* Added -Wextra and -Wshorten-64-to-32 and fixed resulting errors.
* Disable -Wshorten-32-to-64 since Kokoro is missing Clang.
* Fixed -Wextra warnings for gcc.
* Reordered UPB_UNUSED() to come after declarations.
* Added another -pedantic fix and log CC version.
* Fix compile error and conditionally run use_bazel.sh.
* Moved set -e after use_bazel.sh.
* Fixed typo in conditional.
* Created amalgamation with upb_msg but no handlers.
* Bugfix for upb_array_resize().
* Renamed "lite" amalgamation to "core", to avoid confusion.
Traditionally "lite" has meant "without reflection", but here we
mean it as "without handlers-based code."
* Build fixes from CI tests.
* Removed some more C++-style comments.
* Fix for out-of-order statements.
Creating and reading from unaligned pointers is UB and I'm trying to
run upb on a platform (GraalVM) that is sensitive to that unfortunately.
Recent compilers are smart enough to fold the memcpy down to a simple
memory load on platforms that support it, so this should mostly be a
aesthetic change.
The reason for typecasting size_t to unint32_t is that size_t is 8 bytes and uint32_t is only 4 bytes.
If not typecasted Memcpy fails to copy the *correct* four bytes in big endian platforms.
The reason for typecasting size_t to unint32_t is that size_t is 8 bytes and uint32_t is only 4 bytes.
If not typecasted Memcpy fails to copy the *correct* four bytes in big endian platforms.
* Split upb::Arena/upb::Allocator from upb::Environment.
This will allow arenas and allocators to be used
independently of environments, which will be important
for an upcoming change (a message representation).
Overall this design feels cleaner that the previous
Environment/SeededAllocator design.
As part of this change, moved all allocations in upb
to use a global allocator instead of hard-coding
malloc/free. This will allow injecting OOM faults
for more robust testing.
One place that doesn't use the global allocator is
the tracked ref code. Instead of its previous approach
of CHECK_OOM() after every malloc() or table insert, it
simply uses an allocator that does this automatically.
I moved Allocator/Arena/Environment into upb.h.
This seems principled since these are the only types
in upb whose size is directly exposed to users, since
they form the basis of memory allocation strategy.
* Cleaned up some header includes and fixed more malloc -> upb_gmalloc().
* Changes from PR review.
* Don't use UINTPTR_MAX or UINT64_MAX.
* Punt on adding line/file for now.
* We actually can't store (uint64_t)-1, update comment and test.
A large part of this change contains surface-level
porting, like moving variable declarations to the
top of the block.
However there are a few more substantial things too:
- moved internal-only struct definitions to a separate
file (structdefs.int.h), for greater encapsulation
and ABI compatibility.
- removed the UPB_UPCAST macro, since it requires access
to the internal-only struct definitions. Replaced uses
with calls to inline, type-safe casting functions.
- removed the UPB_DEFINE_CLASS/UPB_DEFINE_STRUCT macros.
Class and struct definitions are now more explicit -- you
get to see the actual class/struct keywords in the source.
The casting convenience functions have been moved into
UPB_DECLARE_DERIVED_TYPE() and UPB_DECLARE_DERIVED_TYPE2().
- the new way that we duplicate base methods in derived types
is also more convenient and requires less duplication.
It is also less greppable, but hopefully that is not
too big a problem.
Compiler flags (-std=c89 -pedantic) should help to rigorously
enforce that the code is free of C99-isms.
A few functions are not available in C89 (strtoll). There
are temporary, hacky solutions in place.
Changes the data layout of tables slightly so that string
keys are prefixed with their size, rather than the size
being inline in the table itself.
This has a few benefits:
1. inttables shrink a bit, because there is no longer a wasted
and unused size field sitting in them.
2. This avoids the need to have a union in the table. This is
important for an impending C89 port of upb, since C89 has
literally no way of statically initializing a non-first union
member.
This is a sync of our internal developing of JSON parsing and
serialization. It implements native understanding of MapEntry
submessages, so that map fields with (key, value) pairs are serialized
as JSON maps (objects) natively rather than as arrays of objects with
'key' and 'value' fields. The parser also now understands how to emit
handler calls corresponding to MapEntry objects when processing a map
field.
This sync also picks up a bugfix in `table.c` to handle an alloc-failed
case.
- rewritten decoder; interpreted decoder is bytecode-based,
JIT decoder no longer falls back to the interpreter.
- C++ improvements: C++11-compatible iterators, upb::reffed_ptr
for RAII refcounting, better upcast/downcast support.
- removed the gross upb_value abstraction from public upb.h.
Major changes:
- Got rid of all bytestream interfaces in favor of
using regular handlers.
- new Pipeline object represents a upb pipeline, does
bump allocation internally to manage memory.
- proto2 support now can handle extensions.
Many things have changed and been simplified.
The memory-management story for upb_def and upb_handlers
is much more robust; upb_def and upb_handlers should be
fairly stable interfaces now. There is still much work
to do for the runtime component (upb_sink).
Many improvements, too many to mention. One significant
perf regression warrants investigation:
omitfp.parsetoproto2_googlemessage1.upb_jit: 343 -> 252 (-26.53)
plain.parsetoproto2_googlemessage1.upb_jit: 334 -> 251 (-24.85)
25% regression for this benchmark is bad, but since I don't think
there's any fundamental design issue that caused it I'm going to
go ahead with the commit anyway. Can investigate and fix later.
Other benchmarks were neutral or showed slight improvement.
Includes are now via upb/foo.h.
Files specific to the protobuf format are
now in upb/pb (the core library is concerned
with message definitions, handlers, and
byte streams, but knows nothing about any
particular serializationf format).
It can successfully parse SpeedMessage1.
Preliminary results: 750MB/s on Core2 2.4GHz.
This number is 2.5x proto2.
This isn't apples-to-apples, because
proto2 is parsing to a struct and we are
just doing stream parsing, but for apps
that are currently using proto2, this is the
improvement they would see if they could
move to stream-based processing.
Unfortunately perf-regression-test.py is
broken, and I'm not 100% sure why. It would
be nice to fix it first (to ensure that
there are no performance regressions for
the table-based decoder) but I'm really
impatient to get the JIT checked in.
This doesn't reflect any material change in
how I will be working on upb, and I have no
problem making this change. It's still open
source under the BSD license, and I'll still
be working on it well beyond the hours that
constitute a normal job.