`Vec<u8>` is a more idiomatic Rust type to return for serialization.
For the C++ kernel, we are able to return this type with no extra copying. We
still use `SerializedData` type for FFI, but convert the result into a
`Vec<u8>` using a new `into_vec` method.
The upb kernel serializes onto an arena, so for upb we do need to copy the data
to get it into a `Vec<u8>`.
PiperOrigin-RevId: 644444571
New serialization test will verify the amount of bytes it takes to serialize a message with a field of type INT32 set to different values.
PiperOrigin-RevId: 641044189
This change adds a cfg attribute 'cpp_lite' to the C++ kernel of Protobuf Rust. If C++ lite is selected on the command line, the cfg attribute 'cpp_lite' is set. The root cause of the test failure was that the Debug implementation for full C++ protos uses text proto which is not available in C++ lite. The fix uses the 'cpp_lite' cfg attribute to select a different Debug implementation that doesn't rely on text proto
PiperOrigin-RevId: 640552701
The test I am removing fails on 32-bit ARM, as pointers are 4-byte aligned. `upb_MessageValue` is a union. The alignment of a union is the max. alignment of any of its fields. Among the fields are 8-byte types like u64 and thus `upb_MessageValue` is 8-byte aligned even on 32-bit ARM. 4 != 8 and it fails.
I am split on the usefulness of the test, as I find it somewhat unlikely to catch any divergence between the FFI and C types in the future. I can't imagine a practical scenario where upb_MessageValue would change in C code and this test would fail. IMO our actual unit & integration tests plus the IFTT lints are much better guards.
We could fix the test by testing the alignment of u64 instead of *const c_void, which is always 8 bytes on the hw platforms we care about.
PiperOrigin-RevId: 638976482
This doesn't _actually_ make the C++ Kernel path ever fail yet, but now that the API is a Result<SerializedData, SerializeError> it can be fixed as an implementation detail.
PiperOrigin-RevId: 638329136
We modify set_<repeated_field> to accept the IntoProxied type as the value and move the value (avoid copying) whenever possible.
For UPB:
- We fuse the arena of Repeated<T> with the parent message arena.
- We use upb_Message_SetBaseField to set the upb_Array contained in the Repeated<T>.
For C++:
- We generate an additional setter thunk that moves the value.
- The move assignment operator of RepeatedField/RepeatedPtrField is specialized. In order to adhere to the layering check we need to add '#include' statements for all .proto imports to the generated thunks.pb.cc.
PiperOrigin-RevId: 631010333
This is equivalent to C++'s `_IsValid` functions. Since proto3 enums are open,
`is_known` seems to be a better name than the misleading `is_valid`.
C++-specific Protocol Buffers documentation already uses "known fields" and
"unknown enum values" expressions.
PiperOrigin-RevId: 630344180
The last callside that used PrimitiveMut was in our enums code. This change makes it so that enums nolonger implement MutProxied and thus no longer need the PrimitiveMut type.
PiperOrigin-RevId: 629017282
The intent is to avoid codegen issues for simple cases where a message of the shape:
message M {
int32 x = 3
string set_x = 8;
}
Which would otherwise break due to the first field having a setter whose name collides with the second field's getter.
By seeing that 'set_x' matches another field with a common accessor prefixed, it will generate all accessors for that field as though it was named `set_x_8`.
This does not avoid all possible collisions, but should mitigate the vast majority of situations of an accidental collision.
PiperOrigin-RevId: 627776907
This change removes the only remaining instance of SettableValue in a generated accessor. The principled fix is to implement IntoProxied for ProtoStr/[u8], but this will have to wait until we have agreed on & implemented the 1.0 string types. So we'll use AsRef in the meantime in order to not break any user code while allowing us to make progress on IntoProxied and Proxied changes.
PiperOrigin-RevId: 627735404