"
#include "absl/log/absl_log.h"
#include "absl/status/status.h"
#include "absl/strings/str_cat.h"
#include "json/json.h"
#include "conformance/conformance.pb.h"
#include "conformance_test.h"
#include "google/protobuf/test_messages_proto2.pb.h"
#include "google/protobuf/test_messages_proto3.pb.h"
#include "google/protobuf/wire_format_lite.h"

namespace proto2_messages = protobuf_test_messages::proto2;

using conformance::ConformanceRequest;
using conformance::ConformanceResponse;
using conformance::WireFormat;
using google::protobuf::Descriptor;
using google::protobuf::FieldDescriptor;
using google::protobuf::Message;
using google::protobuf::internal::WireFormatLite;
using google::protobuf::util::NewTypeResolverForDescriptorPool;
using proto2_messages::TestAllTypesProto2;
using protobuf_test_messages::proto3::TestAllTypesProto3;
using std::string;

namespace {

constexpr absl::string_view kTypeUrlPrefix = "type.googleapis.com";

// The number of repetitions to use for performance tests.
// Corresponds approx to 500KB wireformat bytes.
const size_t kPerformanceRepeatCount = 50000;

string GetTypeUrl(const Descriptor* message) {
  return absl::StrCat(kTypeUrlPrefix, "/", message->full_name());
}

/* Routines for building arbitrary protos *************************************/

// We would use CodedOutputStream except that we want more freedom to build
// arbitrary protos (even invalid ones).

// The maximum number of bytes that it takes to encode a 64-bit varint.
#define VARINT_MAX_LEN 10

size_t vencode64(uint64_t val, int over_encoded_bytes, char* buf) {
  if (val == 0) {
    buf[0] = 0;
    return 1;
  }
  size_t i = 0;
  while (val) {
    uint8_t byte = val & 0x7fU;
    val >>= 7;
    if (val || over_encoded_bytes) byte |= 0x80U;
    buf[i++] = byte;
  }
  while (over_encoded_bytes--) {
    assert(i < 10);
    uint8_t byte = over_encoded_bytes ? 0x80 : 0;
    buf[i++] = byte;
  }
  return i;
}

string varint(uint64_t x) {
  char buf[VARINT_MAX_LEN];
  size_t len = vencode64(x, 0, buf);
  return string(buf, len);
}

// Encodes a varint that is |extra| bytes longer than it needs to be, but still
// valid.
string longvarint(uint64_t x, int extra) {
  char buf[VARINT_MAX_LEN];
  size_t len = vencode64(x, extra, buf);
  return string(buf, len);
}

// TODO: proper byte-swapping for big-endian machines.
string fixed32(void* data) { return string(static_cast<char*>(data), 4); }
string fixed64(void* data) { return string(static_cast<char*>(data), 8); }

string delim(const string& buf) {
  return absl::StrCat(varint(buf.size()), buf);
}
string u32(uint32_t u32) { return fixed32(&u32); }
string u64(uint64_t u64) { return fixed64(&u64); }
string flt(float f) { return fixed32(&f); }
string dbl(double d) { return fixed64(&d); }
string zz32(int32_t x) { return varint(WireFormatLite::ZigZagEncode32(x)); }
string zz64(int64_t x) { return varint(WireFormatLite::ZigZagEncode64(x)); }

string tag(uint32_t fieldnum, char wire_type) {
  return varint((fieldnum << 3) | wire_type);
}

string tag(int fieldnum, char wire_type) {
  return tag(static_cast<uint32_t>(fieldnum), wire_type);
}

string GetDefaultValue(FieldDescriptor::Type type) {
  switch (type) {
    case FieldDescriptor::TYPE_INT32:
    case FieldDescriptor::TYPE_INT64:
    case FieldDescriptor::TYPE_UINT32:
    case FieldDescriptor::TYPE_UINT64:
    case FieldDescriptor::TYPE_ENUM:
    case FieldDescriptor::TYPE_BOOL:
      return varint(0);
    case FieldDescriptor::TYPE_SINT32:
      return zz32(0);
    case FieldDescriptor::TYPE_SINT64:
      return zz64(0);
    case FieldDescriptor::TYPE_FIXED32:
    case FieldDescriptor::TYPE_SFIXED32:
      return u32(0);
    case FieldDescriptor::TYPE_FIXED64:
    case FieldDescriptor::TYPE_SFIXED64:
      return u64(0);
    case FieldDescriptor::TYPE_FLOAT:
      return flt(0);
    case FieldDescriptor::TYPE_DOUBLE:
      return dbl(0);
    case FieldDescriptor::TYPE_STRING:
    case FieldDescriptor::TYPE_BYTES:
    case FieldDescriptor::TYPE_MESSAGE:
      return delim("");
    default:
      return "";
  }
  return "";
}

string GetNonDefaultValue(FieldDescriptor::Type type) {
  switch (type) {
    case FieldDescriptor::TYPE_INT32:
    case FieldDescriptor::TYPE_INT64:
    case FieldDescriptor::TYPE_UINT32:
    case FieldDescriptor::TYPE_UINT64:
    case FieldDescriptor::TYPE_ENUM:
    case FieldDescriptor::TYPE_BOOL:
      return varint(1);
    case FieldDescriptor::TYPE_SINT32:
      return zz32(1);
    case FieldDescriptor::TYPE_SINT64:
      return zz64(1);
    case FieldDescriptor::TYPE_FIXED32:
    case FieldDescriptor::TYPE_SFIXED32:
      return u32(1);
    case FieldDescriptor::TYPE_FIXED64:
    case FieldDescriptor::TYPE_SFIXED64:
      return u64(1);
    case FieldDescriptor::TYPE_FLOAT:
      return flt(1);
    case FieldDescriptor::TYPE_DOUBLE:
      return dbl(1);
    case FieldDescriptor::TYPE_STRING:
    case FieldDescriptor::TYPE_BYTES:
      return delim("a");
    case FieldDescriptor::TYPE_MESSAGE:
      return delim(
          absl::StrCat(tag(1, WireFormatLite::WIRETYPE_VARINT), varint(1234)));
    default:
      return "";
  }
  return "";
}

#define UNKNOWN_FIELD 666

enum class Packed {
  kUnspecified = 0,
  kTrue = 1,
  kFalse = 2,
};

const FieldDescriptor* GetFieldForType(FieldDescriptor::Type type,
                                       bool repeated, bool is_proto3,
                                       Packed packed = Packed::kUnspecified) {
  const Descriptor* d = is_proto3 ? TestAllTypesProto3().GetDescriptor()
                                  : TestAllTypesProto2().GetDescriptor();
  for (int i = 0; i < d->field_count(); i++) {
    const FieldDescriptor* f = d->field(i);
    if (f->type() == type && f->is_repeated() == repeated) {
      if ((packed == Packed::kTrue && !f->is_packed()) ||
          (packed == Packed::kFalse && f->is_packed())) {
        continue;
      }
      return f;
    }
  }

  absl::string_view packed_string = "";
  const absl::string_view repeated_string =
      repeated ? "Repeated " : "Singular ";
  const absl::string_view proto_string = is_proto3 ? "Proto3" : "Proto2";
  if (packed == Packed::kTrue) {
    packed_string = "Packed ";
  }
  if (packed == Packed::kFalse) {
    packed_string = "Unpacked ";
  }
  ABSL_LOG(FATAL) << "Couldn't find field with type: " << repeated_string
                  << packed_string << FieldDescriptor::TypeName(type) << " for "
                  << proto_string;
  return nullptr;
}

const FieldDescriptor* GetFieldForMapType(FieldDescriptor::Type key_type,
                                          FieldDescriptor::Type value_type,
                                          bool is_proto3) {
  const Descriptor* d = is_proto3 ? TestAllTypesProto3().GetDescriptor()
                                  : TestAllTypesProto2().GetDescriptor();
  for (int i = 0; i < d->field_count(); i++) {
    const FieldDescriptor* f = d->field(i);
    if (f->is_map()) {
      const Descriptor* map_entry = f->message_type();
      const FieldDescriptor* key = map_entry->field(0);
      const FieldDescriptor* value = map_entry->field(1);
      if (key->type() == key_type && value->type() == value_type) {
        return f;
      }
    }
  }

  const absl::string_view proto_string = is_proto3 ? "Proto3" : "Proto2";
  ABSL_LOG(FATAL) << "Couldn't find map field with type: "
                  << FieldDescriptor::TypeName(key_type) << " and "
                  << FieldDescriptor::TypeName(key_type) << " for "
                  << proto_string;
  return nullptr;
}

const FieldDescriptor* GetFieldForOneofType(FieldDescriptor::Type type,
                                            bool is_proto3,
                                            bool exclusive = false) {
  const Descriptor* d = is_proto3 ? TestAllTypesProto3().GetDescriptor()
                                  : TestAllTypesProto2().GetDescriptor();
  for (int i = 0; i < d->field_count(); i++) {
    const FieldDescriptor* f = d->field(i);
    if (f->containing_oneof() && ((f->type() == type) ^ exclusive)) {
      return f;
    }
  }

  const absl::string_view proto_string = is_proto3 ? "Proto3" : "Proto2";
  ABSL_LOG(FATAL) << "Couldn't find oneof field with type: "
                  << FieldDescriptor::TypeName(type) << " for " << proto_string;
  return nullptr;
}

string UpperCase(string str) {
  for (size_t i = 0; i < str.size(); i++) {
    str[i] = toupper(str[i]);
  }
  return str;
}

std::unique_ptr<Message> NewTestMessage(bool is_proto3) {
  std::unique_ptr<Message> prototype;
  if (is_proto3) {
    prototype = std::make_unique<TestAllTypesProto3>();
  } else {
    prototype = std::make_unique<TestAllTypesProto2>();
  }
  return prototype;
}

bool IsProto3Default(FieldDescriptor::Type type, const string& binary_data) {
  switch (type) {
    case FieldDescriptor::TYPE_DOUBLE:
      return binary_data == dbl(0);
    case FieldDescriptor::TYPE_FLOAT:
      return binary_data == flt(0);
    case FieldDescriptor::TYPE_BOOL:
    case FieldDescriptor::TYPE_INT64:
    case FieldDescriptor::TYPE_UINT64:
    case FieldDescriptor::TYPE_INT32:
    case FieldDescriptor::TYPE_UINT32:
    case FieldDescriptor::TYPE_SINT32:
    case FieldDescriptor::TYPE_SINT64:
    case FieldDescriptor::TYPE_ENUM:
      return binary_data == varint(0);
    case FieldDescriptor::TYPE_FIXED64:
    case FieldDescriptor::TYPE_SFIXED64:
      return binary_data == u64(0);
    case FieldDescriptor::TYPE_FIXED32:
    case FieldDescriptor::TYPE_SFIXED32:
      return binary_data == u32(0);
    case FieldDescriptor::TYPE_STRING:
    case FieldDescriptor::TYPE_BYTES:
      return binary_data == delim("");
    default:
      return false;
  }
}

}  // anonymous namespace

namespace google {
namespace protobuf {

bool BinaryAndJsonConformanceSuite::ParseJsonResponse(
    const ConformanceResponse& response, Message* test_message) {
  string binary_protobuf;
  absl::Status status =
      JsonToBinaryString(type_resolver_.get(), type_url_,
                         response.json_payload(), &binary_protobuf);

  if (!status.ok()) {
    return false;
  }

  if (!test_message->ParseFromString(binary_protobuf)) {
    ABSL_LOG(FATAL) << "INTERNAL ERROR: internal JSON->protobuf transcode "
                    << "yielded unparseable proto.";
    return false;
  }

  return true;
}

bool BinaryAndJsonConformanceSuite::ParseResponse(
    const ConformanceResponse& response,
    const ConformanceRequestSetting& setting, Message* test_message) {
  const ConformanceRequest& request = setting.GetRequest();
  WireFormat requested_output = request.requested_output_format();
  const string& test_name = setting.GetTestName();
  ConformanceLevel level = setting.GetLevel();

  switch (response.result_case()) {
    case ConformanceResponse::kProtobufPayload: {
      if (requested_output != conformance::PROTOBUF) {
        ReportFailure(test_name, level, request, response,
                      absl::StrCat("Test was asked for ",
                                   WireFormatToString(requested_output),
                                   " output but provided PROTOBUF instead."));
        return false;
      }

      if (!test_message->ParseFromString(response.protobuf_payload())) {
        ReportFailure(test_name, level, request, response,
                      "Protobuf output we received from test was unparseable.");
        return false;
      }

      break;
    }

    case ConformanceResponse::kJsonPayload: {
      if (requested_output != conformance::JSON) {
        ReportFailure(test_name, level, request, response,
                      absl::StrCat("Test was asked for ",
                                   WireFormatToString(requested_output),
                                   " output but provided JSON instead."));
        return false;
      }

      if (!ParseJsonResponse(response, test_message)) {
        ReportFailure(test_name, level, request, response,
                      "JSON output we received from test was unparseable.");
        return false;
      }

      break;
    }

    default:
      ABSL_LOG(FATAL) << test_name
                      << ": unknown payload type: " << response.result_case();
  }

  return true;
}

void BinaryAndJsonConformanceSuite::ExpectParseFailureForProtoWithProtoVersion(
    const string& proto, const string& test_name, ConformanceLevel level,
    bool is_proto3) {
  std::unique_ptr<Message> prototype = NewTestMessage(is_proto3);
  // We don't expect output, but if the program erroneously accepts the protobuf
  // we let it send its response as this.  We must not leave it unspecified.
  ConformanceRequestSetting setting(
      level, conformance::PROTOBUF, conformance::PROTOBUF,
      conformance::BINARY_TEST, *prototype, test_name, proto);

  const ConformanceRequest& request = setting.GetRequest();
  ConformanceResponse response;
  string effective_test_name = absl::StrCat(
      setting.ConformanceLevelToString(level),
      (is_proto3 ? ".Proto3" : ".Proto2"), ".ProtobufInput.", test_name);

  RunTest(effective_test_name, request, &response);
  if (response.result_case() == ConformanceResponse::kParseError) {
    ReportSuccess(effective_test_name);
  } else if (response.result_case() == ConformanceResponse::kSkipped) {
    ReportSkip(effective_test_name, request, response);
  } else {
    ReportFailure(effective_test_name, level, request, response,
                  "Should have failed to parse, but didn't.");
  }
}

// Expect that this precise protobuf will cause a parse error.
void BinaryAndJsonConformanceSuite::ExpectParseFailureForProto(
    const string& proto, const string& test_name, ConformanceLevel level) {
  ExpectParseFailureForProtoWithProtoVersion(proto, test_name, level, true);
  ExpectParseFailureForProtoWithProtoVersion(proto, test_name, level, false);
}

// Expect that this protobuf will cause a parse error, even if it is followed
// by valid protobuf data.  We can try running this twice: once with this
// data verbatim and once with this data followed by some valid data.
//
// TODO(haberman): implement the second of these.
void BinaryAndJsonConformanceSuite::ExpectHardParseFailureForProto(
    const string& proto, const string& test_name, ConformanceLevel level) {
  return ExpectParseFailureForProto(proto, test_name, level);
}

void BinaryAndJsonConformanceSuite::RunValidJsonTest(
    const string& test_name, ConformanceLevel level, const string& input_json,
    const string& equivalent_text_format) {
  TestAllTypesProto3 prototype;
  RunValidJsonTestWithMessage(test_name, level, input_json,
                              equivalent_text_format, prototype);
}

void BinaryAndJsonConformanceSuite::RunValidJsonTest(
    const string& test_name, ConformanceLevel level, const string& input_json,
    const string& equivalent_text_format, bool is_proto3) {
  if (is_proto3) {
    RunValidJsonTest(test_name, level, input_json, equivalent_text_format);
  } else {
    TestAllTypesProto2 prototype;
    RunValidJsonTestWithMessage(test_name, level, input_json,
                                equivalent_text_format, prototype);
  }
}

void BinaryAndJsonConformanceSuite::RunValidJsonTestWithMessage(
    const string& test_name, ConformanceLevel level, const string& input_json,
    const string& equivalent_text_format, const Message& prototype) {
  ConformanceRequestSetting setting1(
      level, conformance::JSON, conformance::PROTOBUF, conformance::JSON_TEST,
      prototype, test_name, input_json);
  RunValidInputTest(setting1, equivalent_text_format);
  ConformanceRequestSetting setting2(level, conformance::JSON,
                                     conformance::JSON, conformance::JSON_TEST,
                                     prototype, test_name, input_json);
  RunValidInputTest(setting2, equivalent_text_format);
}

void BinaryAndJsonConformanceSuite::RunValidJsonTestWithProtobufInput(
    const string& test_name, ConformanceLevel level,
    const TestAllTypesProto3& input, const string& equivalent_text_format) {
  ConformanceRequestSetting setting(
      level, conformance::PROTOBUF, conformance::JSON, conformance::JSON_TEST,
      input, test_name, input.SerializeAsString());
  RunValidInputTest(setting, equivalent_text_format);
}

void BinaryAndJsonConformanceSuite::RunValidJsonIgnoreUnknownTest(
    const string& test_name, ConformanceLevel level, const string& input_json,
    const string& equivalent_text_format) {
  TestAllTypesProto3 prototype;
  ConformanceRequestSetting setting(
      level, conformance::JSON, conformance::PROTOBUF,
      conformance::JSON_IGNORE_UNKNOWN_PARSING_TEST, prototype, test_name,
      input_json);
  RunValidInputTest(setting, equivalent_text_format);
}

void BinaryAndJsonConformanceSuite::RunValidProtobufTest(
    const string& test_name, ConformanceLevel level,
    const string& input_protobuf, const string& equivalent_text_format,
    bool is_proto3) {
  std::unique_ptr<Message> prototype = NewTestMessage(is_proto3);

