Added a upb_byteregion that tracks a region of
the input buffer; decoders use this instead of
using a upb_bytesrc directly. upb_byteregion
is also used as the way of passing a string to
a upb_handlers callback. This symmetry makes
decoders compose better; if you want to take
a parsed string and decode it as something else,
you can take the string directly from the callback
and feed it as input to another parser.
A commented-out version of a pinning interface
is present; I decline to actually implement it
(and accept its extra complexity) until/unless
it is clear that it is actually a win. But it
is included as a proof-of-concept, to show that
it fits well with the existing interface.
Includes are now via upb/foo.h.
Files specific to the protobuf format are
now in upb/pb (the core library is concerned
with message definitions, handlers, and
byte streams, but knows nothing about any
particular serializationf format).
It can successfully parse SpeedMessage1.
Preliminary results: 750MB/s on Core2 2.4GHz.
This number is 2.5x proto2.
This isn't apples-to-apples, because
proto2 is parsing to a struct and we are
just doing stream parsing, but for apps
that are currently using proto2, this is the
improvement they would see if they could
move to stream-based processing.
Unfortunately perf-regression-test.py is
broken, and I'm not 100% sure why. It would
be nice to fix it first (to ensure that
there are no performance regressions for
the table-based decoder) but I'm really
impatient to get the JIT checked in.
Simplified some of the semantics around
the decoder's data structures, in anticipation
of sharing them between the regular C decoder
and a JIT-ted decoder.
This doesn't reflect any material change in
how I will be working on upb, and I have no
problem making this change. It's still open
source under the BSD license, and I'll still
be working on it well beyond the hours that
constitute a normal job.
This is a significant change to the upb_stream
protocol, and should hopefully be the last
significant change.
All callbacks are now registered ahead-of-time
instead of having delegated callbacks registered
at runtime, which makes it much easier to
aggressively optimize ahead-of-time (like with a
JIT).
Other impacts of this change:
- You no longer need to have loaded descriptor.proto
as a upb_def to load other descriptors! This means
the special-case code we used for bootstrapping is
no longer necessary, and we no longer need to link
the descriptor for descriptor.proto into upb.
- A client can now register any upb_value as what
will be delivered to their value callback, not
just a upb_fielddef*. This should allow for other
clients to get more bang out of the streaming
decoder.
This change unfortunately causes a bit of a performance
regression -- I think largely due to highly
suboptimal code that GCC generates when structs
are returned by value. See:
http://blog.reverberate.org/2011/03/19/when-a-compilers-slow-code-actually-bites-you/
On the other hand, once we have a JIT this should
no longer matter.
Performance numbers:
plain.parsestream_googlemessage1.upb_table: 374 -> 396 (5.88)
plain.parsestream_googlemessage2.upb_table: 616 -> 449 (-27.11)
plain.parsetostruct_googlemessage1.upb_table_byref: 268 -> 269 (0.37)
plain.parsetostruct_googlemessage1.upb_table_byval: 215 -> 204 (-5.12)
plain.parsetostruct_googlemessage2.upb_table_byref: 307 -> 281 (-8.47)
plain.parsetostruct_googlemessage2.upb_table_byval: 297 -> 272 (-8.42)
omitfp.parsestream_googlemessage1.upb_table: 423 -> 410 (-3.07)
omitfp.parsestream_googlemessage2.upb_table: 679 -> 483 (-28.87)
omitfp.parsetostruct_googlemessage1.upb_table_byref: 287 -> 282 (-1.74)
omitfp.parsetostruct_googlemessage1.upb_table_byval: 226 -> 219 (-3.10)
omitfp.parsetostruct_googlemessage2.upb_table_byref: 315 -> 298 (-5.40)
omitfp.parsetostruct_googlemessage2.upb_table_byval: 297 -> 287 (-3.37)