Initialize minitable tracing field for MtDecoder
Add api for non C language runtimes to initialize dynamic mini table name.
PiperOrigin-RevId: 613664457
This change moves almost everything in the `upb/` directory up one level, so
that for example `upb/upb/generated_code_support.h` becomes just
`upb/generated_code_support.h`. The only exceptions I made to this were that I
left `upb/cmake` and `upb/BUILD` where they are, mostly because that avoids
conflict with other files and the current locations seem reasonable for now.
The `python/` directory is a little bit of a challenge because we had to merge
the existing directory there with `upb/python/`. I made `upb/python/BUILD` into
the BUILD file for the merged directory, and it effectively loads the contents
of the other BUILD file via `python/build_targets.bzl`, but I plan to clean
this up soon.
PiperOrigin-RevId: 568651768
A couple weeks ago we moved upb into the protobuf Git repo, and this change
continues the merger of the two repos by making them into a single Bazel repo.
This was mostly a matter of deleting upb's WORKSPACE file and fixing up a bunch
of references to reflect the new structure.
Most of the changes are pretty mechanical, but one thing that needed more
invasive changes was the Python script for generating CMakeLists.txt,
make_cmakelists.py. The WORKSPACE file it relied on no longer exists with this
change, so I updated it to hardcode the information it needed from that file.
PiperOrigin-RevId: 564810016
Create message/internal/types.h as a new leaf header
Move map_entry.h from message/internal/ to collections/internal/ where it belongs
PiperOrigin-RevId: 562889855
This is the second attempt to fix our Git history. This should allow
"git blame" to work correctly in the upb/ directory even though our
automation unexpectedly blew away that directory.
On 32-bit targets (including WASM), the base message pointer was aligned to 4 instead of 8, causing reads to 8-byte fields to fail, since TypedArray does not support unaligned reads.
The pointer was 4-byte aligned because upb adds the size of its "internal" pointer before returning the `upb_Message*`. We should probably stop doing this, and instead have the MiniTable offsets reflect their full and true offset from the pointer returned by `malloc()`.
PiperOrigin-RevId: 552486609
After this change, `mini_table` only has MiniTable definitions themselves. Everything having to do with the MiniDescriptor wire format is in `mini_descriptor`.
Also rearranged some of the files in mini_table to have better structure for `internal/`.
This CL contains no functional change.
PiperOrigin-RevId: 543529112
This required some work to unify map entry messages with regular messages, with respect to presence. Before map entry fields could never have presence. Now they can have presence according to normal rules. Note that this only applies to times that the user constructs a map entry directly.
PiperOrigin-RevId: 490611656
Prior to this CL, there were several different code paths for reading/writing message data. Generated code, MiniTable accessors, and reflection all performed direct manipulation of the bits and bytes in a message, but they all had distinct implementations that did not share much of any code. This divergence meant that they could easily have different behavior, bugs could creep into one but not another, and we would need three different sets of tests to get full test coverage. This also made it very difficult to change the internal representation in any way, since it would require updating many places in the code.
With this CL, the three different APIs for accessing message data now all share a common set of functions. The common functions all take a `upb_MiniTableField` as the canonical description of a field's type and layout. The lowest-level functions are very branchy, as they must test for every possible variation in the field type (field vs oneof, hasbit vs no-hasbit, different field sizes, whether a nonzero default value exists, extension vs. regular field), however these functions are declared inline and designed to be very optimizable when values are known at compile time.
In generated accessors, for example, we can declare constant `upb_MiniTableField` instances so that all values can constant-propagate, and we can get fully specialized code even though we are calling a generic function. On the other hand, when we use the generic functions from reflection, we get runtime branches since values are not known at compile time. But even the function is written to still be as efficient as possible even when used from reflection. For example, we use memcpy() calls with constant length so that the compiler can optimize these into inline loads/stores without having to make an out-of-line call to memcpy().
In this way, this CL should be a benefit to both correctness and performance. It will also make it easier to change the message representation, for example to optimize the encoder by giving hasbits to all fields.
Note that we have not completely consolidated all access in this CL:
1. Some functions outside of get/set such as clear and hazzers are not yet unified.
2. The encoder and decoder still touch the message without going through the common functions. The encoder and decoder require a bit more specialized code to get good performance when reading/writing fields en masse.
PiperOrigin-RevId: 490016095
Remove circular dependencies that were bouncing back and forth between
msg_internal.h and mini_table/, including:
- splitting out each mini table subtype into its own header
- moving the non-reflection message code into message/
- moving the accessors from mini_table/ to message/
PiperOrigin-RevId: 489121042