  ConformanceRequestSetting setting1(
      level, conformance::PROTOBUF, conformance::PROTOBUF,
      conformance::BINARY_TEST, *prototype, test_name, input_protobuf);
  RunValidInputTest(setting1, equivalent_text_format);

  if (is_proto3) {
    ConformanceRequestSetting setting2(
        level, conformance::PROTOBUF, conformance::JSON,
        conformance::BINARY_TEST, *prototype, test_name, input_protobuf);
    RunValidInputTest(setting2, equivalent_text_format);
  }
}

void BinaryAndJsonConformanceSuite::RunValidBinaryProtobufTest(
    const string& test_name, ConformanceLevel level,
    const string& input_protobuf, bool is_proto3) {
  RunValidBinaryProtobufTest(test_name, level, input_protobuf, input_protobuf,
                             is_proto3);
}

void BinaryAndJsonConformanceSuite::RunValidBinaryProtobufTest(
    const string& test_name, ConformanceLevel level,
    const string& input_protobuf, const string& expected_protobuf,
    bool is_proto3) {
  std::unique_ptr<Message> prototype = NewTestMessage(is_proto3);
  ConformanceRequestSetting setting(
      level, conformance::PROTOBUF, conformance::PROTOBUF,
      conformance::BINARY_TEST, *prototype, test_name, input_protobuf);
  RunValidBinaryInputTest(setting, expected_protobuf, true);
}

void BinaryAndJsonConformanceSuite::RunBinaryPerformanceMergeMessageWithField(
    const string& test_name, const string& field_proto, bool is_proto3) {
  string message_tag = tag(27, WireFormatLite::WIRETYPE_LENGTH_DELIMITED);
  string message_proto = absl::StrCat(message_tag, delim(field_proto));

  string proto;
  for (size_t i = 0; i < kPerformanceRepeatCount; i++) {
    proto.append(message_proto);
  }

  string multiple_repeated_field_proto;
  for (size_t i = 0; i < kPerformanceRepeatCount; i++) {
    multiple_repeated_field_proto.append(field_proto);
  }
  string expected_proto =
      absl::StrCat(message_tag, delim(multiple_repeated_field_proto));

  RunValidBinaryProtobufTest(test_name, RECOMMENDED, proto, expected_proto,
                             is_proto3);
}

void BinaryAndJsonConformanceSuite::RunValidProtobufTestWithMessage(
    const string& test_name, ConformanceLevel level, const Message* input,
    const string& equivalent_text_format, bool is_proto3) {
  RunValidProtobufTest(test_name, level, input->SerializeAsString(),
                       equivalent_text_format, is_proto3);
}

// According to proto JSON specification, JSON serializers follow more strict
// rules than parsers (e.g., a serializer must serialize int32 values as JSON
// numbers while the parser is allowed to accept them as JSON strings). This
// method allows strict checking on a proto JSON serializer by inspecting
// the JSON output directly.
void BinaryAndJsonConformanceSuite::RunValidJsonTestWithValidator(
    const string& test_name, ConformanceLevel level, const string& input_json,
    const Validator& validator, bool is_proto3) {
  std::unique_ptr<Message> prototype = NewTestMessage(is_proto3);
  ConformanceRequestSetting setting(level, conformance::JSON, conformance::JSON,
                                    conformance::JSON_TEST, *prototype,
                                    test_name, input_json);
  const ConformanceRequest& request = setting.GetRequest();
  ConformanceResponse response;
  string effective_test_name =
      absl::StrCat(setting.ConformanceLevelToString(level),
                   is_proto3 ? ".Proto3.JsonInput." : ".Proto2.JsonInput.",
                   test_name, ".Validator");

  RunTest(effective_test_name, request, &response);

  if (response.result_case() == ConformanceResponse::kSkipped) {
    ReportSkip(effective_test_name, request, response);
    return;
  }

  if (response.result_case() != ConformanceResponse::kJsonPayload) {
    ReportFailure(effective_test_name, level, request, response,
                  absl::StrCat("Expected JSON payload but got type ",
                               response.result_case()));
    return;
  }
  Json::Reader reader;
  Json::Value value;
  if (!reader.parse(response.json_payload(), value)) {
    ReportFailure(effective_test_name, level, request, response,
                  absl::StrCat("JSON payload cannot be parsed as valid JSON: ",
                               reader.getFormattedErrorMessages()));
    return;
  }
  if (!validator(value)) {
    ReportFailure(effective_test_name, level, request, response,
                  "JSON payload validation failed.");
    return;
  }
  ReportSuccess(effective_test_name);
}

void BinaryAndJsonConformanceSuite::ExpectParseFailureForJson(
    const string& test_name, ConformanceLevel level, const string& input_json) {
  TestAllTypesProto3 prototype;
  // We don't expect output, but if the program erroneously accepts the protobuf
  // we let it send its response as this.  We must not leave it unspecified.
  ConformanceRequestSetting setting(level, conformance::JSON, conformance::JSON,
                                    conformance::JSON_TEST, prototype,
                                    test_name, input_json);
  const ConformanceRequest& request = setting.GetRequest();
  ConformanceResponse response;
  string effective_test_name = absl::StrCat(
      setting.ConformanceLevelToString(level), ".Proto3.JsonInput.", test_name);

  RunTest(effective_test_name, request, &response);
  if (response.result_case() == ConformanceResponse::kParseError) {
    ReportSuccess(effective_test_name);
  } else if (response.result_case() == ConformanceResponse::kSkipped) {
    ReportSkip(effective_test_name, request, response);
  } else {
    ReportFailure(effective_test_name, level, request, response,
                  "Should have failed to parse, but didn't.");
  }
}

void BinaryAndJsonConformanceSuite::ExpectSerializeFailureForJson(
    const string& test_name, ConformanceLevel level,
    const string& text_format) {
  TestAllTypesProto3 payload_message;
  ABSL_CHECK(TextFormat::ParseFromString(text_format, &payload_message))
      << "Failed to parse: " << text_format;

  TestAllTypesProto3 prototype;
  ConformanceRequestSetting setting(
      level, conformance::PROTOBUF, conformance::JSON, conformance::JSON_TEST,
      prototype, test_name, payload_message.SerializeAsString());
  const ConformanceRequest& request = setting.GetRequest();
  ConformanceResponse response;
  string effective_test_name = absl::StrCat(
      setting.ConformanceLevelToString(level), ".", test_name, ".JsonOutput");

  RunTest(effective_test_name, request, &response);
  if (response.result_case() == ConformanceResponse::kSerializeError) {
    ReportSuccess(effective_test_name);
  } else if (response.result_case() == ConformanceResponse::kSkipped) {
    ReportSkip(effective_test_name, request, response);
  } else {
    ReportFailure(effective_test_name, level, request, response,
                  "Should have failed to serialize, but didn't.");
  }
}

void BinaryAndJsonConformanceSuite::TestPrematureEOFForType(
    FieldDescriptor::Type type) {
  // Incomplete values for each wire type.
  static constexpr absl::string_view incompletes[6] = {
      "\x80",     // VARINT
      "abcdefg",  // 64BIT
      "\x80",     // DELIMITED (partial length)
      "",         // START_GROUP (no value required)
      "",         // END_GROUP (no value required)
      "abc"       // 32BIT
  };

  const FieldDescriptor* field = GetFieldForType(type, false, true);
  const FieldDescriptor* rep_field = GetFieldForType(type, true, true);
  WireFormatLite::WireType wire_type = WireFormatLite::WireTypeForFieldType(
      static_cast<WireFormatLite::FieldType>(type));
  absl::string_view incomplete = incompletes[wire_type];
  const string type_name =
      UpperCase(absl::StrCat(".", FieldDescriptor::TypeName(type)));

  ExpectParseFailureForProto(
      tag(field->number(), wire_type),
      absl::StrCat("PrematureEofBeforeKnownNonRepeatedValue", type_name),
      REQUIRED);

  ExpectParseFailureForProto(
      tag(rep_field->number(), wire_type),
      absl::StrCat("PrematureEofBeforeKnownRepeatedValue", type_name),
      REQUIRED);

  ExpectParseFailureForProto(
      tag(UNKNOWN_FIELD, wire_type),
      absl::StrCat("PrematureEofBeforeUnknownValue", type_name), REQUIRED);

  ExpectParseFailureForProto(
      absl::StrCat(tag(field->number(), wire_type), incomplete),
      absl::StrCat("PrematureEofInsideKnownNonRepeatedValue", type_name),
      REQUIRED);

  ExpectParseFailureForProto(
      absl::StrCat(tag(rep_field->number(), wire_type), incomplete),
      absl::StrCat("PrematureEofInsideKnownRepeatedValue", type_name),
      REQUIRED);

  ExpectParseFailureForProto(
      absl::StrCat(tag(UNKNOWN_FIELD, wire_type), incomplete),
      absl::StrCat("PrematureEofInsideUnknownValue", type_name), REQUIRED);

  if (wire_type == WireFormatLite::WIRETYPE_LENGTH_DELIMITED) {
    ExpectParseFailureForProto(
        absl::StrCat(tag(field->number(), wire_type), varint(1)),
        absl::StrCat("PrematureEofInDelimitedDataForKnownNonRepeatedValue",
                     type_name),
        REQUIRED);

    ExpectParseFailureForProto(
        absl::StrCat(tag(rep_field->number(), wire_type), varint(1)),
        absl::StrCat("PrematureEofInDelimitedDataForKnownRepeatedValue",
                     type_name),
        REQUIRED);

    // EOF in the middle of delimited data for unknown value.
    ExpectParseFailureForProto(
        absl::StrCat(tag(UNKNOWN_FIELD, wire_type), varint(1)),
        absl::StrCat("PrematureEofInDelimitedDataForUnknownValue", type_name),
        REQUIRED);

    if (type == FieldDescriptor::TYPE_MESSAGE) {
      // Submessage ends in the middle of a value.
      string incomplete_submsg = absl::StrCat(
          tag(WireFormatLite::TYPE_INT32, WireFormatLite::WIRETYPE_VARINT),
          incompletes[WireFormatLite::WIRETYPE_VARINT]);
      ExpectHardParseFailureForProto(
          absl::StrCat(
              tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
              varint(incomplete_submsg.size()), incomplete_submsg),
          absl::StrCat("PrematureEofInSubmessageValue", type_name), REQUIRED);
    }
  } else if (type != FieldDescriptor::TYPE_GROUP) {
    // Non-delimited, non-group: eligible for packing.

    // Packed region ends in the middle of a value.
    ExpectHardParseFailureForProto(
        absl::StrCat(
            tag(rep_field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
            varint(incomplete.size()), incomplete),
        absl::StrCat("PrematureEofInPackedFieldValue", type_name), REQUIRED);

    // EOF in the middle of packed region.
    ExpectParseFailureForProto(
        absl::StrCat(
            tag(rep_field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
            varint(1)),
        absl::StrCat("PrematureEofInPackedField", type_name), REQUIRED);
  }
}

void BinaryAndJsonConformanceSuite::TestValidDataForType(
    FieldDescriptor::Type type,
    std::vector<std::pair<std::string, std::string>> values) {
  for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
    const string type_name =
        UpperCase(absl::StrCat(".", FieldDescriptor::TypeName(type)));
    WireFormatLite::WireType wire_type = WireFormatLite::WireTypeForFieldType(
        static_cast<WireFormatLite::FieldType>(type));
    const FieldDescriptor* field = GetFieldForType(type, false, is_proto3);
    const FieldDescriptor* rep_field = GetFieldForType(type, true, is_proto3);

    // Test singular data for singular fields.
    for (size_t i = 0; i < values.size(); i++) {
      string proto =
          absl::StrCat(tag(field->number(), wire_type), values[i].first);
      // In proto3, default primitive fields should not be encoded.
      string expected_proto =
          is_proto3 && IsProto3Default(field->type(), values[i].second)
              ? ""
              : absl::StrCat(tag(field->number(), wire_type), values[i].second);
      std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
      test_message->MergeFromString(expected_proto);
      string text;
      TextFormat::PrintToString(*test_message, &text);

      RunValidProtobufTest(
          absl::StrCat("ValidDataScalar", type_name, "[", i, "]"), REQUIRED,
          proto, text, is_proto3);
      RunValidBinaryProtobufTest(
          absl::StrCat("ValidDataScalarBinary", type_name, "[", i, "]"),
          RECOMMENDED, proto, expected_proto, is_proto3);
    }

    // Test repeated data for singular fields.
    // For scalar message fields, repeated values are merged, which is tested
    // separately.
    if (type != FieldDescriptor::TYPE_MESSAGE) {
      string proto;
      for (size_t i = 0; i < values.size(); i++) {
        proto += absl::StrCat(tag(field->number(), wire_type), values[i].first);
      }
      string expected_proto =
          absl::StrCat(tag(field->number(), wire_type), values.back().second);
      std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
      test_message->MergeFromString(expected_proto);
      string text;
      TextFormat::PrintToString(*test_message, &text);

      RunValidProtobufTest(absl::StrCat("RepeatedScalarSelectsLast", type_name),
                           REQUIRED, proto, text, is_proto3);
    }

    // Test repeated fields.
    if (FieldDescriptor::IsTypePackable(type)) {
      const FieldDescriptor* packed_field =
          GetFieldForType(type, true, is_proto3, Packed::kTrue);
      const FieldDescriptor* unpacked_field =
          GetFieldForType(type, true, is_proto3, Packed::kFalse);

      string default_proto_packed;
      string default_proto_unpacked;
      string default_proto_packed_expected;
      string default_proto_unpacked_expected;
      string packed_proto_packed;
      string packed_proto_unpacked;
      string packed_proto_expected;
      string unpacked_proto_packed;
      string unpacked_proto_unpacked;
      string unpacked_proto_expected;

      for (size_t i = 0; i < values.size(); i++) {
        default_proto_unpacked +=
            absl::StrCat(tag(rep_field->number(), wire_type), values[i].first);
        default_proto_unpacked_expected +=
            absl::StrCat(tag(rep_field->number(), wire_type), values[i].second);
        default_proto_packed += values[i].first;
        default_proto_packed_expected += values[i].second;
        packed_proto_unpacked += absl::StrCat(
            tag(packed_field->number(), wire_type), values[i].first);
        packed_proto_packed += values[i].first;
        packed_proto_expected += values[i].second;
        unpacked_proto_unpacked += absl::StrCat(
            tag(unpacked_field->number(), wire_type), values[i].first);
        unpacked_proto_packed += values[i].first;
        unpacked_proto_expected += absl::StrCat(
            tag(unpacked_field->number(), wire_type), values[i].second);
      }
      default_proto_packed = absl::StrCat(
          tag(rep_field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
          delim(default_proto_packed));
      default_proto_packed_expected = absl::StrCat(
          tag(rep_field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
          delim(default_proto_packed_expected));
      packed_proto_packed =
          absl::StrCat(tag(packed_field->number(),
                           WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
                       delim(packed_proto_packed));
      packed_proto_expected =
          absl::StrCat(tag(packed_field->number(),
                           WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
                       delim(packed_proto_expected));
      unpacked_proto_packed =
          absl::StrCat(tag(unpacked_field->number(),
                           WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
                       delim(unpacked_proto_packed));

      std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
      test_message->MergeFromString(default_proto_packed_expected);
      string text;
      TextFormat::PrintToString(*test_message, &text);

      // Ensures both packed and unpacked data can be parsed.
      RunValidProtobufTest(
          absl::StrCat("ValidDataRepeated", type_name, ".UnpackedInput"),
          REQUIRED, default_proto_unpacked, text, is_proto3);
      RunValidProtobufTest(
          absl::StrCat("ValidDataRepeated", type_name, ".PackedInput"),
          REQUIRED, default_proto_packed, text, is_proto3);

      // proto2 should encode as unpacked by default and proto3 should encode as
      // packed by default.
      string expected_proto = rep_field->is_packed()
                                  ? default_proto_packed_expected
                                  : default_proto_unpacked_expected;
      RunValidBinaryProtobufTest(absl::StrCat("ValidDataRepeated", type_name,
                                              ".UnpackedInput.DefaultOutput"),
                                 RECOMMENDED, default_proto_unpacked,
                                 expected_proto, is_proto3);
      RunValidBinaryProtobufTest(absl::StrCat("ValidDataRepeated", type_name,
                                              ".PackedInput.DefaultOutput"),
                                 RECOMMENDED, default_proto_packed,
                                 expected_proto, is_proto3);
      RunValidBinaryProtobufTest(absl::StrCat("ValidDataRepeated", type_name,
                                              ".UnpackedInput.PackedOutput"),
                                 RECOMMENDED, packed_proto_unpacked,
                                 packed_proto_expected, is_proto3);
      RunValidBinaryProtobufTest(absl::StrCat("ValidDataRepeated", type_name,
                                              ".PackedInput.PackedOutput"),
                                 RECOMMENDED, packed_proto_packed,
                                 packed_proto_expected, is_proto3);
      RunValidBinaryProtobufTest(absl::StrCat("ValidDataRepeated", type_name,
                                              ".UnpackedInput.UnpackedOutput"),
                                 RECOMMENDED, unpacked_proto_unpacked,
                                 unpacked_proto_expected, is_proto3);
      RunValidBinaryProtobufTest(absl::StrCat("ValidDataRepeated", type_name,
                                              ".PackedInput.UnpackedOutput"),
                                 RECOMMENDED, unpacked_proto_packed,
                                 unpacked_proto_expected, is_proto3);
    } else {
      string proto;
      string expected_proto;
      for (size_t i = 0; i < values.size(); i++) {
        proto +=
            absl::StrCat(tag(rep_field->number(), wire_type), values[i].first);
        expected_proto +=
            absl::StrCat(tag(rep_field->number(), wire_type), values[i].second);
      }
      std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
      test_message->MergeFromString(expected_proto);
      string text;
      TextFormat::PrintToString(*test_message, &text);

