This change adds a cfg attribute 'cpp_lite' to the C++ kernel of Protobuf Rust. If C++ lite is selected on the command line, the cfg attribute 'cpp_lite' is set. The root cause of the test failure was that the Debug implementation for full C++ protos uses text proto which is not available in C++ lite. The fix uses the 'cpp_lite' cfg attribute to select a different Debug implementation that doesn't rely on text proto
PiperOrigin-RevId: 640552701
This change implements a custom Debug for messages, views and muts in the C++ kernel. Debug defers to proto2::Utf8Format.
It implements this only for the C++ kernel. We will need to pull in additional dependencies beyond minitables to implement it for UPB as well. This will be done at a later point.
PiperOrigin-RevId: 613191236
It now uses the same prefix as other thunks needed for the proxied type,
so the RawMapThunk helper can be used for enums.
Calling it a "iter next" thunk is misleading.
It does not increment the iterator as "next" implies,
it only gets the current key/value the iterator points to.
PiperOrigin-RevId: 609527442
We recently updated the codebase to comply with the Bazel layering check, which
essentially requires any C++ header inclusion to be matched with a build
dependency on a target providing that header.
As part of that, I removed a handful of dependencies from the `//:protobuf`
target, since these dependencies were not set up in a way that respected the
layering check. However, I realized that this may cause a number of breakages,
especially since we did not provide the correct public targets until very
recently.
This change effectively adds back in the missing dependencies, so that projects
which do not yet adhere to the layering check can continue to depend on them
indirectly. This way, we still adhere to the layering check and make it
possible for projects that depend on us to do so, but in most cases we won't
immediately break anyone.
PiperOrigin-RevId: 607021111
We now support fields with bytes as map values e.g. map<i32, bytes>. The implementation for the C++ runtime was straightforward. The majority of the changes in this CL are about the UPB runtime. In UPB, when we insert Rust bytes/string into the map we need to first copy the bytes onto the maps arena. To support this I have rewritten the macro that implements the ProxiedInMapValue types. I refactored the functionality to convert between UPB and Rust types into the 'UpbTypeConversions' trait. This trait has a function 'to_message_value_if_required' which does the copying for bytes and strings.
PiperOrigin-RevId: 599118416
- ProxiedInMapValue is defined in maps.rs, and no longer in the runtime files {upb, cpp}.rs.
- ProxiedInMapValue's methods accept and return Proxied types.
- InnerMapMut no longer has any generic type parameters.
- Through this refactoring the Map type is no longer a ZST. Creating a new map is now as simple as `Map::new()`.
PiperOrigin-RevId: 597765165
This check enforces that each C++ build target has the correct dependencies for
all headers that it includes. We have many targets that were not correct with
respect to this check, so I fixed them up.
I also cleaned up the C++ targets related to the well-known types. I created a
cc_proto_library() target for each one and removed the :wkt_cc_protos target,
since this was necessary to satisfy the layering check. I deleted the
//src/google/protobuf:protobuf_nowkt target and deprecated :protobuf_nowkt,
because the distinction between the :protobuf and :protobuf_nowkt targets was
not really correct. Neither one exposed the headers for the well-known types in
a way that was valid with respect to the layering check, and the idea of
bundling all the well-known types together is not idiomatic in Bazel anyway.
This is a breaking change, because the //:protobuf target no longer bundles the
well-known types. From now on they should be accessed through the new
//:*_cc_proto aliases in our top-level package.
I renamed the :port_def target to :port, which simplifies things a bit by
matching our internal name.
The original motivation for this change was that to move utf8_range onto our CI
infrastructure, we needed to make its dependency rules_fuzzing compatible with
Bazel 6. The rules_fuzzing project builds with the layering check, and I found
that the process of upgrading it to Bazel 6 made it take a dependency on
protobuf, which caused it to break due to layering violations. I was able to
work around this, but it would still be nice to comply with the layering check
so that we don't have to worry about this kind of thing in the future.
PiperOrigin-RevId: 595516736
To satisfy the layering check, we need to depend on :gtest for the headers, in
addition to :gtest_main which provides the main() function.
There are a bunch of formatting changes as a side effect of this, but they
should be harmless.
PiperOrigin-RevId: 594318263
This change implements maps with keys and values of type string e.g. Map<ProtoStr, i32> and Map<ProtoStr, ProtoStr>.
Implementing the Map type for ProtoStr has been different from scalar types because ProtoStr is an unsized type i.e. its size is not known at compile time. The existing Map implementation assumed sized types in many places. To make unsized types fit into the existing code architecture I have added an associated type 'Value' to the MapWith*KeyOps traits. The associated type needs to be sized and is the type returned by the Map::get(self, key) method e.g. for aProtoStr, the `type Value = &ProtoStr`.
PiperOrigin-RevId: 588783751
This CL implements Maps for scalar types for the C++ runtime. It's orthogonal to cl/580453646. This CL is constrained by having to force template instantiation of proto2::Map<K, V>. Put differently, a Rust protobuf::Map<K, V> implementation needs to call 'extern "C"' functions with both key and value type in the function name (e.g. __pb_rust_Map_i32_f64_get()). We use macros to generate a Map implementation for every (K,V)-pair. An alternative would have been to use vtables.
Luckily a key in a protobuf map can only be integer types, bool and string. So the number of key types is bounded by the specification, while the number of value types is not i.e. any protobuf message can be a value in a map. Given these constraints we introduce one 'MapKeyOps' trait per key type e.g. MapKeyBOOLOps or MapKeyI32Ops. These traits need to be implemented for every value type e.g. 'impl MapKeyBOOLOps for i32' will implement 'Map::<bool, i32>'. In particular the MapKeyOps traits can also be implemented for generated messages without violating the orphan rule.
This CL also contains significant changes to the UPB runtime so that both upb.rs and cpp.rs export a similar interface to simplify the implementation in map.rs and the generated code.
This CL does not yet implement the Proxied trait.
PiperOrigin-RevId: 582951914
This change moves almost everything in the `upb/` directory up one level, so
that for example `upb/upb/generated_code_support.h` becomes just
`upb/generated_code_support.h`. The only exceptions I made to this were that I
left `upb/cmake` and `upb/BUILD` where they are, mostly because that avoids
conflict with other files and the current locations seem reasonable for now.
The `python/` directory is a little bit of a challenge because we had to merge
the existing directory there with `upb/python/`. I made `upb/python/BUILD` into
the BUILD file for the merged directory, and it effectively loads the contents
of the other BUILD file via `python/build_targets.bzl`, but I plan to clean
this up soon.
PiperOrigin-RevId: 568651768
This adds `#![deny(unsafe_op_in_unsafe_fn)]` which removes the
implicit `unsafe` block that `unsafe fn` does.
It also adds many more `SAFETY` docs, corrects some incomplete
ones, and catches a null pointer returned by `upb_Arena_New`.
PiperOrigin-RevId: 549067106
In this CL I'd like to call existing C++ Protobuf API from the V0 Rust API. Since parts of the C++ API are defined inline and using (obviously) C++ name mangling, we need to create a "thunks.cc" file that:
1) Generates code for C++ API function we use from Rust
2) Exposes these functions without any name mangling (meaning using `extern "C"`)
In this CL we add Bazel logic to generate "thunks" file, compile it, and propagate its object to linking. We also add logic to protoc to generate this "thunks" file.
The protoc logic is rather rudimentary still. I hope to focus on protoc code quality in my followup work on V0 Rust API using C++ kernel.
PiperOrigin-RevId: 523479839