      RunValidProtobufTest(absl::StrCat("ValidDataRepeated", type_name),
                           REQUIRED, proto, text, is_proto3);
    }
  }
}

void BinaryAndJsonConformanceSuite::TestValidDataForRepeatedScalarMessage() {
  std::vector<std::string> values = {
      delim(absl::StrCat(
          tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
          delim(absl::StrCat(
              tag(1, WireFormatLite::WIRETYPE_VARINT), varint(1234),
              tag(2, WireFormatLite::WIRETYPE_VARINT), varint(1234),
              tag(31, WireFormatLite::WIRETYPE_VARINT), varint(1234))))),
      delim(absl::StrCat(
          tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
          delim(absl::StrCat(
              tag(1, WireFormatLite::WIRETYPE_VARINT), varint(4321),
              tag(3, WireFormatLite::WIRETYPE_VARINT), varint(4321),
              tag(31, WireFormatLite::WIRETYPE_VARINT), varint(4321))))),
  };

  const std::string expected =
      R"({
        corecursive: {
          optional_int32: 4321,
          optional_int64: 1234,
          optional_uint32: 4321,
          repeated_int32: [1234, 4321],
        }
      })";

  for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
    string proto;
    const FieldDescriptor* field =
        GetFieldForType(FieldDescriptor::TYPE_MESSAGE, false, is_proto3);
    for (size_t i = 0; i < values.size(); i++) {
      proto += absl::StrCat(
          tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
          values[i]);
    }

    RunValidProtobufTest("RepeatedScalarMessageMerge", REQUIRED, proto,
                         absl::StrCat(field->name(), ": ", expected),
                         is_proto3);
  }
}

void BinaryAndJsonConformanceSuite::TestValidDataForMapType(
    FieldDescriptor::Type key_type, FieldDescriptor::Type value_type) {
  const string key_type_name =
      UpperCase(absl::StrCat(".", FieldDescriptor::TypeName(key_type)));
  const string value_type_name =
      UpperCase(absl::StrCat(".", FieldDescriptor::TypeName(value_type)));
  WireFormatLite::WireType key_wire_type = WireFormatLite::WireTypeForFieldType(
      static_cast<WireFormatLite::FieldType>(key_type));
  WireFormatLite::WireType value_wire_type =
      WireFormatLite::WireTypeForFieldType(
          static_cast<WireFormatLite::FieldType>(value_type));

  string key1_data =
      absl::StrCat(tag(1, key_wire_type), GetDefaultValue(key_type));
  string value1_data =
      absl::StrCat(tag(2, value_wire_type), GetDefaultValue(value_type));
  string key2_data =
      absl::StrCat(tag(1, key_wire_type), GetNonDefaultValue(key_type));
  string value2_data =
      absl::StrCat(tag(2, value_wire_type), GetNonDefaultValue(value_type));

  for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
    const FieldDescriptor* field =
        GetFieldForMapType(key_type, value_type, is_proto3);

    {
      // Tests map with default key and value.
      string proto = absl::StrCat(
          tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
          delim(absl::StrCat(key1_data, value1_data)));
      std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
      test_message->MergeFromString(proto);
      string text;
      TextFormat::PrintToString(*test_message, &text);
      RunValidProtobufTest(absl::StrCat("ValidDataMap", key_type_name,
                                        value_type_name, ".Default"),
                           REQUIRED, proto, text, is_proto3);
    }

    {
      // Tests map with missing default key and value.
      string proto = absl::StrCat(
          tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
          delim(""));
      std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
      test_message->MergeFromString(proto);
      string text;
      TextFormat::PrintToString(*test_message, &text);
      RunValidProtobufTest(absl::StrCat("ValidDataMap", key_type_name,
                                        value_type_name, ".MissingDefault"),
                           REQUIRED, proto, text, is_proto3);
    }

    {
      // Tests map with non-default key and value.
      string proto = absl::StrCat(
          tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
          delim(absl::StrCat(key2_data, value2_data)));
      std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
      test_message->MergeFromString(proto);
      string text;
      TextFormat::PrintToString(*test_message, &text);
      RunValidProtobufTest(absl::StrCat("ValidDataMap", key_type_name,
                                        value_type_name, ".NonDefault"),
                           REQUIRED, proto, text, is_proto3);
    }

    {
      // Tests map with unordered key and value.
      string proto = absl::StrCat(
          tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
          delim(absl::StrCat(value2_data, key2_data)));
      std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
      test_message->MergeFromString(proto);
      string text;
      TextFormat::PrintToString(*test_message, &text);
      RunValidProtobufTest(absl::StrCat("ValidDataMap", key_type_name,
                                        value_type_name, ".Unordered"),
                           REQUIRED, proto, text, is_proto3);
    }

    {
      // Tests map with duplicate key.
      string proto1 = absl::StrCat(
          tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
          delim(absl::StrCat(key2_data, value1_data)));
      string proto2 = absl::StrCat(
          tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
          delim(absl::StrCat(key2_data, value2_data)));
      string proto = absl::StrCat(proto1, proto2);
      std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
      test_message->MergeFromString(proto2);
      string text;
      TextFormat::PrintToString(*test_message, &text);
      RunValidProtobufTest(absl::StrCat("ValidDataMap", key_type_name,
                                        value_type_name, ".DuplicateKey"),
                           REQUIRED, proto, text, is_proto3);
    }

    {
      // Tests map with duplicate key in map entry.
      string proto = absl::StrCat(
          tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
          delim(absl::StrCat(key1_data, key2_data, value2_data)));
      std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
      test_message->MergeFromString(proto);
      string text;
      TextFormat::PrintToString(*test_message, &text);
      RunValidProtobufTest(
          absl::StrCat("ValidDataMap", key_type_name, value_type_name,
                       ".DuplicateKeyInMapEntry"),
          REQUIRED, proto, text, is_proto3);
    }

    {
      // Tests map with duplicate value in map entry.
      string proto = absl::StrCat(
          tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
          delim(absl::StrCat(key2_data, value1_data, value2_data)));
      std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
      test_message->MergeFromString(proto);
      string text;
      TextFormat::PrintToString(*test_message, &text);
      RunValidProtobufTest(
          absl::StrCat("ValidDataMap", key_type_name, value_type_name,
                       ".DuplicateValueInMapEntry"),
          REQUIRED, proto, text, is_proto3);
    }
  }
}

void BinaryAndJsonConformanceSuite::TestOverwriteMessageValueMap() {
  string key_data = absl::StrCat(
      tag(1, WireFormatLite::WIRETYPE_LENGTH_DELIMITED), delim(""));
  string field1_data =
      absl::StrCat(tag(1, WireFormatLite::WIRETYPE_VARINT), varint(1));
  string field2_data =
      absl::StrCat(tag(2, WireFormatLite::WIRETYPE_VARINT), varint(1));
  string field31_data =
      absl::StrCat(tag(31, WireFormatLite::WIRETYPE_VARINT), varint(1));
  string submsg1_data = delim(absl::StrCat(field1_data, field31_data));
  string submsg2_data = delim(absl::StrCat(field2_data, field31_data));
  string value1_data = absl::StrCat(
      tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
      delim(absl::StrCat(tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
                         submsg1_data)));
  string value2_data = absl::StrCat(
      tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
      delim(absl::StrCat(tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
                         submsg2_data)));

  for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
    const FieldDescriptor* field = GetFieldForMapType(
        FieldDescriptor::TYPE_STRING, FieldDescriptor::TYPE_MESSAGE, is_proto3);

    string proto1 = absl::StrCat(
        tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
        delim(absl::StrCat(key_data, value1_data)));
    string proto2 = absl::StrCat(
        tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
        delim(absl::StrCat(key_data, value2_data)));
    string proto = absl::StrCat(proto1, proto2);
    std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
    test_message->MergeFromString(proto2);
    string text;
    TextFormat::PrintToString(*test_message, &text);
    RunValidProtobufTest("ValidDataMap.STRING.MESSAGE.MergeValue", REQUIRED,
                         proto, text, is_proto3);
  }
}

void BinaryAndJsonConformanceSuite::TestValidDataForOneofType(
    FieldDescriptor::Type type) {
  const string type_name =
      UpperCase(absl::StrCat(".", FieldDescriptor::TypeName(type)));
  WireFormatLite::WireType wire_type = WireFormatLite::WireTypeForFieldType(
      static_cast<WireFormatLite::FieldType>(type));

  for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
    const FieldDescriptor* field = GetFieldForOneofType(type, is_proto3);
    const string default_value =
        absl::StrCat(tag(field->number(), wire_type), GetDefaultValue(type));
    const string non_default_value =
        absl::StrCat(tag(field->number(), wire_type), GetNonDefaultValue(type));

    {
      // Tests oneof with default value.
      const string proto = default_value;
      std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
      test_message->MergeFromString(proto);
      string text;
      TextFormat::PrintToString(*test_message, &text);

      RunValidProtobufTest(
          absl::StrCat("ValidDataOneof", type_name, ".DefaultValue"), REQUIRED,
          proto, text, is_proto3);
      RunValidBinaryProtobufTest(
          absl::StrCat("ValidDataOneofBinary", type_name, ".DefaultValue"),
          RECOMMENDED, proto, proto, is_proto3);
    }

    {
      // Tests oneof with non-default value.
      const string proto = non_default_value;
      std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
      test_message->MergeFromString(proto);
      string text;
      TextFormat::PrintToString(*test_message, &text);

      RunValidProtobufTest(
          absl::StrCat("ValidDataOneof", type_name, ".NonDefaultValue"),
          REQUIRED, proto, text, is_proto3);
      RunValidBinaryProtobufTest(
          absl::StrCat("ValidDataOneofBinary", type_name, ".NonDefaultValue"),
          RECOMMENDED, proto, proto, is_proto3);
    }

    {
      // Tests oneof with multiple values of the same field.
      const string proto = absl::StrCat(default_value, non_default_value);
      const string expected_proto = non_default_value;
      std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
      test_message->MergeFromString(expected_proto);
      string text;
      TextFormat::PrintToString(*test_message, &text);

      RunValidProtobufTest(absl::StrCat("ValidDataOneof", type_name,
                                        ".MultipleValuesForSameField"),
                           REQUIRED, proto, text, is_proto3);
      RunValidBinaryProtobufTest(absl::StrCat("ValidDataOneofBinary", type_name,
                                              ".MultipleValuesForSameField"),
                                 RECOMMENDED, proto, expected_proto, is_proto3);
    }

    {
      // Tests oneof with multiple values of the different fields.
      const FieldDescriptor* other_field =
          GetFieldForOneofType(type, is_proto3, true);
      FieldDescriptor::Type other_type = other_field->type();
      WireFormatLite::WireType other_wire_type =
          WireFormatLite::WireTypeForFieldType(
              static_cast<WireFormatLite::FieldType>(other_type));
      const string other_value =
          absl::StrCat(tag(other_field->number(), other_wire_type),
                       GetDefaultValue(other_type));

      const string proto = absl::StrCat(other_value, non_default_value);
      const string expected_proto = non_default_value;
      std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
      test_message->MergeFromString(expected_proto);
      string text;
      TextFormat::PrintToString(*test_message, &text);

      RunValidProtobufTest(absl::StrCat("ValidDataOneof", type_name,
                                        ".MultipleValuesForDifferentField"),
                           REQUIRED, proto, text, is_proto3);
      RunValidBinaryProtobufTest(
          absl::StrCat("ValidDataOneofBinary", type_name,
                       ".MultipleValuesForDifferentField"),
          RECOMMENDED, proto, expected_proto, is_proto3);
    }
  }
}

void BinaryAndJsonConformanceSuite::TestMergeOneofMessage() {
  string field1_data =
      absl::StrCat(tag(1, WireFormatLite::WIRETYPE_VARINT), varint(1));
  string field2a_data =
      absl::StrCat(tag(2, WireFormatLite::WIRETYPE_VARINT), varint(1));
  string field2b_data =
      absl::StrCat(tag(2, WireFormatLite::WIRETYPE_VARINT), varint(1));
  string field89_data =
      absl::StrCat(tag(89, WireFormatLite::WIRETYPE_VARINT), varint(1));
  string submsg1_data = absl::StrCat(
      tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
      delim(absl::StrCat(field1_data, field2a_data, field89_data)));
  string submsg2_data =
      absl::StrCat(tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
                   delim(absl::StrCat(field2b_data, field89_data)));
  string merged_data =
      absl::StrCat(tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
                   delim(absl::StrCat(field1_data, field2b_data, field89_data,
                                      field89_data)));

  for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
    const FieldDescriptor* field =
        GetFieldForOneofType(FieldDescriptor::TYPE_MESSAGE, is_proto3);

    string proto1 = absl::StrCat(
        tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
        delim(submsg1_data));
    string proto2 = absl::StrCat(
        tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
        delim(submsg2_data));
    string proto = absl::StrCat(proto1, proto2);
    string expected_proto = absl::StrCat(
        tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
        delim(merged_data));

    std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
    test_message->MergeFromString(expected_proto);
    string text;
    TextFormat::PrintToString(*test_message, &text);
    RunValidProtobufTest("ValidDataOneof.MESSAGE.Merge", REQUIRED, proto, text,
                         is_proto3);
    RunValidBinaryProtobufTest("ValidDataOneofBinary.MESSAGE.Merge",
                               RECOMMENDED, proto, expected_proto, is_proto3);
  }
}

void BinaryAndJsonConformanceSuite::TestIllegalTags() {
  // field num 0 is illegal
  string nullfield[] = {"\1DEADBEEF", "\2\1\1", "\3\4", "\5DEAD"};
  for (int i = 0; i < 4; i++) {
    string name = "IllegalZeroFieldNum_Case_0";
    name.back() += i;
    ExpectParseFailureForProto(nullfield[i], name, REQUIRED);
  }
}
template <class MessageType>
void BinaryAndJsonConformanceSuite::TestOneofMessage(MessageType& message,
                                                     bool is_proto3) {
  message.set_oneof_uint32(0);
  RunValidProtobufTestWithMessage("OneofZeroUint32", RECOMMENDED, &message,
                                  "oneof_uint32: 0", is_proto3);
  message.mutable_oneof_nested_message()->set_a(0);
  RunValidProtobufTestWithMessage(
      "OneofZeroMessage", RECOMMENDED, &message,
      is_proto3 ? "oneof_nested_message: {}" : "oneof_nested_message: {a: 0}",
      is_proto3);
  message.mutable_oneof_nested_message()->set_a(1);
  RunValidProtobufTestWithMessage("OneofZeroMessageSetTwice", RECOMMENDED,
                                  &message, "oneof_nested_message: {a: 1}",
                                  is_proto3);
  message.set_oneof_string("");
  RunValidProtobufTestWithMessage("OneofZeroString", RECOMMENDED, &message,
                                  "oneof_string: \"\"", is_proto3);
  message.set_oneof_bytes("");
  RunValidProtobufTestWithMessage("OneofZeroBytes", RECOMMENDED, &message,
                                  "oneof_bytes: \"\"", is_proto3);
  message.set_oneof_bool(false);
  RunValidProtobufTestWithMessage("OneofZeroBool", RECOMMENDED, &message,
                                  "oneof_bool: false", is_proto3);
  message.set_oneof_uint64(0);
  RunValidProtobufTestWithMessage("OneofZeroUint64", RECOMMENDED, &message,
                                  "oneof_uint64: 0", is_proto3);
  message.set_oneof_float(0.0f);
  RunValidProtobufTestWithMessage("OneofZeroFloat", RECOMMENDED, &message,
                                  "oneof_float: 0", is_proto3);
  message.set_oneof_double(0.0);
  RunValidProtobufTestWithMessage("OneofZeroDouble", RECOMMENDED, &message,
                                  "oneof_double: 0", is_proto3);
  message.set_oneof_enum(MessageType::FOO);
  RunValidProtobufTestWithMessage("OneofZeroEnum", RECOMMENDED, &message,
                                  "oneof_enum: FOO", is_proto3);
}

template <class MessageType>
void BinaryAndJsonConformanceSuite::TestUnknownMessage(MessageType& message,
                                                       bool is_proto3) {
  message.ParseFromString("\xA8\x1F\x01");
  RunValidBinaryProtobufTest("UnknownVarint", REQUIRED,
                             message.SerializeAsString(), is_proto3);
}

void BinaryAndJsonConformanceSuite::
    TestBinaryPerformanceForAlternatingUnknownFields() {
  string unknown_field_1 = absl::StrCat(
      tag(UNKNOWN_FIELD, WireFormatLite::WIRETYPE_VARINT), varint(1234));
  string unknown_field_2 = absl::StrCat(
      tag(UNKNOWN_FIELD + 1, WireFormatLite::WIRETYPE_VARINT), varint(5678));
  for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
    string proto;
    for (size_t i = 0; i < kPerformanceRepeatCount; i++) {
      proto.append(unknown_field_1);
      proto.append(unknown_field_2);
    }

    RunValidBinaryProtobufTest(
        "TestBinaryPerformanceForAlternatingUnknownFields", RECOMMENDED, proto,
        is_proto3);
  }
}

void BinaryAndJsonConformanceSuite::
    TestBinaryPerformanceMergeMessageWithRepeatedFieldForType(
        FieldDescriptor::Type type) {
  const string type_name =
      UpperCase(absl::StrCat(".", FieldDescriptor::TypeName(type)));
  for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
    int field_number =
        GetFieldForType(type, true, is_proto3, Packed::kFalse)->number();
    string rep_field_proto = absl::StrCat(
        tag(field_number, WireFormatLite::WireTypeForFieldType(
                              static_cast<WireFormatLite::FieldType>(type))),
        GetNonDefaultValue(type));

    RunBinaryPerformanceMergeMessageWithField(
        absl::StrCat(
            "TestBinaryPerformanceMergeMessageWithRepeatedFieldForType",
            type_name),
        rep_field_proto, is_proto3);
  }
}

void BinaryAndJsonConformanceSuite::
    TestBinaryPerformanceMergeMessageWithUnknownFieldForType(
        FieldDescriptor::Type type) {
  const string type_name =
      UpperCase(absl::StrCat(".", FieldDescriptor::TypeName(type)));
  string unknown_field_proto = absl::StrCat(
      tag(UNKNOWN_FIELD, WireFormatLite::WireTypeForFieldType(
                             static_cast<WireFormatLite::FieldType>(type))),
      GetNonDefaultValue(type));
  for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
    RunBinaryPerformanceMergeMessageWithField(
        absl::StrCat("TestBinaryPerformanceMergeMessageWithUnknownFieldForType",
                     type_name),
        unknown_field_proto, is_proto3);
  }
}

void BinaryAndJsonConformanceSuite::RunSuiteImpl() {
  // Hack to get the list of test failures based on whether
  // GOOGLE_PROTOBUF_ENABLE_EXPERIMENTAL_PARSER is enabled or not.
  conformance::FailureSet failure_set;
  ConformanceRequest req;
  ConformanceResponse res;
  req.set_message_type(failure_set.GetTypeName());
  req.set_protobuf_payload("");
  req.set_requested_output_format(conformance::WireFormat::PROTOBUF);
  RunTest("FindFailures", req, &res);
  ABSL_CHECK(failure_set.MergeFromString(res.protobuf_payload()));
  for (const string& failure : failure_set.failure()) {
    AddExpectedFailedTest(failure);
  }

  type_resolver_.reset(NewTypeResolverForDescriptorPool(
      kTypeUrlPrefix, DescriptorPool::generated_pool()));
  type_url_ = GetTypeUrl(TestAllTypesProto3::descriptor());

  if (!performance_) {
    for (int i = 1; i <= FieldDescriptor::MAX_TYPE; i++) {
      if (i == FieldDescriptor::TYPE_GROUP) continue;
      TestPrematureEOFForType(static_cast<FieldDescriptor::Type>(i));
    }

    TestIllegalTags();

    int64_t kInt64Min = -9223372036854775808ULL;
    int64_t kInt64Max = 9223372036854775807ULL;
    uint64_t kUint64Max = 18446744073709551615ULL;
    int32_t kInt32Max = 2147483647;
    int32_t kInt32Min = -2147483648;
    uint32_t kUint32Max = 4294967295UL;

    TestValidDataForType(
        FieldDescriptor::TYPE_DOUBLE,
        {
            {dbl(0), dbl(0)},
            {dbl(0.1), dbl(0.1)},
            {dbl(1.7976931348623157e+308), dbl(1.7976931348623157e+308)},
            {dbl(2.22507385850720138309e-308),
             dbl(2.22507385850720138309e-308)},
        });
    TestValidDataForType(
        FieldDescriptor::TYPE_FLOAT,
        {
            {flt(0), flt(0)},
            {flt(0.1), flt(0.1)},
            {flt(1.00000075e-36), flt(1.00000075e-36)},
            {flt(3.402823e+38), flt(3.402823e+38)},  // 3.40282347e+38
            {flt(1.17549435e-38f), flt(1.17549435e-38)},
        });
    TestValidDataForType(FieldDescriptor::TYPE_INT64,
                         {
                             {varint(0), varint(0)},
                             {varint(12345), varint(12345)},
                             {varint(kInt64Max), varint(kInt64Max)},
                             {varint(kInt64Min), varint(kInt64Min)},
                         });
    TestValidDataForType(FieldDescriptor::TYPE_UINT64,
                         {
                             {varint(0), varint(0)},
                             {varint(12345), varint(12345)},
                             {varint(kUint64Max), varint(kUint64Max)},
                         });
    TestValidDataForType(FieldDescriptor::TYPE_INT32,
                         {
                             {varint(0), varint(0)},
                             {varint(12345), varint(12345)},
                             {longvarint(12345, 2), varint(12345)},
                             {longvarint(12345, 7), varint(12345)},
                             {varint(kInt32Max), varint(kInt32Max)},
                             {varint(kInt32Min), varint(kInt32Min)},
                             {varint(1LL << 33), varint(0)},
                             {varint((1LL << 33) - 1), varint(-1)},
                             {varint(kInt64Max), varint(-1)},
                             {varint(kInt64Min + 1), varint(1)},
                         });
    TestValidDataForType(
        FieldDescriptor::TYPE_UINT32,
        {
            {varint(0), varint(0)},
            {varint(12345), varint(12345)},
            {longvarint(12345, 2), varint(12345)},
            {longvarint(12345, 7), varint(12345)},
            {varint(kUint32Max), varint(kUint32Max)},  // UINT32_MAX
            {varint(1LL << 33), varint(0)},
            {varint((1LL << 33) + 1), varint(1)},
            {varint((1LL << 33) - 1), varint((1LL << 32) - 1)},
            {varint(kInt64Max), varint((1LL << 32) - 1)},
            {varint(kInt64Min + 1), varint(1)},
        });
    TestValidDataForType(FieldDescriptor::TYPE_FIXED64,
                         {
                             {u64(0), u64(0)},
                             {u64(12345), u64(12345)},
                             {u64(kUint64Max), u64(kUint64Max)},
                         });
    TestValidDataForType(FieldDescriptor::TYPE_FIXED32,
                         {
                             {u32(0), u32(0)},
                             {u32(12345), u32(12345)},
                             {u32(kUint32Max), u32(kUint32Max)},  // UINT32_MAX
                         });
    TestValidDataForType(FieldDescriptor::TYPE_SFIXED64,
                         {
                             {u64(0), u64(0)},
                             {u64(12345), u64(12345)},
                             {u64(kInt64Max), u64(kInt64Max)},
                             {u64(kInt64Min), u64(kInt64Min)},
                         });
    TestValidDataForType(FieldDescriptor::TYPE_SFIXED32,
                         {
                             {u32(0), u32(0)},
                             {u32(12345), u32(12345)},
                             {u32(kInt32Max), u32(kInt32Max)},
                             {u32(kInt32Min), u32(kInt32Min)},
                         });
    // Bools should be serialized as 0 for false and 1 for true. Parsers should
    // also interpret any nonzero value as true.
    TestValidDataForType(FieldDescriptor::TYPE_BOOL,
                         {
                             {varint(0), varint(0)},
                             {varint(1), varint(1)},
                             {varint(-1), varint(1)},
                             {varint(12345678), varint(1)},
                             {varint(1LL << 33), varint(1)},
                             {varint(kInt64Max), varint(1)},
                             {varint(kInt64Min), varint(1)},
                         });
    TestValidDataForType(FieldDescriptor::TYPE_SINT32,
                         {
                             {zz32(0), zz32(0)},
                             {zz32(12345), zz32(12345)},
                             {zz32(kInt32Max), zz32(kInt32Max)},
                             {zz32(kInt32Min), zz32(kInt32Min)},
                             {zz64(kInt32Max + 2LL), zz32(1)},
                         });
    TestValidDataForType(FieldDescriptor::TYPE_SINT64,
                         {
                             {zz64(0), zz64(0)},
                             {zz64(12345), zz64(12345)},
                             {zz64(kInt64Max), zz64(kInt64Max)},
                             {zz64(kInt64Min), zz64(kInt64Min)},
                         });
    TestValidDataForType(
        FieldDescriptor::TYPE_STRING,
        {
            {delim(""), delim("")},
            {delim("Hello world!"), delim("Hello world!")},
            {delim("\'\"\?\\\a\b\f\n\r\t\v"),
             delim("\'\"\?\\\a\b\f\n\r\t\v")},       // escape
            {delim("谷歌"), delim("谷歌")},          // Google in Chinese
            {delim("\u8C37\u6B4C"), delim("谷歌")},  // unicode escape
            {delim("\u8c37\u6b4c"), delim("谷歌")},  // lowercase unicode
            {delim("\xF0\x9F\x98\x81"),
             delim("\xF0\x9F\x98\x81")},  // emoji: 😁
        });
    TestValidDataForType(FieldDescriptor::TYPE_BYTES,
                         {
                             {delim(""), delim("")},
                             {delim("Hello world!"), delim("Hello world!")},
                             {delim("\x01\x02"), delim("\x01\x02")},
                             {delim("\xfb"), delim("\xfb")},
                         });
    TestValidDataForType(FieldDescriptor::TYPE_ENUM,
                         {
                             {varint(0), varint(0)},
                             {varint(1), varint(1)},
                             {varint(2), varint(2)},
                             {varint(-1), varint(-1)},
                             {varint(kInt64Max), varint(-1)},
                             {varint(kInt64Min + 1), varint(1)},
                         });
    TestValidDataForRepeatedScalarMessage();
    TestValidDataForType(
        FieldDescriptor::TYPE_MESSAGE,
        {
            {delim(""), delim("")},
            {delim(absl::StrCat(tag(1, WireFormatLite::WIRETYPE_VARINT),
                                varint(1234))),
             delim(absl::StrCat(tag(1, WireFormatLite::WIRETYPE_VARINT),
                                varint(1234)))},
        });

    TestValidDataForMapType(FieldDescriptor::TYPE_INT32,
                            FieldDescriptor::TYPE_INT32);
    TestValidDataForMapType(FieldDescriptor::TYPE_INT64,
                            FieldDescriptor::TYPE_INT64);
    TestValidDataForMapType(FieldDescriptor::TYPE_UINT32,
                            FieldDescriptor::TYPE_UINT32);
    TestValidDataForMapType(FieldDescriptor::TYPE_UINT64,
                            FieldDescriptor::TYPE_UINT64);
    TestValidDataForMapType(FieldDescriptor::TYPE_SINT32,
                            FieldDescriptor::TYPE_SINT32);
    TestValidDataForMapType(FieldDescriptor::TYPE_SINT64,
                            FieldDescriptor::TYPE_SINT64);
    TestValidDataForMapType(FieldDescriptor::TYPE_FIXED32,
                            FieldDescriptor::TYPE_FIXED32);
    TestValidDataForMapType(FieldDescriptor::TYPE_FIXED64,
                            FieldDescriptor::TYPE_FIXED64);
    TestValidDataForMapType(FieldDescriptor::TYPE_SFIXED32,
                            FieldDescriptor::TYPE_SFIXED32);
    TestValidDataForMapType(FieldDescriptor::TYPE_SFIXED64,
                            FieldDescriptor::TYPE_SFIXED64);
    TestValidDataForMapType(FieldDescriptor::TYPE_INT32,
                            FieldDescriptor::TYPE_FLOAT);
    TestValidDataForMapType(FieldDescriptor::TYPE_INT32,
                            FieldDescriptor::TYPE_DOUBLE);
    TestValidDataForMapType(FieldDescriptor::TYPE_BOOL,
                            FieldDescriptor::TYPE_BOOL);
    TestValidDataForMapType(FieldDescriptor::TYPE_STRING,
                            FieldDescriptor::TYPE_STRING);
    TestValidDataForMapType(FieldDescriptor::TYPE_STRING,
                            FieldDescriptor::TYPE_BYTES);
    TestValidDataForMapType(FieldDescriptor::TYPE_STRING,
                            FieldDescriptor::TYPE_ENUM);
    TestValidDataForMapType(FieldDescriptor::TYPE_STRING,
                            FieldDescriptor::TYPE_MESSAGE);
    // Additional test to check overwriting message value map.
    TestOverwriteMessageValueMap();

    TestValidDataForOneofType(FieldDescriptor::TYPE_UINT32);
    TestValidDataForOneofType(FieldDescriptor::TYPE_BOOL);
    TestValidDataForOneofType(FieldDescriptor::TYPE_UINT64);
    TestValidDataForOneofType(FieldDescriptor::TYPE_FLOAT);
    TestValidDataForOneofType(FieldDescriptor::TYPE_DOUBLE);
    TestValidDataForOneofType(FieldDescriptor::TYPE_STRING);
    TestValidDataForOneofType(FieldDescriptor::TYPE_BYTES);
    TestValidDataForOneofType(FieldDescriptor::TYPE_ENUM);
    TestValidDataForOneofType(FieldDescriptor::TYPE_MESSAGE);
    // Additional test to check merging oneof message.
    TestMergeOneofMessage();

    // TODO(haberman):
    // TestValidDataForType(FieldDescriptor::TYPE_GROUP

    // Unknown fields.
    {
      TestAllTypesProto3 messageProto3;
      TestAllTypesProto2 messageProto2;
      // TODO(yilunchong): update this behavior when unknown field's behavior
      // changed in open source. Also delete
      // Required.Proto3.ProtobufInput.UnknownVarint.ProtobufOutput
      // from failure list of python_cpp python java
      TestUnknownMessage(messageProto3, true);
      TestUnknownMessage(messageProto2, false);
    }

    RunJsonTests();
  }
  // Flag control performance tests to keep them internal and opt-in only
  if (performance_) {
    RunBinaryPerformanceTests();
    RunJsonPerformanceTests();
  }
}

void BinaryAndJsonConformanceSuite::RunBinaryPerformanceTests() {
  TestBinaryPerformanceForAlternatingUnknownFields();

  TestBinaryPerformanceMergeMessageWithRepeatedFieldForType(
      FieldDescriptor::TYPE_BOOL);
  TestBinaryPerformanceMergeMessageWithRepeatedFieldForType(
      FieldDescriptor::TYPE_DOUBLE);
  TestBinaryPerformanceMergeMessageWithRepeatedFieldForType(
      FieldDescriptor::TYPE_FLOAT);
  TestBinaryPerformanceMergeMessageWithRepeatedFieldForType(
      FieldDescriptor::TYPE_UINT32);
  TestBinaryPerformanceMergeMessageWithRepeatedFieldForType(
      FieldDescriptor::TYPE_UINT64);
  TestBinaryPerformanceMergeMessageWithRepeatedFieldForType(
      FieldDescriptor::TYPE_STRING);
  TestBinaryPerformanceMergeMessageWithRepeatedFieldForType(
      FieldDescriptor::TYPE_BYTES);

  TestBinaryPerformanceMergeMessageWithUnknownFieldForType(
      FieldDescriptor::TYPE_BOOL);
  TestBinaryPerformanceMergeMessageWithUnknownFieldForType(
      FieldDescriptor::TYPE_DOUBLE);
  TestBinaryPerformanceMergeMessageWithUnknownFieldForType(
      FieldDescriptor::TYPE_FLOAT);
  TestBinaryPerformanceMergeMessageWithUnknownFieldForType(
      FieldDescriptor::TYPE_UINT32);
  TestBinaryPerformanceMergeMessageWithUnknownFieldForType(
      FieldDescriptor::TYPE_UINT64);
  TestBinaryPerformanceMergeMessageWithUnknownFieldForType(
      FieldDescriptor::TYPE_STRING);
  TestBinaryPerformanceMergeMessageWithUnknownFieldForType(
      FieldDescriptor::TYPE_BYTES);
}

void BinaryAndJsonConformanceSuite::RunJsonPerformanceTests() {
  TestJsonPerformanceMergeMessageWithRepeatedFieldForType(
      FieldDescriptor::TYPE_BOOL, "true");
  TestJsonPerformanceMergeMessageWithRepeatedFieldForType(
      FieldDescriptor::TYPE_DOUBLE, "123");
  TestJsonPerformanceMergeMessageWithRepeatedFieldForType(
      FieldDescriptor::TYPE_FLOAT, "123");
  TestJsonPerformanceMergeMessageWithRepeatedFieldForType(
      FieldDescriptor::TYPE_UINT32, "123");
  TestJsonPerformanceMergeMessageWithRepeatedFieldForType(
      FieldDescriptor::TYPE_UINT64, "123");
  TestJsonPerformanceMergeMessageWithRepeatedFieldForType(
      FieldDescriptor::TYPE_STRING, "\"foo\"");
  TestJsonPerformanceMergeMessageWithRepeatedFieldForType(
      FieldDescriptor::TYPE_BYTES, "\"foo\"");
}

// This is currently considered valid input by some languages but not others
void BinaryAndJsonConformanceSuite::
    TestJsonPerformanceMergeMessageWithRepeatedFieldForType(
        FieldDescriptor::Type type, string field_value) {
  const string type_name =
      UpperCase(absl::StrCat(".", FieldDescriptor::TypeName(type)));
  for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
    const FieldDescriptor* field =
        GetFieldForType(type, true, is_proto3, Packed::kFalse);
    string field_name = field->name();

    string message_field =
        absl::StrCat("\"", field_name, "\": [", field_value, "]");
    string recursive_message =
        absl::StrCat("\"recursive_message\": { ", message_field, "}");
    string input = absl::StrCat("{", recursive_message);
    for (size_t i = 1; i < kPerformanceRepeatCount; i++) {
      absl::StrAppend(&input, ",", recursive_message);
    }
    absl::StrAppend(&input, "}");

    string textproto_message_field =
        absl::StrCat(field_name, ": ", field_value);
    string expected_textproto = "recursive_message { ";
    for (size_t i = 0; i < kPerformanceRepeatCount; i++) {
      absl::StrAppend(&expected_textproto, textproto_message_field, " ");
    }
    absl::StrAppend(&expected_textproto, "}");
    RunValidJsonTest(
        absl::StrCat("TestJsonPerformanceMergeMessageWithRepeatedFieldForType",
                     type_name),
        RECOMMENDED, input, expected_textproto, is_proto3);
  }
}

void BinaryAndJsonConformanceSuite::RunJsonTests() {
  RunValidJsonTest("HelloWorld", REQUIRED,
                   "{\"optionalString\":\"Hello, World!\"}",
                   "optional_string: 'Hello, World!'");

  // NOTE: The spec for JSON support is still being sorted out, these may not
  // all be correct.

  RunJsonTestsForFieldNameConvention();
  RunJsonTestsForNonRepeatedTypes();
  RunJsonTestsForRepeatedTypes();
  RunJsonTestsForNullTypes();
  RunJsonTestsForWrapperTypes();
  RunJsonTestsForFieldMask();
  RunJsonTestsForStruct();
  RunJsonTestsForValue();
  RunJsonTestsForAny();
  RunJsonTestsForUnknownEnumStringValues();

  RunValidJsonIgnoreUnknownTest("IgnoreUnknownJsonNumber", REQUIRED,
                                R"({
        "unknown": 1
      })",
                                "");
  RunValidJsonIgnoreUnknownTest("IgnoreUnknownJsonString", REQUIRED,
                                R"({
        "unknown": "a"
      })",
                                "");
  RunValidJsonIgnoreUnknownTest("IgnoreUnknownJsonTrue", REQUIRED,
                                R"({
        "unknown": true
      })",
                                "");
  RunValidJsonIgnoreUnknownTest("IgnoreUnknownJsonFalse", REQUIRED,
                                R"({
        "unknown": false
      })",
                                "");
  RunValidJsonIgnoreUnknownTest("IgnoreUnknownJsonNull", REQUIRED,
                                R"({
        "unknown": null
      })",
                                "");
  RunValidJsonIgnoreUnknownTest("IgnoreUnknownJsonObject", REQUIRED,
                                R"({
        "unknown": {"a": 1}
      })",
                                "");

  ExpectParseFailureForJson("RejectTopLevelNull", REQUIRED, "null");
}

void BinaryAndJsonConformanceSuite::RunJsonTestsForUnknownEnumStringValues() {
  // Tests the handling of unknown enum values when encoded as string labels.
  // The expected behavior depends on whether unknown fields are ignored:
  // * when ignored, the parser should ignore the unknown enum string value.
  // * when not ignored, the parser should fail.
  struct TestCase {
    // Used in the test name.
    string enum_location;
    // JSON input which will contain the unknown field.
    string input_json;
  };
  const std::vector<TestCase> test_cases = {
      {"InOptionalField", R"json({
      "optional_nested_enum": "UNKNOWN_ENUM_VALUE"
    })json"},
      {"InRepeatedField", R"json({
      "repeated_nested_enum": ["UNKNOWN_ENUM_VALUE"]
    })json"},
      {"InMapValue", R"json({
      "map_string_nested_enum": {"key": "UNKNOWN_ENUM_VALUE"}
    })json"},
  };
  for (const TestCase& test_case : test_cases) {
    // Unknown enum string value is a parse failure when not ignoring unknown
    // fields.
    ExpectParseFailureForJson(
        absl::StrCat("RejectUnknownEnumStringValue", test_case.enum_location),
        RECOMMENDED, test_case.input_json);
    // Unknown enum string value is ignored when ignoring unknown fields.
    RunValidJsonIgnoreUnknownTest(
        absl::StrCat("IgnoreUnknownEnumStringValue", test_case.enum_location),
        RECOMMENDED, test_case.input_json, "");
  }
}

void BinaryAndJsonConformanceSuite::RunJsonTestsForFieldNameConvention() {
  RunValidJsonTest("FieldNameInSnakeCase", REQUIRED,
                   R"({
        "fieldname1": 1,
        "fieldName2": 2,
        "FieldName3": 3,
        "fieldName4": 4
      })",
                   R"(
        fieldname1: 1
        field_name2: 2
        _field_name3: 3
        field__name4_: 4
      )");
  RunValidJsonTest("FieldNameWithNumbers", REQUIRED,
                   R"({
        "field0name5": 5,
        "field0Name6": 6
      })",
                   R"(
        field0name5: 5
        field_0_name6: 6
      )");
  RunValidJsonTest("FieldNameWithMixedCases", REQUIRED,
                   R"({
        "fieldName7": 7,
        "FieldName8": 8,
        "fieldName9": 9,
        "FieldName10": 10,
        "FIELDNAME11": 11,
        "FIELDName12": 12
      })",
                   R"(
        fieldName7: 7
        FieldName8: 8
        field_Name9: 9
        Field_Name10: 10
        FIELD_NAME11: 11
        FIELD_name12: 12
      )");
  RunValidJsonTest("FieldNameWithDoubleUnderscores", RECOMMENDED,
                   R"({
        "FieldName13": 13,
        "FieldName14": 14,
        "fieldName15": 15,
        "fieldName16": 16,
        "fieldName17": 17,
        "FieldName18": 18
      })",
                   R"(
        __field_name13: 13
        __Field_name14: 14
        field__name15: 15
        field__Name16: 16
        field_name17__: 17
        Field_name18__: 18
      )");
  // Using the original proto field name in JSON is also allowed.
  RunValidJsonTest("OriginalProtoFieldName", REQUIRED,
                   R"({
        "fieldname1": 1,
        "field_name2": 2,
        "_field_name3": 3,
        "field__name4_": 4,
        "field0name5": 5,
        "field_0_name6": 6,
        "fieldName7": 7,
        "FieldName8": 8,
        "field_Name9": 9,
        "Field_Name10": 10,
        "FIELD_NAME11": 11,
        "FIELD_name12": 12,
        "__field_name13": 13,
        "__Field_name14": 14,
        "field__name15": 15,
        "field__Name16": 16,
        "field_name17__": 17,
        "Field_name18__": 18
      })",
                   R"(
        fieldname1: 1
        field_name2: 2
        _field_name3: 3
        field__name4_: 4
        field0name5: 5
        field_0_name6: 6
        fieldName7: 7
        FieldName8: 8
        field_Name9: 9
        Field_Name10: 10
        FIELD_NAME11: 11
        FIELD_name12: 12
        __field_name13: 13
        __Field_name14: 14
        field__name15: 15
        field__Name16: 16
        field_name17__: 17
        Field_name18__: 18
      )");
  // Field names can be escaped.
  RunValidJsonTest("FieldNameEscaped", REQUIRED, R"({"fieldn\u0061me1": 1})",
                   "fieldname1: 1");
  // String ends with escape character.
  ExpectParseFailureForJson("StringEndsWithEscapeChar", RECOMMENDED,
                            "{\"optionalString\": \"abc\\");
  // Field names must be quoted (or it's not valid JSON).
  ExpectParseFailureForJson("FieldNameNotQuoted", RECOMMENDED,
                            "{fieldname1: 1}");
  // Trailing comma is not allowed (not valid JSON).
  ExpectParseFailureForJson("TrailingCommaInAnObject", RECOMMENDED,
                            R"({"fieldname1":1,})");
  ExpectParseFailureForJson("TrailingCommaInAnObjectWithSpace", RECOMMENDED,
                            R"({"fieldname1":1 ,})");
  ExpectParseFailureForJson("TrailingCommaInAnObjectWithSpaceCommaSpace",
                            RECOMMENDED, R"({"fieldname1":1 , })");
  ExpectParseFailureForJson("TrailingCommaInAnObjectWithNewlines", RECOMMENDED,
                            R"({
        "fieldname1":1,
      })");
  // JSON doesn't support comments.
  ExpectParseFailureForJson("JsonWithComments", RECOMMENDED,
                            R"({
        // This is a comment.
        "fieldname1": 1
      })");
  // JSON spec says whitespace doesn't matter, so try a few spacings to be sure.
  RunValidJsonTest("OneLineNoSpaces", RECOMMENDED,
                   "{\"optionalInt32\":1,\"optionalInt64\":2}",
                   R"(
        optional_int32: 1
        optional_int64: 2
      )");
  RunValidJsonTest("OneLineWithSpaces", RECOMMENDED,
                   "{ \"optionalInt32\" : 1 , \"optionalInt64\" : 2 }",
                   R"(
        optional_int32: 1
        optional_int64: 2
      )");
  RunValidJsonTest("MultilineNoSpaces", RECOMMENDED,
                   "{\n\"optionalInt32\"\n:\n1\n,\n\"optionalInt64\"\n:\n2\n}",
                   R"(
        optional_int32: 1
        optional_int64: 2
      )");
  RunValidJsonTest(
      "MultilineWithSpaces", RECOMMENDED,
      "{\n  \"optionalInt32\"  :  1\n  ,\n  \"optionalInt64\"  :  2\n}\n",
      R"(
        optional_int32: 1
        optional_int64: 2
      )");
  // Missing comma between key/value pairs.
  ExpectParseFailureForJson("MissingCommaOneLine", RECOMMENDED,
                            "{ \"optionalInt32\": 1 \"optionalInt64\": 2 }");
  ExpectParseFailureForJson(
      "MissingCommaMultiline", RECOMMENDED,
      "{\n  \"optionalInt32\": 1\n  \"optionalInt64\": 2\n}");
  // Duplicated field names are not allowed.
  ExpectParseFailureForJson("FieldNameDuplicate", RECOMMENDED,
                            R"({
        "optionalNestedMessage": {a: 1},
        "optionalNestedMessage": {}
      })");
  ExpectParseFailureForJson("FieldNameDuplicateDifferentCasing1", RECOMMENDED,
                            R"({
        "optional_nested_message": {a: 1},
        "optionalNestedMessage": {}
      })");
  ExpectParseFailureForJson("FieldNameDuplicateDifferentCasing2", RECOMMENDED,
                            R"({
        "optionalNestedMessage": {a: 1},
        "optional_nested_message": {}
      })");
  // Serializers should use lowerCamelCase by default.
  RunValidJsonTestWithValidator(
      "FieldNameInLowerCamelCase", REQUIRED,
      R"({
        "fieldname1": 1,
        "fieldName2": 2,
        "FieldName3": 3,
        "fieldName4": 4
      })",
      [](const Json::Value& value) {
        return value.isMember("fieldname1") && value.isMember("fieldName2") &&
               value.isMember("FieldName3") && value.isMember("fieldName4");
      },
      true);
  RunValidJsonTestWithValidator(
      "FieldNameWithNumbers", REQUIRED,
      R"({
        "field0name5": 5,
        "field0Name6": 6
      })",
      [](const Json::Value& value) {
        return value.isMember("field0name5") && value.isMember("field0Name6");
      },
      true);
  RunValidJsonTestWithValidator(
      "FieldNameWithMixedCases", REQUIRED,
      R"({
        "fieldName7": 7,
        "FieldName8": 8,
        "fieldName9": 9,
        "FieldName10": 10,
        "FIELDNAME11": 11,
        "FIELDName12": 12
      })",
      [](const Json::Value& value) {
        return value.isMember("fieldName7") && value.isMember("FieldName8") &&
               value.isMember("fieldName9") && value.isMember("FieldName10") &&
               value.isMember("FIELDNAME11") && value.isMember("FIELDName12");
      },
      true);
  RunValidJsonTestWithValidator(
      "FieldNameWithDoubleUnderscores", RECOMMENDED,
      R"({
        "FieldName13": 13,
        "FieldName14": 14,
        "fieldName15": 15,
        "fieldName16": 16,
        "fieldName17": 17,
        "FieldName18": 18
      })",
      [](const Json::Value& value) {
        return value.isMember("FieldName13") && value.isMember("FieldName14") &&
               value.isMember("fieldName15") && value.isMember("fieldName16") &&
               value.isMember("fieldName17") && value.isMember("FieldName18");
      },
      true);
  RunValidJsonTestWithValidator(
      "StoresDefaultPrimitive", REQUIRED,
      R"({
        "FieldName13": 0
      })",
      [](const Json::Value& value) { return value.isMember("FieldName13"); },
      false);
  RunValidJsonTestWithValidator(
      "SkipsDefaultPrimitive", REQUIRED,
      R"({
        "FieldName13": 0
      })",
      [](const Json::Value& value) { return !value.isMember("FieldName13"); },
      true);
  RunValidJsonTestWithValidator(
      "FieldNameExtension", RECOMMENDED,
      R"({
        "[protobuf_test_messages.proto2.extension_int32]": 1
      })",
      [](const Json::Value& value) {
        return value.isMember(
            "[protobuf_test_messages.proto2.extension_int32]");
      },
      false);
}

void BinaryAndJsonConformanceSuite::RunJsonTestsForNonRepeatedTypes() {
  // Integer fields.
  RunValidJsonTest("Int32FieldMaxValue", REQUIRED,
                   R"({"optionalInt32": 2147483647})",
                   "optional_int32: 2147483647");
  RunValidJsonTest("Int32FieldMinValue", REQUIRED,
                   R"({"optionalInt32": -2147483648})",
                   "optional_int32: -2147483648");
  RunValidJsonTest("Uint32FieldMaxValue", REQUIRED,
                   R"({"optionalUint32": 4294967295})",
                   "optional_uint32: 4294967295");
  RunValidJsonTest("Int64FieldMaxValue", REQUIRED,
                   R"({"optionalInt64": "9223372036854775807"})",
                   "optional_int64: 9223372036854775807");
  RunValidJsonTest("Int64FieldMinValue", REQUIRED,
                   R"({"optionalInt64": "-9223372036854775808"})",
                   "optional_int64: -9223372036854775808");
  RunValidJsonTest("Uint64FieldMaxValue", REQUIRED,
                   R"({"optionalUint64": "18446744073709551615"})",
                   "optional_uint64: 18446744073709551615");
  // While not the largest Int64, this is the largest
  // Int64 which can be exactly represented within an
  // IEEE-754 64-bit float, which is the expected level
  // of interoperability guarantee. Larger values may
  // work in some implementations, but should not be
  // relied upon.
  RunValidJsonTest("Int64FieldMaxValueNotQuoted", REQUIRED,
                   R"({"optionalInt64": 9223372036854774784})",
                   "optional_int64: 9223372036854774784");
  RunValidJsonTest("Int64FieldMinValueNotQuoted", REQUIRED,
                   R"({"optionalInt64": -9223372036854775808})",
                   "optional_int64: -9223372036854775808");
  // Largest interoperable Uint64; see comment above
  // for Int64FieldMaxValueNotQuoted.
  RunValidJsonTest("Uint64FieldMaxValueNotQuoted", REQUIRED,
                   R"({"optionalUint64": 18446744073709549568})",
                   "optional_uint64: 18446744073709549568");
  // Values can be represented as JSON strings.
  RunValidJsonTest("Int32FieldStringValue", REQUIRED,
                   R"({"optionalInt32": "2147483647"})",
                   "optional_int32: 2147483647");
  RunValidJsonTest("Int32FieldStringValueEscaped", REQUIRED,
                   R"({"optionalInt32": "2\u003147483647"})",
                   "optional_int32: 2147483647");

  // Parsers reject out-of-bound integer values.
  ExpectParseFailureForJson("Int32FieldTooLarge", REQUIRED,
                            R"({"optionalInt32": 2147483648})");
  ExpectParseFailureForJson("Int32FieldTooSmall", REQUIRED,
                            R"({"optionalInt32": -2147483649})");
  ExpectParseFailureForJson("Uint32FieldTooLarge", REQUIRED,
                            R"({"optionalUint32": 4294967296})");
  ExpectParseFailureForJson("Int64FieldTooLarge", REQUIRED,
                            R"({"optionalInt64": "9223372036854775808"})");
  ExpectParseFailureForJson("Int64FieldTooSmall", REQUIRED,
                            R"({"optionalInt64": "-9223372036854775809"})");
  ExpectParseFailureForJson("Uint64FieldTooLarge", REQUIRED,
                            R"({"optionalUint64": "18446744073709551616"})");
  // Parser reject non-integer numeric values as well.
  ExpectParseFailureForJson("Int32FieldNotInteger", REQUIRED,
                            R"({"optionalInt32": 0.5})");
  ExpectParseFailureForJson("Uint32FieldNotInteger", REQUIRED,
                            R"({"optionalUint32": 0.5})");
  ExpectParseFailureForJson("Int64FieldNotInteger", REQUIRED,
                            R"({"optionalInt64": "0.5"})");
  ExpectParseFailureForJson("Uint64FieldNotInteger", REQUIRED,
                            R"({"optionalUint64": "0.5"})");

  // Integers but represented as float values are accepted.
  RunValidJsonTest("Int32FieldFloatTrailingZero", REQUIRED,
                   R"({"optionalInt32": 100000.000})",
                   "optional_int32: 100000");
  RunValidJsonTest("Int32FieldExponentialFormat", REQUIRED,
                   R"({"optionalInt32": 1e5})", "optional_int32: 100000");
  RunValidJsonTest("Int32FieldMaxFloatValue", REQUIRED,
                   R"({"optionalInt32": 2.147483647e9})",
                   "optional_int32: 2147483647");
  RunValidJsonTest("Int32FieldMinFloatValue", REQUIRED,
                   R"({"optionalInt32": -2.147483648e9})",
                   "optional_int32: -2147483648");
  RunValidJsonTest("Uint32FieldMaxFloatValue", REQUIRED,
                   R"({"optionalUint32": 4.294967295e9})",
                   "optional_uint32: 4294967295");

  // Parser reject non-numeric values.
  ExpectParseFailureForJson("Int32FieldNotNumber", REQUIRED,
                            R"({"optionalInt32": "3x3"})");
  ExpectParseFailureForJson("Uint32FieldNotNumber", REQUIRED,
                            R"({"optionalUint32": "3x3"})");
  ExpectParseFailureForJson("Int64FieldNotNumber", REQUIRED,
                            R"({"optionalInt64": "3x3"})");
  ExpectParseFailureForJson("Uint64FieldNotNumber", REQUIRED,
                            R"({"optionalUint64": "3x3"})");
  // JSON does not allow "+" on numeric values.
  ExpectParseFailureForJson("Int32FieldPlusSign", REQUIRED,
                            R"({"optionalInt32": +1})");
  // JSON doesn't allow leading 0s.
  ExpectParseFailureForJson("Int32FieldLeadingZero", REQUIRED,
                            R"({"optionalInt32": 01})");
  ExpectParseFailureForJson("Int32FieldNegativeWithLeadingZero", REQUIRED,
                            R"({"optionalInt32": -01})");
  // String values must follow the same syntax rule. Specifically leading
  // or trailing spaces are not allowed.
  ExpectParseFailureForJson("Int32FieldLeadingSpace", REQUIRED,
                            R"({"optionalInt32": " 1"})");
  ExpectParseFailureForJson("Int32FieldTrailingSpace", REQUIRED,
                            R"({"optionalInt32": "1 "})");

  // 64-bit values are serialized as strings.
  RunValidJsonTestWithValidator(
      "Int64FieldBeString", RECOMMENDED, R"({"optionalInt64": 1})",
      [](const Json::Value& value) {
        return value["optionalInt64"].type() == Json::stringValue &&
               value["optionalInt64"].asString() == "1";
      },
      true);
  RunValidJsonTestWithValidator(
      "Uint64FieldBeString", RECOMMENDED, R"({"optionalUint64": 1})",
      [](const Json::Value& value) {
        return value["optionalUint64"].type() == Json::stringValue &&
               value["optionalUint64"].asString() == "1";
      },
      true);

  // Bool fields.
  RunValidJsonTest("BoolFieldTrue", REQUIRED, R"({"optionalBool":true})",
                   "optional_bool: true");
  RunValidJsonTest("BoolFieldFalse", REQUIRED, R"({"optionalBool":false})",
                   "optional_bool: false");

  // Other forms are not allowed.
  ExpectParseFailureForJson("BoolFieldIntegerZero", RECOMMENDED,
                            R"({"optionalBool":0})");
  ExpectParseFailureForJson("BoolFieldIntegerOne", RECOMMENDED,
                            R"({"optionalBool":1})");
  ExpectParseFailureForJson("BoolFieldCamelCaseTrue", RECOMMENDED,
                            R"({"optionalBool":True})");
  ExpectParseFailureForJson("BoolFieldCamelCaseFalse", RECOMMENDED,
                            R"({"optionalBool":False})");
  ExpectParseFailureForJson("BoolFieldAllCapitalTrue", RECOMMENDED,
                            R"({"optionalBool":TRUE})");
  ExpectParseFailureForJson("BoolFieldAllCapitalFalse", RECOMMENDED,
                            R"({"optionalBool":FALSE})");
  ExpectParseFailureForJson("BoolFieldDoubleQuotedTrue", RECOMMENDED,
                            R"({"optionalBool":"true"})");
  ExpectParseFailureForJson("BoolFieldDoubleQuotedFalse", RECOMMENDED,
                            R"({"optionalBool":"false"})");

  // Float fields.
  RunValidJsonTest("FloatFieldMinPositiveValue", REQUIRED,
                   R"({"optionalFloat": 1.175494e-38})",
                   "optional_float: 1.175494e-38");
  RunValidJsonTest("FloatFieldMaxNegativeValue", REQUIRED,
                   R"({"optionalFloat": -1.175494e-38})",
                   "optional_float: -1.175494e-38");
  RunValidJsonTest("FloatFieldMaxPositiveValue", REQUIRED,
                   R"({"optionalFloat": 3.402823e+38})",
                   "optional_float: 3.402823e+38");
  RunValidJsonTest("FloatFieldMinNegativeValue", REQUIRED,
                   R"({"optionalFloat": 3.402823e+38})",
                   "optional_float: 3.402823e+38");
  // Values can be quoted.
  RunValidJsonTest("FloatFieldQuotedValue", REQUIRED,
                   R"({"optionalFloat": "1"})", "optional_float: 1");
  // Special values.
  RunValidJsonTest("FloatFieldNan", REQUIRED, R"({"optionalFloat": "NaN"})",
                   "optional_float: nan");
  RunValidJsonTest("FloatFieldInfinity", REQUIRED,
                   R"({"optionalFloat": "Infinity"})", "optional_float: inf");
  RunValidJsonTest("FloatFieldNegativeInfinity", REQUIRED,
                   R"({"optionalFloat": "-Infinity"})", "optional_float: -inf");
  // Non-canonical Nan will be correctly normalized.
  {
    TestAllTypesProto3 message;
    // IEEE floating-point standard 32-bit quiet NaN:
    //   0111 1111 1xxx xxxx xxxx xxxx xxxx xxxx
    message.set_optional_float(WireFormatLite::DecodeFloat(0x7FA12345));
    RunValidJsonTestWithProtobufInput("FloatFieldNormalizeQuietNan", REQUIRED,
                                      message, "optional_float: nan");
    // IEEE floating-point standard 64-bit signaling NaN:
    //   1111 1111 1xxx xxxx xxxx xxxx xxxx xxxx
    message.set_optional_float(WireFormatLite::DecodeFloat(0xFFB54321));
    RunValidJsonTestWithProtobufInput("FloatFieldNormalizeSignalingNan",
                                      REQUIRED, message, "optional_float: nan");
  }

  // Special values must be quoted.
  ExpectParseFailureForJson("FloatFieldNanNotQuoted", RECOMMENDED,
                            R"({"optionalFloat": NaN})");
  ExpectParseFailureForJson("FloatFieldInfinityNotQuoted", RECOMMENDED,
                            R"({"optionalFloat": Infinity})");
  ExpectParseFailureForJson("FloatFieldNegativeInfinityNotQuoted", RECOMMENDED,
                            R"({"optionalFloat": -Infinity})");
  // Parsers should reject out-of-bound values.
  ExpectParseFailureForJson("FloatFieldTooSmall", REQUIRED,
                            R"({"optionalFloat": -3.502823e+38})");
  ExpectParseFailureForJson("FloatFieldTooLarge", REQUIRED,
                            R"({"optionalFloat": 3.502823e+38})");

  // Double fields.
  RunValidJsonTest("DoubleFieldMinPositiveValue", REQUIRED,
                   R"({"optionalDouble": 2.22507e-308})",
                   "optional_double: 2.22507e-308");
  RunValidJsonTest("DoubleFieldMaxNegativeValue", REQUIRED,
                   R"({"optionalDouble": -2.22507e-308})",
                   "optional_double: -2.22507e-308");
  RunValidJsonTest("DoubleFieldMaxPositiveValue", REQUIRED,
                   R"({"optionalDouble": 1.79769e+308})",
                   "optional_double: 1.79769e+308");
  RunValidJsonTest("DoubleFieldMinNegativeValue", REQUIRED,
                   R"({"optionalDouble": -1.79769e+308})",
                   "optional_double: -1.79769e+308");
  // Values can be quoted.
  RunValidJsonTest("DoubleFieldQuotedValue", REQUIRED,
                   R"({"optionalDouble": "1"})", "optional_double: 1");
  // Special values.
  RunValidJsonTest("DoubleFieldNan", REQUIRED, R"({"optionalDouble": "NaN"})",
                   "optional_double: nan");
  RunValidJsonTest("DoubleFieldInfinity", REQUIRED,
                   R"({"optionalDouble": "Infinity"})", "optional_double: inf");
  RunValidJsonTest("DoubleFieldNegativeInfinity", REQUIRED,
                   R"({"optionalDouble": "-Infinity"})",
                   "optional_double: -inf");
  // Non-canonical Nan will be correctly normalized.
  {
    TestAllTypesProto3 message;
    message.set_optional_double(
        WireFormatLite::DecodeDouble(int64_t{0x7FFA123456789ABC}));
    RunValidJsonTestWithProtobufInput("DoubleFieldNormalizeQuietNan", REQUIRED,
                                      message, "optional_double: nan");
    message.set_optional_double(
        WireFormatLite::DecodeDouble(uint64_t{0xFFFBCBA987654321}));
    RunValidJsonTestWithProtobufInput("DoubleFieldNormalizeSignalingNan",
                                      REQUIRED, message,
                                      "optional_double: nan");
  }

  // Special values must be quoted.
  ExpectParseFailureForJson("DoubleFieldNanNotQuoted", RECOMMENDED,
                            R"({"optionalDouble": NaN})");
  ExpectParseFailureForJson("DoubleFieldInfinityNotQuoted", RECOMMENDED,
                            R"({"optionalDouble": Infinity})");
  ExpectParseFailureForJson("DoubleFieldNegativeInfinityNotQuoted", RECOMMENDED,
                            R"({"optionalDouble": -Infinity})");

  // Parsers should reject out-of-bound values.
  ExpectParseFailureForJson("DoubleFieldTooSmall", REQUIRED,
                            R"({"optionalDouble": -1.89769e+308})");
  ExpectParseFailureForJson("DoubleFieldTooLarge", REQUIRED,
                            R"({"optionalDouble": +1.89769e+308})");

  // Enum fields.
  RunValidJsonTest("EnumField", REQUIRED, R"({"optionalNestedEnum": "FOO"})",
                   "optional_nested_enum: FOO");
  // Enum fields with alias
  RunValidJsonTest("EnumFieldWithAlias", REQUIRED,
                   R"({"optionalAliasedEnum": "ALIAS_BAZ"})",
                   "optional_aliased_enum: ALIAS_BAZ");
  RunValidJsonTest("EnumFieldWithAliasUseAlias", REQUIRED,
                   R"({"optionalAliasedEnum": "MOO"})",
                   "optional_aliased_enum: ALIAS_BAZ");
  RunValidJsonTest("EnumFieldWithAliasLowerCase", REQUIRED,
                   R"({"optionalAliasedEnum": "moo"})",
                   "optional_aliased_enum: ALIAS_BAZ");
  RunValidJsonTest("EnumFieldWithAliasDifferentCase", REQUIRED,
                   R"({"optionalAliasedEnum": "bAz"})",
                   "optional_aliased_enum: ALIAS_BAZ");
  // Enum values must be represented as strings.
  ExpectParseFailureForJson("EnumFieldNotQuoted", REQUIRED,
                            R"({"optionalNestedEnum": FOO})");
  // Numeric values are allowed.
  RunValidJsonTest("EnumFieldNumericValueZero", REQUIRED,
                   R"({"optionalNestedEnum": 0})", "optional_nested_enum: FOO");
  RunValidJsonTest("EnumFieldNumericValueNonZero", REQUIRED,
                   R"({"optionalNestedEnum": 1})", "optional_nested_enum: BAR");
  // Unknown enum values are represented as numeric values.
  RunValidJsonTestWithValidator(
      "EnumFieldUnknownValue", REQUIRED, R"({"optionalNestedEnum": 123})",
      [](const Json::Value& value) {
        return value["optionalNestedEnum"].type() == Json::intValue &&
               value["optionalNestedEnum"].asInt() == 123;
      },
      true);

  // String fields.
  RunValidJsonTest("StringField", REQUIRED,
                   R"({"optionalString": "Hello world!"})",
                   "optional_string: \"Hello world!\"");
  RunValidJsonTest("StringFieldUnicode", REQUIRED,
                   // Google in Chinese.
                   R"({"optionalString": "谷歌"})",
                   R"(optional_string: "谷歌")");
  RunValidJsonTest("StringFieldEscape", REQUIRED,
                   R"({"optionalString": "\"\\\/\b\f\n\r\t"})",
                   R"(optional_string: "\"\\/\b\f\n\r\t")");
  RunValidJsonTest("StringFieldUnicodeEscape", REQUIRED,
                   R"({"optionalString": "\u8C37\u6B4C"})",
                   R"(optional_string: "谷歌")");
  RunValidJsonTest("StringFieldUnicodeEscapeWithLowercaseHexLetters", REQUIRED,
                   R"({"optionalString": "\u8c37\u6b4c"})",
                   R"(optional_string: "谷歌")");
  RunValidJsonTest(
      "StringFieldSurrogatePair", REQUIRED,
      // The character is an emoji: grinning face with smiling eyes. 😁
      R"({"optionalString": "\uD83D\uDE01"})",
      R"(optional_string: "\xF0\x9F\x98\x81")");

  // Unicode escapes must start with "\u" (lowercase u).
  ExpectParseFailureForJson("StringFieldUppercaseEscapeLetter", RECOMMENDED,
                            R"({"optionalString": "\U8C37\U6b4C"})");
  ExpectParseFailureForJson("StringFieldInvalidEscape", RECOMMENDED,
                            R"({"optionalString": "\uXXXX\u6B4C"})");
  ExpectParseFailureForJson("StringFieldUnterminatedEscape", RECOMMENDED,
                            R"({"optionalString": "\u8C3"})");
  ExpectParseFailureForJson("StringFieldUnpairedHighSurrogate", RECOMMENDED,
                            R"({"optionalString": "\uD800"})");
  ExpectParseFailureForJson("StringFieldUnpairedLowSurrogate", RECOMMENDED,
                            R"({"optionalString": "\uDC00"})");
  ExpectParseFailureForJson("StringFieldSurrogateInWrongOrder", RECOMMENDED,
                            R"({"optionalString": "\uDE01\uD83D"})");
  ExpectParseFailureForJson("StringFieldNotAString", REQUIRED,
                            R"({"optionalString": 12345})");

  // Bytes fields.
  RunValidJsonTest("BytesField", REQUIRED, R"({"optionalBytes": "AQI="})",
                   R"(optional_bytes: "\x01\x02")");
  RunValidJsonTest("BytesFieldBase64Url", RECOMMENDED,
                   R"({"optionalBytes": "-_"})", R"(optional_bytes: "\xfb")");

  // Message fields.
  RunValidJsonTest("MessageField", REQUIRED,
                   R"({"optionalNestedMessage": {"a": 1234}})",
                   "optional_nested_message: {a: 1234}");

  // Oneof fields.
  ExpectParseFailureForJson("OneofFieldDuplicate", REQUIRED,
                            R"({"oneofUint32": 1, "oneofString": "test"})");
  RunValidJsonTest("OneofFieldNullFirst", REQUIRED,
                   R"({"oneofUint32": null, "oneofString": "test"})",
                   "oneof_string: \"test\"");
  RunValidJsonTest("OneofFieldNullSecond", REQUIRED,
                   R"({"oneofString": "test", "oneofUint32": null})",
                   "oneof_string: \"test\"");
  // Ensure zero values for oneof make it out/backs.
  TestAllTypesProto3 messageProto3;
  TestAllTypesProto2 messageProto2;
  TestOneofMessage(messageProto3, true);
  TestOneofMessage(messageProto2, false);
  RunValidJsonTest("OneofZeroUint32", RECOMMENDED, R"({"oneofUint32": 0})",
                   "oneof_uint32: 0");
  RunValidJsonTest("OneofZeroMessage", RECOMMENDED,
                   R"({"oneofNestedMessage": {}})", "oneof_nested_message: {}");
  RunValidJsonTest("OneofZeroString", RECOMMENDED, R"({"oneofString": ""})",
                   "oneof_string: \"\"");
  RunValidJsonTest("OneofZeroBytes", RECOMMENDED, R"({"oneofBytes": ""})",
                   "oneof_bytes: \"\"");
  RunValidJsonTest("OneofZeroBool", RECOMMENDED, R"({"oneofBool": false})",
                   "oneof_bool: false");
  RunValidJsonTest("OneofZeroUint64", RECOMMENDED, R"({"oneofUint64": 0})",
                   "oneof_uint64: 0");
  RunValidJsonTest("OneofZeroFloat", RECOMMENDED, R"({"oneofFloat": 0.0})",
                   "oneof_float: 0");
  RunValidJsonTest("OneofZeroDouble", RECOMMENDED, R"({"oneofDouble": 0.0})",
                   "oneof_double: 0");
  RunValidJsonTest("OneofZeroEnum", RECOMMENDED, R"({"oneofEnum":"FOO"})",
                   "oneof_enum: FOO");

  // Map fields.
  RunValidJsonTest("Int32MapField", REQUIRED,
                   R"({"mapInt32Int32": {"1": 2, "3": 4}})",
                   "map_int32_int32: {key: 1 value: 2}"
                   "map_int32_int32: {key: 3 value: 4}");
  ExpectParseFailureForJson("Int32MapFieldKeyNotQuoted", RECOMMENDED,
                            R"({"mapInt32Int32": {1: 2, 3: 4}})");
  RunValidJsonTest("Uint32MapField", REQUIRED,
                   R"({"mapUint32Uint32": {"1": 2, "3": 4}})",
                   "map_uint32_uint32: {key: 1 value: 2}"
                   "map_uint32_uint32: {key: 3 value: 4}");
  ExpectParseFailureForJson("Uint32MapFieldKeyNotQuoted", RECOMMENDED,
                            R"({"mapUint32Uint32": {1: 2, 3: 4}})");
  RunValidJsonTest("Int64MapField", REQUIRED,
                   R"({"mapInt64Int64": {"1": 2, "3": 4}})",
                   "map_int64_int64: {key: 1 value: 2}"
                   "map_int64_int64: {key: 3 value: 4}");
  ExpectParseFailureForJson("Int64MapFieldKeyNotQuoted", RECOMMENDED,
                            R"({"mapInt64Int64": {1: 2, 3: 4}})");
  RunValidJsonTest("Uint64MapField", REQUIRED,
                   R"({"mapUint64Uint64": {"1": 2, "3": 4}})",
                   "map_uint64_uint64: {key: 1 value: 2}"
                   "map_uint64_uint64: {key: 3 value: 4}");
  ExpectParseFailureForJson("Uint64MapFieldKeyNotQuoted", RECOMMENDED,
                            R"({"mapUint64Uint64": {1: 2, 3: 4}})");
  RunValidJsonTest("BoolMapField", REQUIRED,
                   R"({"mapBoolBool": {"true": true, "false": false}})",
                   "map_bool_bool: {key: true value: true}"
                   "map_bool_bool: {key: false value: false}");
  ExpectParseFailureForJson("BoolMapFieldKeyNotQuoted", RECOMMENDED,
                            R"({"mapBoolBool": {true: true, false: false}})");
  RunValidJsonTest("MessageMapField", REQUIRED,
                   R"({
        "mapStringNestedMessage": {
          "hello": {"a": 1234},
          "world": {"a": 5678}
        }
      })",
                   R"(
        map_string_nested_message: {
          key: "hello"
          value: {a: 1234}
        }
        map_string_nested_message: {
          key: "world"
          value: {a: 5678}
        }
      )");
  // Since Map keys are represented as JSON strings, escaping should be allowed.
  RunValidJsonTest("Int32MapEscapedKey", REQUIRED,
                   R"({"mapInt32Int32": {"\u0031": 2}})",
                   "map_int32_int32: {key: 1 value: 2}");
  RunValidJsonTest("Int64MapEscapedKey", REQUIRED,
                   R"({"mapInt64Int64": {"\u0031": 2}})",
                   "map_int64_int64: {key: 1 value: 2}");
  RunValidJsonTest("BoolMapEscapedKey", REQUIRED,
                   R"({"mapBoolBool": {"tr\u0075e": true}})",
                   "map_bool_bool: {key: true value: true}");

  // http://www.rfc-editor.org/rfc/rfc7159.txt says strings have to use double
  // quotes.
  ExpectParseFailureForJson("StringFieldSingleQuoteKey", RECOMMENDED,
                            R"({'optionalString': "Hello world!"})");
  ExpectParseFailureForJson("StringFieldSingleQuoteValue", RECOMMENDED,
                            R"({"optionalString": 'Hello world!'})");
  ExpectParseFailureForJson("StringFieldSingleQuoteBoth", RECOMMENDED,
                            R"({'optionalString': 'Hello world!'})");
}

void BinaryAndJsonConformanceSuite::RunJsonTestsForRepeatedTypes() {
  // Repeated fields.
  RunValidJsonTest("PrimitiveRepeatedField", REQUIRED,
                   R"({"repeatedInt32": [1, 2, 3, 4]})",
                   "repeated_int32: [1, 2, 3, 4]");
  RunValidJsonTest("EnumRepeatedField", REQUIRED,
                   R"({"repeatedNestedEnum": ["FOO", "BAR", "BAZ"]})",
                   "repeated_nested_enum: [FOO, BAR, BAZ]");
  RunValidJsonTest("StringRepeatedField", REQUIRED,
                   R"({"repeatedString": ["Hello", "world"]})",
                   R"(repeated_string: ["Hello", "world"])");
  RunValidJsonTest("BytesRepeatedField", REQUIRED,
                   R"({"repeatedBytes": ["AAEC", "AQI="]})",
                   R"(repeated_bytes: ["\x00\x01\x02", "\x01\x02"])");
  RunValidJsonTest("MessageRepeatedField", REQUIRED,
                   R"({"repeatedNestedMessage": [{"a": 1234}, {"a": 5678}]})",
                   "repeated_nested_message: {a: 1234}"
                   "repeated_nested_message: {a: 5678}");

  // Repeated field elements are of incorrect type.
  ExpectParseFailureForJson(
      "RepeatedFieldWrongElementTypeExpectingIntegersGotBool", REQUIRED,
      R"({"repeatedInt32": [1, false, 3, 4]})");
  ExpectParseFailureForJson(
      "RepeatedFieldWrongElementTypeExpectingIntegersGotString", REQUIRED,
      R"({"repeatedInt32": [1, 2, "name", 4]})");
  ExpectParseFailureForJson(
      "RepeatedFieldWrongElementTypeExpectingIntegersGotMessage", REQUIRED,
      R"({"repeatedInt32": [1, 2, 3, {"a": 4}]})");
  ExpectParseFailureForJson(
      "RepeatedFieldWrongElementTypeExpectingStringsGotInt", REQUIRED,
      R"({"repeatedString": ["1", 2, "3", "4"]})");
  ExpectParseFailureForJson(
      "RepeatedFieldWrongElementTypeExpectingStringsGotBool", REQUIRED,
      R"({"repeatedString": ["1", "2", false, "4"]})");
  ExpectParseFailureForJson(
      "RepeatedFieldWrongElementTypeExpectingStringsGotMessage", REQUIRED,
      R"({"repeatedString": ["1", 2, "3", {"a": 4}]})");
  ExpectParseFailureForJson(
      "RepeatedFieldWrongElementTypeExpectingMessagesGotInt", REQUIRED,
      R"({"repeatedNestedMessage": [{"a": 1}, 2]})");
  ExpectParseFailureForJson(
      "RepeatedFieldWrongElementTypeExpectingMessagesGotBool", REQUIRED,
      R"({"repeatedNestedMessage": [{"a": 1}, false]})");
  ExpectParseFailureForJson(
      "RepeatedFieldWrongElementTypeExpectingMessagesGotString", REQUIRED,
      R"({"repeatedNestedMessage": [{"a": 1}, "2"]})");
  // Trailing comma in the repeated field is not allowed.
  ExpectParseFailureForJson("RepeatedFieldTrailingComma", RECOMMENDED,
                            R"({"repeatedInt32": [1, 2, 3, 4,]})");
  ExpectParseFailureForJson("RepeatedFieldTrailingCommaWithSpace", RECOMMENDED,
                            "{\"repeatedInt32\": [1, 2, 3, 4 ,]}");
  ExpectParseFailureForJson("RepeatedFieldTrailingCommaWithSpaceCommaSpace",
                            RECOMMENDED,
                            "{\"repeatedInt32\": [1, 2, 3, 4 , ]}");
  ExpectParseFailureForJson(
      "RepeatedFieldTrailingCommaWithNewlines", RECOMMENDED,
      "{\"repeatedInt32\": [\n  1,\n  2,\n  3,\n  4,\n]}");
}

void BinaryAndJsonConformanceSuite::RunJsonTestsForNullTypes() {
  // "null" is accepted for all fields types.
  RunValidJsonTest("AllFieldAcceptNull", REQUIRED,
                   R"({
        "optionalInt32": null,
        "optionalInt64": null,
        "optionalUint32": null,
        "optionalUint64": null,
        "optionalSint32": null,
        "optionalSint64": null,
        "optionalFixed32": null,
        "optionalFixed64": null,
        "optionalSfixed32": null,
        "optionalSfixed64": null,
        "optionalFloat": null,
        "optionalDouble": null,
        "optionalBool": null,
        "optionalString": null,
        "optionalBytes": null,
        "optionalNestedEnum": null,
        "optionalNestedMessage": null,
        "repeatedInt32": null,
        "repeatedInt64": null,
        "repeatedUint32": null,
        "repeatedUint64": null,
        "repeatedSint32": null,
        "repeatedSint64": null,
        "repeatedFixed32": null,
        "repeatedFixed64": null,
        "repeatedSfixed32": null,
        "repeatedSfixed64": null,
        "repeatedFloat": null,
        "repeatedDouble": null,
        "repeatedBool": null,
        "repeatedString": null,
        "repeatedBytes": null,
        "repeatedNestedEnum": null,
        "repeatedNestedMessage": null,
        "mapInt32Int32": null,
        "mapBoolBool": null,
        "mapStringNestedMessage": null
      })",
                   "");

  // Repeated field elements cannot be null.
  ExpectParseFailureForJson("RepeatedFieldPrimitiveElementIsNull", RECOMMENDED,
                            R"({"repeatedInt32": [1, null, 2]})");
  ExpectParseFailureForJson(
      "RepeatedFieldMessageElementIsNull", RECOMMENDED,
      R"({"repeatedNestedMessage": [{"a":1}, null, {"a":2}]})");
  // Map field keys cannot be null.
  ExpectParseFailureForJson("MapFieldKeyIsNull", RECOMMENDED,
                            R"({"mapInt32Int32": {null: 1}})");
  // Map field values cannot be null.
  ExpectParseFailureForJson("MapFieldValueIsNull", RECOMMENDED,
                            R"({"mapInt32Int32": {"0": null}})");
}

void BinaryAndJsonConformanceSuite::RunJsonTestsForWrapperTypes() {
  RunValidJsonTest("OptionalBoolWrapper", REQUIRED,
                   R"({"optionalBoolWrapper": false})",
                   "optional_bool_wrapper: {value: false}");
  RunValidJsonTest("OptionalInt32Wrapper", REQUIRED,
                   R"({"optionalInt32Wrapper": 0})",
                   "optional_int32_wrapper: {value: 0}");
  RunValidJsonTest("OptionalUint32Wrapper", REQUIRED,
                   R"({"optionalUint32Wrapper": 0})",
                   "optional_uint32_wrapper: {value: 0}");
  RunValidJsonTest("OptionalInt64Wrapper", REQUIRED,
                   R"({"optionalInt64Wrapper": 0})",
                   "optional_int64_wrapper: {value: 0}");
  RunValidJsonTest("OptionalUint64Wrapper", REQUIRED,
                   R"({"optionalUint64Wrapper": 0})",
                   "optional_uint64_wrapper: {value: 0}");
  RunValidJsonTest("OptionalFloatWrapper", REQUIRED,
                   R"({"optionalFloatWrapper": 0})",
                   "optional_float_wrapper: {value: 0}");
  RunValidJsonTest("OptionalDoubleWrapper", REQUIRED,
                   R"({"optionalDoubleWrapper": 0})",
                   "optional_double_wrapper: {value: 0}");
  RunValidJsonTest("OptionalStringWrapper", REQUIRED,
                   R"({"optionalStringWrapper": ""})",
                   R"(optional_string_wrapper: {value: ""})");
  RunValidJsonTest("OptionalBytesWrapper", REQUIRED,
                   R"({"optionalBytesWrapper": ""})",
                   R"(optional_bytes_wrapper: {value: ""})");
  RunValidJsonTest("OptionalWrapperTypesWithNonDefaultValue", REQUIRED,
                   R"({
        "optionalBoolWrapper": true,
        "optionalInt32Wrapper": 1,
        "optionalUint32Wrapper": 1,
        "optionalInt64Wrapper": "1",
        "optionalUint64Wrapper": "1",
        "optionalFloatWrapper": 1,
        "optionalDoubleWrapper": 1,
        "optionalStringWrapper": "1",
        "optionalBytesWrapper": "AQI="
      })",
                   R"(
        optional_bool_wrapper: {value: true}
        optional_int32_wrapper: {value: 1}
        optional_uint32_wrapper: {value: 1}
        optional_int64_wrapper: {value: 1}
        optional_uint64_wrapper: {value: 1}
        optional_float_wrapper: {value: 1}
        optional_double_wrapper: {value: 1}
        optional_string_wrapper: {value: "1"}
        optional_bytes_wrapper: {value: "\x01\x02"}
      )");
  RunValidJsonTest("RepeatedBoolWrapper", REQUIRED,
                   R"({"repeatedBoolWrapper": [true, false]})",
                   "repeated_bool_wrapper: {value: true}"
                   "repeated_bool_wrapper: {value: false}");
  RunValidJsonTest("RepeatedInt32Wrapper", REQUIRED,
                   R"({"repeatedInt32Wrapper": [0, 1]})",
                   "repeated_int32_wrapper: {value: 0}"
                   "repeated_int32_wrapper: {value: 1}");
  RunValidJsonTest("RepeatedUint32Wrapper", REQUIRED,
                   R"({"repeatedUint32Wrapper": [0, 1]})",
                   "repeated_uint32_wrapper: {value: 0}"
                   "repeated_uint32_wrapper: {value: 1}");
  RunValidJsonTest("RepeatedInt64Wrapper", REQUIRED,
                   R"({"repeatedInt64Wrapper": [0, 1]})",
                   "repeated_int64_wrapper: {value: 0}"
                   "repeated_int64_wrapper: {value: 1}");
  RunValidJsonTest("RepeatedUint64Wrapper", REQUIRED,
                   R"({"repeatedUint64Wrapper": [0, 1]})",
                   "repeated_uint64_wrapper: {value: 0}"
                   "repeated_uint64_wrapper: {value: 1}");
  RunValidJsonTest("RepeatedFloatWrapper", REQUIRED,
                   R"({"repeatedFloatWrapper": [0, 1]})",
                   "repeated_float_wrapper: {value: 0}"
                   "repeated_float_wrapper: {value: 1}");
  RunValidJsonTest("RepeatedDoubleWrapper", REQUIRED,
                   R"({"repeatedDoubleWrapper": [0, 1]})",
                   "repeated_double_wrapper: {value: 0}"
                   "repeated_double_wrapper: {value: 1}");
  RunValidJsonTest("RepeatedStringWrapper", REQUIRED,
                   R"({"repeatedStringWrapper": ["", "AQI="]})",
                   R"(
        repeated_string_wrapper: {value: ""}
        repeated_string_wrapper: {value: "AQI="}
      )");
  RunValidJsonTest("RepeatedBytesWrapper", REQUIRED,
                   R"({"repeatedBytesWrapper": ["", "AQI="]})",
                   R"(
        repeated_bytes_wrapper: {value: ""}
        repeated_bytes_wrapper: {value: "\x01\x02"}
      )");
  RunValidJsonTest("WrapperTypesWithNullValue", REQUIRED,
                   R"({
        "optionalBoolWrapper": null,
        "optionalInt32Wrapper": null,
        "optionalUint32Wrapper": null,
        "optionalInt64Wrapper": null,
        "optionalUint64Wrapper": null,
        "optionalFloatWrapper": null,
        "optionalDoubleWrapper": null,
        "optionalStringWrapper": null,
        "optionalBytesWrapper": null,
        "repeatedBoolWrapper": null,
        "repeatedInt32Wrapper": null,
        "repeatedUint32Wrapper": null,
        "repeatedInt64Wrapper": null,
        "repeatedUint64Wrapper": null,
        "repeatedFloatWrapper": null,
        "repeatedDoubleWrapper": null,
        "repeatedStringWrapper": null,
        "repeatedBytesWrapper": null
      })",
                   "");

  // Duration
  RunValidJsonTest(
      "DurationMinValue", REQUIRED,
      R"({"optionalDuration": "-315576000000.999999999s"})",
      "optional_duration: {seconds: -315576000000 nanos: -999999999}");
  RunValidJsonTest(
      "DurationMaxValue", REQUIRED,
      R"({"optionalDuration": "315576000000.999999999s"})",
      "optional_duration: {seconds: 315576000000 nanos: 999999999}");
  RunValidJsonTest("DurationRepeatedValue", REQUIRED,
                   R"({"repeatedDuration": ["1.5s", "-1.5s"]})",
                   "repeated_duration: {seconds: 1 nanos: 500000000}"
                   "repeated_duration: {seconds: -1 nanos: -500000000}");
  RunValidJsonTest("DurationNull", REQUIRED, R"({"optionalDuration": null})",
                   "");
  RunValidJsonTest("DurationNegativeSeconds", REQUIRED,
                   R"({"optionalDuration": "-5s"})",
                   "optional_duration: {seconds: -5 nanos: 0}");
  RunValidJsonTest("DurationNegativeNanos", REQUIRED,
                   R"({"optionalDuration": "-0.5s"})",
                   "optional_duration: {seconds: 0 nanos: -500000000}");

  ExpectParseFailureForJson("DurationMissingS", REQUIRED,
                            R"({"optionalDuration": "1"})");
  ExpectParseFailureForJson(
      "DurationJsonInputTooSmall", REQUIRED,
      R"({"optionalDuration": "-315576000001.000000000s"})");
  ExpectParseFailureForJson(
      "DurationJsonInputTooLarge", REQUIRED,
      R"({"optionalDuration": "315576000001.000000000s"})");
  ExpectSerializeFailureForJson(
      "DurationProtoInputTooSmall", REQUIRED,
      "optional_duration: {seconds: -315576000001 nanos: 0}");
  ExpectSerializeFailureForJson(
      "DurationProtoInputTooLarge", REQUIRED,
      "optional_duration: {seconds: 315576000001 nanos: 0}");

  RunValidJsonTestWithValidator(
      "DurationHasZeroFractionalDigit", RECOMMENDED,
      R"({"optionalDuration": "1.000000000s"})",
      [](const Json::Value& value) {
        return value["optionalDuration"].asString() == "1s";
      },
      true);
  RunValidJsonTestWithValidator(
      "DurationHas3FractionalDigits", RECOMMENDED,
      R"({"optionalDuration": "1.010000000s"})",
      [](const Json::Value& value) {
        return value["optionalDuration"].asString() == "1.010s";
      },
      true);
  RunValidJsonTestWithValidator(
      "DurationHas6FractionalDigits", RECOMMENDED,
      R"({"optionalDuration": "1.000010000s"})",
      [](const Json::Value& value) {
        return value["optionalDuration"].asString() == "1.000010s";
      },
      true);
  RunValidJsonTestWithValidator(
      "DurationHas9FractionalDigits", RECOMMENDED,
      R"({"optionalDuration": "1.000000010s"})",
      [](const Json::Value& value) {
        return value["optionalDuration"].asString() == "1.000000010s";
      },
      true);

  // Timestamp
  RunValidJsonTest("TimestampMinValue", REQUIRED,
                   R"({"optionalTimestamp": "0001-01-01T00:00:00Z"})",
                   "optional_timestamp: {seconds: -62135596800}");
  RunValidJsonTest(
      "TimestampMaxValue", REQUIRED,
      R"({"optionalTimestamp": "9999-12-31T23:59:59.999999999Z"})",
      "optional_timestamp: {seconds: 253402300799 nanos: 999999999}");
  RunValidJsonTest(
      "TimestampRepeatedValue", REQUIRED,
      R"({
        "repeatedTimestamp": [
          "0001-01-01T00:00:00Z",
          "9999-12-31T23:59:59.999999999Z"
        ]
      })",
      "repeated_timestamp: {seconds: -62135596800}"
      "repeated_timestamp: {seconds: 253402300799 nanos: 999999999}");
  RunValidJsonTest("TimestampLeap", REQUIRED,
                   R"({"optionalTimestamp": "1993-02-10T00:00:00.000Z"})",
                   "optional_timestamp: {seconds: 729302400}");
  RunValidJsonTest("TimestampWithPositiveOffset", REQUIRED,
                   R"({"optionalTimestamp": "1970-01-01T08:00:01+08:00"})",
                   "optional_timestamp: {seconds: 1}");
  RunValidJsonTest("TimestampWithNegativeOffset", REQUIRED,
                   R"({"optionalTimestamp": "1969-12-31T16:00:01-08:00"})",
                   "optional_timestamp: {seconds: 1}");
  RunValidJsonTest("TimestampNull", REQUIRED, R"({"optionalTimestamp": null})",
                   "");

  ExpectParseFailureForJson("TimestampJsonInputTooSmall", REQUIRED,
                            R"({"optionalTimestamp": "0000-01-01T00:00:00Z"})");
  ExpectParseFailureForJson(
      "TimestampJsonInputTooLarge", REQUIRED,
      R"({"optionalTimestamp": "10000-01-01T00:00:00Z"})");
  ExpectParseFailureForJson("TimestampJsonInputMissingZ", REQUIRED,
                            R"({"optionalTimestamp": "0001-01-01T00:00:00"})");
  ExpectParseFailureForJson("TimestampJsonInputMissingT", REQUIRED,
                            R"({"optionalTimestamp": "0001-01-01 00:00:00Z"})");
  ExpectParseFailureForJson("TimestampJsonInputLowercaseZ", REQUIRED,
                            R"({"optionalTimestamp": "0001-01-01T00:00:00z"})");
  ExpectParseFailureForJson("TimestampJsonInputLowercaseT", REQUIRED,
                            R"({"optionalTimestamp": "0001-01-01t00:00:00Z"})");
  ExpectSerializeFailureForJson("TimestampProtoInputTooSmall", REQUIRED,
                                "optional_timestamp: {seconds: -62135596801}");
  ExpectSerializeFailureForJson("TimestampProtoInputTooLarge", REQUIRED,
                                "optional_timestamp: {seconds: 253402300800}");
  RunValidJsonTestWithValidator(
      "TimestampZeroNormalized", RECOMMENDED,
      R"({"optionalTimestamp": "1969-12-31T16:00:00-08:00"})",
      [](const Json::Value& value) {
        return value["optionalTimestamp"].asString() == "1970-01-01T00:00:00Z";
      },
      true);
  RunValidJsonTestWithValidator(
      "TimestampHasZeroFractionalDigit", RECOMMENDED,
      R"({"optionalTimestamp": "1970-01-01T00:00:00.000000000Z"})",
      [](const Json::Value& value) {
        return value["optionalTimestamp"].asString() == "1970-01-01T00:00:00Z";
      },
      true);
  RunValidJsonTestWithValidator(
      "TimestampHas3FractionalDigits", RECOMMENDED,
      R"({"optionalTimestamp": "1970-01-01T00:00:00.010000000Z"})",
      [](const Json::Value& value) {
        return value["optionalTimestamp"].asString() ==
               "1970-01-01T00:00:00.010Z";
      },
      true);
  RunValidJsonTestWithValidator(
      "TimestampHas6FractionalDigits", RECOMMENDED,
      R"({"optionalTimestamp": "1970-01-01T00:00:00.000010000Z"})",
      [](const Json::Value& value) {
        return value["optionalTimestamp"].asString() ==
               "1970-01-01T00:00:00.000010Z";
      },
      true);
  RunValidJsonTestWithValidator(
      "TimestampHas9FractionalDigits", RECOMMENDED,
      R"({"optionalTimestamp": "1970-01-01T00:00:00.000000010Z"})",
      [](const Json::Value& value) {
        return value["optionalTimestamp"].asString() ==
               "1970-01-01T00:00:00.000000010Z";
      },
      true);
}

void BinaryAndJsonConformanceSuite::RunJsonTestsForFieldMask() {
  RunValidJsonTest("FieldMask", REQUIRED,
                   R"({"optionalFieldMask": "foo,barBaz"})",
                   R"(optional_field_mask: {paths: "foo" paths: "bar_baz"})");
  RunValidJsonTest("EmptyFieldMask", REQUIRED, R"({"optionalFieldMask": ""})",
                   R"(optional_field_mask: {})");
  ExpectParseFailureForJson("FieldMaskInvalidCharacter", RECOMMENDED,
                            R"({"optionalFieldMask": "foo,bar_bar"})");
  ExpectSerializeFailureForJson("FieldMaskPathsDontRoundTrip", RECOMMENDED,
                                R"(optional_field_mask: {paths: "fooBar"})");
  ExpectSerializeFailureForJson("FieldMaskNumbersDontRoundTrip", RECOMMENDED,
                                R"(optional_field_mask: {paths: "foo_3_bar"})");
  ExpectSerializeFailureForJson("FieldMaskTooManyUnderscore", RECOMMENDED,
                                R"(optional_field_mask: {paths: "foo__bar"})");
}

void BinaryAndJsonConformanceSuite::RunJsonTestsForStruct() {
  RunValidJsonTest("Struct", REQUIRED,
                   R"({
        "optionalStruct": {
          "nullValue": null,
          "intValue": 1234,
          "boolValue": true,
          "doubleValue": 1234.5678,
          "stringValue": "Hello world!",
          "listValue": [1234, "5678"],
          "objectValue": {
            "value": 0
          }
        }
      })",
                   R"(
        optional_struct: {
          fields: {
            key: "nullValue"
            value: {null_value: NULL_VALUE}
          }
          fields: {
            key: "intValue"
            value: {number_value: 1234}
          }
          fields: {
            key: "boolValue"
            value: {bool_value: true}
          }
          fields: {
            key: "doubleValue"
            value: {number_value: 1234.5678}
          }
          fields: {
            key: "stringValue"
            value: {string_value: "Hello world!"}
          }
          fields: {
            key: "listValue"
            value: {
              list_value: {
                values: {
                  number_value: 1234
                }
                values: {
                  string_value: "5678"
                }
              }
            }
          }
          fields: {
            key: "objectValue"
            value: {
              struct_value: {
                fields: {
                  key: "value"
                  value: {
                    number_value: 0
                  }
                }
              }
            }
          }
        }
      )");
  RunValidJsonTest("StructWithEmptyListValue", REQUIRED,
                   R"({
        "optionalStruct": {
          "listValue": []
        }
      })",
                   R"(
        optional_struct: {
          fields: {
            key: "listValue"
            value: {
              list_value: {
              }
            }
          }
        }
      )");
}

void BinaryAndJsonConformanceSuite::RunJsonTestsForValue() {
  RunValidJsonTest("ValueAcceptInteger", REQUIRED, R"({"optionalValue": 1})",
                   "optional_value: { number_value: 1}");
  RunValidJsonTest("ValueAcceptFloat", REQUIRED, R"({"optionalValue": 1.5})",
                   "optional_value: { number_value: 1.5}");
  RunValidJsonTest("ValueAcceptBool", REQUIRED, R"({"optionalValue": false})",
                   "optional_value: { bool_value: false}");
  RunValidJsonTest("ValueAcceptNull", REQUIRED, R"({"optionalValue": null})",
                   "optional_value: { null_value: NULL_VALUE}");
  RunValidJsonTest("ValueAcceptString", REQUIRED,
                   R"({"optionalValue": "hello"})",
                   R"(optional_value: { string_value: "hello"})");
  RunValidJsonTest("ValueAcceptList", REQUIRED,
                   R"({"optionalValue": [0, "hello"]})",
                   R"(
        optional_value: {
          list_value: {
            values: {
              number_value: 0
            }
            values: {
              string_value: "hello"
            }
          }
        }
      )");
  RunValidJsonTest("ValueAcceptObject", REQUIRED,
                   R"({"optionalValue": {"value": 1}})",
                   R"(
        optional_value: {
          struct_value: {
            fields: {
              key: "value"
              value: {
                number_value: 1
              }
            }
          }
        }
      )");
  RunValidJsonTest("RepeatedValue", REQUIRED,
                   R"({
        "repeatedValue": [["a"]]
      })",
                   R"(
        repeated_value: [
          {
            list_value: {
              values: [
                { string_value: "a"}
              ]
            }
          }
        ]
      )");
  RunValidJsonTest("RepeatedListValue", REQUIRED,
                   R"({
        "repeatedListValue": [["a"]]
      })",
                   R"(
        repeated_list_value: [
          {
            values: [
              { string_value: "a"}
            ]
          }
        ]
      )");
  RunValidJsonTestWithValidator(
      "NullValueInOtherOneofOldFormat", RECOMMENDED,
      R"({"oneofNullValue": "NULL_VALUE"})",
      [](const Json::Value& value) {
        return (value.isMember("oneofNullValue") &&
                value["oneofNullValue"].isNull());
      },
      true);
  RunValidJsonTestWithValidator(
      "NullValueInOtherOneofNewFormat", RECOMMENDED,
      R"({"oneofNullValue": null})",
      [](const Json::Value& value) {
        return (value.isMember("oneofNullValue") &&
                value["oneofNullValue"].isNull());
      },
      true);
  RunValidJsonTestWithValidator(
      "NullValueInNormalMessage", RECOMMENDED,
      R"({"optionalNullValue": null})",
      [](const Json::Value& value) {
        return value.empty();
      },
      true);
  ExpectSerializeFailureForJson("ValueRejectNanNumberValue", RECOMMENDED,
                                "optional_value: { number_value: nan}");
  ExpectSerializeFailureForJson("ValueRejectInfNumberValue", RECOMMENDED,
                                "optional_value: { number_value: inf}");
}

void BinaryAndJsonConformanceSuite::RunJsonTestsForAny() {
  RunValidJsonTest("Any", REQUIRED,
                   R"({
        "optionalAny": {
          "@type": "type.googleapis.com/protobuf_test_messages.proto3.TestAllTypesProto3",
          "optionalInt32": 12345
        }
      })",
                   R"(
        optional_any: {
          [type.googleapis.com/protobuf_test_messages.proto3.TestAllTypesProto3] {
            optional_int32: 12345
          }
        }
      )");
  RunValidJsonTest("AnyNested", REQUIRED,
                   R"({
        "optionalAny": {
          "@type": "type.googleapis.com/google.protobuf.Any",
          "value": {
            "@type": "type.googleapis.com/protobuf_test_messages.proto3.TestAllTypesProto3",
            "optionalInt32": 12345
          }
        }
      })",
                   R"(
        optional_any: {
          [type.googleapis.com/google.protobuf.Any] {
            [type.googleapis.com/protobuf_test_messages.proto3.TestAllTypesProto3] {
              optional_int32: 12345
            }
          }
        }
      )");
  // The special "@type" tag is not required to appear first.
  RunValidJsonTest("AnyUnorderedTypeTag", REQUIRED,
                   R"({
        "optionalAny": {
          "optionalInt32": 12345,
          "@type": "type.googleapis.com/protobuf_test_messages.proto3.TestAllTypesProto3"
        }
      })",
                   R"(
        optional_any: {
          [type.googleapis.com/protobuf_test_messages.proto3.TestAllTypesProto3] {
            optional_int32: 12345
          }
        }
      )");
  // Well-known types in Any.
  RunValidJsonTest("AnyWithInt32ValueWrapper", REQUIRED,
                   R"({
        "optionalAny": {
          "@type": "type.googleapis.com/google.protobuf.Int32Value",
          "value": 12345
        }
      })",
                   R"(
        optional_any: {
          [type.googleapis.com/google.protobuf.Int32Value] {
            value: 12345
          }
        }
      )");
  RunValidJsonTest("AnyWithDuration", REQUIRED,
                   R"({
        "optionalAny": {
          "@type": "type.googleapis.com/google.protobuf.Duration",
          "value": "1.5s"
        }
      })",
                   R"(
        optional_any: {
          [type.googleapis.com/google.protobuf.Duration] {
            seconds: 1
            nanos: 500000000
          }
        }
      )");
  RunValidJsonTest("AnyWithTimestamp", REQUIRED,
                   R"({
        "optionalAny": {
          "@type": "type.googleapis.com/google.protobuf.Timestamp",
          "value": "1970-01-01T00:00:00Z"
        }
      })",
                   R"(
        optional_any: {
          [type.googleapis.com/google.protobuf.Timestamp] {
            seconds: 0
            nanos: 0
          }
        }
      )");
  RunValidJsonTest("AnyWithFieldMask", REQUIRED,
                   R"({
        "optionalAny": {
          "@type": "type.googleapis.com/google.protobuf.FieldMask",
          "value": "foo,barBaz"
        }
      })",
                   R"(
        optional_any: {
          [type.googleapis.com/google.protobuf.FieldMask] {
            paths: ["foo", "bar_baz"]
          }
        }
      )");
  RunValidJsonTest("AnyWithStruct", REQUIRED,
                   R"({
        "optionalAny": {
          "@type": "type.googleapis.com/google.protobuf.Struct",
          "value": {
            "foo": 1
          }
        }
      })",
                   R"(
        optional_any: {
          [type.googleapis.com/google.protobuf.Struct] {
            fields: {
              key: "foo"
              value: {
                number_value: 1
              }
            }
          }
        }
      )");
  RunValidJsonTest("AnyWithValueForJsonObject", REQUIRED,
                   R"({
        "optionalAny": {
          "@type": "type.googleapis.com/google.protobuf.Value",
          "value": {
            "foo": 1
          }
        }
      })",
                   R"(
        optional_any: {
          [type.googleapis.com/google.protobuf.Value] {
            struct_value: {
              fields: {
                key: "foo"
                value: {
                  number_value: 1
                }
              }
            }
          }
        }
      )");
  RunValidJsonTest("AnyWithValueForInteger", REQUIRED,
                   R"({
        "optionalAny": {
          "@type": "type.googleapis.com/google.protobuf.Value",
          "value": 1
        }
      })",
                   R"(
        optional_any: {
          [type.googleapis.com/google.protobuf.Value] {
            number_value: 1
          }
        }
      )");
}

}  // namespace protobuf
}  // namespace google