This CL doesn't unbreak the bazel tests, but is yak shaving in prep for changes that will. This makes it more straightforward how the tests are broken by having bazel test rules name rust proto library targets that don't exist in bazel repo, instead of naming targets that do exist but are bogus.
Also correct unittest_edition target to match the order of words in the .proto file name (edition_unittest)
PiperOrigin-RevId: 674295376
`Vec<u8>` is a more idiomatic Rust type to return for serialization.
For the C++ kernel, we are able to return this type with no extra copying. We
still use `SerializedData` type for FFI, but convert the result into a
`Vec<u8>` using a new `into_vec` method.
The upb kernel serializes onto an arena, so for upb we do need to copy the data
to get it into a `Vec<u8>`.
PiperOrigin-RevId: 644444571
New serialization test will verify the amount of bytes it takes to serialize a message with a field of type INT32 set to different values.
PiperOrigin-RevId: 641044189
This doesn't _actually_ make the C++ Kernel path ever fail yet, but now that the API is a Result<SerializedData, SerializeError> it can be fixed as an implementation detail.
PiperOrigin-RevId: 638329136
Rename .deserialize(&mut self) method to .clear_and_parse() (by marking the .deserialized deprecated pointing at the new name, will clean up usages separately)
END_PUBLIC
Per discussion in the team chat, parse/serialize is the most typical terminology for protobuf impls, we don't have much local reason to diverge.
I'm proposing giving the 'better' name to the named ctor since I think that is the one that we expect people to reach for by default; it is generally cleaner than "new then deserialize" pattern since after a parse failure there's not any message still hanging around with implementation-defined contents, along with some other smaller ergonomics benefits.
In C++ (when exceptions aren't enabled) all constructors must be infallible, so it can't have it. In Rust there's no language idiom reason why we shouldn't have an associated fn that returns Result<Msg, ParseErr>.
PiperOrigin-RevId: 618823998
The non-string field setters can bypass the vtables already, the string setters still go through the vtable path here because its more important to let them take an `impl SettableValue` to be able to set either a &str or a &ProtoStr already.
PiperOrigin-RevId: 609705233
This makes a few changes:
- It changes generated messages to reference message innards as a type in `__runtime` instead of branching on what fields should be there. That results in much less bifurcation in gencode and lets runtime-agnostic code reference raw message innards.
- It adds a generic mechanism for creating vtable-based mutators. These vtables point to thunks generated for interacting with C++ or upb fields. Right now, the design results in 2-word (msg+vtable) mutators for C++ and 3-word mutators (msg+arena+vtable) for UPB. See upb.rs for an explanation of the design options. I chose the `RawMessage+&Arena` design for mutator data as opposed to a `&MessageInner` design because it did not result in extra-indirection layout changes for message mutators. We could revisit this in the future with performance data, since this results in all field mutators being 3 words large instead of the register-friendly 2 words.
- And lastly, as a nearby change that touches on many of the same topics, it adds some extra SAFETY comments for Send/Sync in message gencode.
PiperOrigin-RevId: 559483437
Before this CL all messages were generated in the top-level crate module. With
this change we generate messages under the module specified by the package
declaration in the .proto file.
Dots are interpreted as submodule separator in consistency with how C++
namespaces are handled.
Note that name of the proto_library target still remains to be used as the crate name. This CL only adds crate submodules dependeing on the specified package.
PiperOrigin-RevId: 524235162
This turns out to be quite of a yak shave to be able to perfectly test both kernels without having to pass extra Blaze flags.
PiperOrigin-RevId: 521850709
In this CL we're adding the barebones infrastructure to generate Rust proto messages using UPB as a backend. The API is what we call a V0, not yet production-quality, not yet rigorously designed, just something to enable parallel work.
The interesting part of switching backend between UPB and C++ will come in a followup.
PiperOrigin-RevId: 517089760
The internal design is consistent with other <lang>_proto_library rules. rust_proto_library attaches rust_proto_library_aspect on its `deps` attribute. The aspect traverses the dependency, and when it visits proto_library (detected by ProtoInfo provider) it registers 2 actions:
1) to run protoc with Rust backend to emit gencode
2) to compile the gencode using Rustc
Action (2) gets the Rust proto runtime as an input as well.
Coming in a followup is support and test coverage for proto_library.deps.
PiperOrigin-RevId: 514521285
This pull request includes two implementation: C extension and PHP
package. Both implementations support encode/decode of singular,
repeated and map fields.
General
* License changed from Apache 2.0 to New BSD.
* It is now possible to define custom "options", which are basically
annotations which may be placed on definitions in a .proto file.
For example, you might define a field option called "foo" like so:
import "google/protobuf/descriptor.proto"
extend google.protobuf.FieldOptions {
optional string foo = 12345;
}
Then you annotate a field using the "foo" option:
message MyMessage {
optional int32 some_field = 1 [(foo) = "bar"]
}
The value of this option is then visible via the message's
Descriptor:
const FieldDescriptor* field =
MyMessage::descriptor()->FindFieldByName("some_field");
assert(field->options().GetExtension(foo) == "bar");
This feature has been implemented and tested in C++ and Java.
Other languages may or may not need to do extra work to support
custom options, depending on how they construct descriptors.
C++
* Fixed some GCC warnings that only occur when using -pedantic.
* Improved static initialization code, making ordering more
predictable among other things.
* TextFormat will no longer accept messages which contain multiple
instances of a singular field. Previously, the latter instance
would overwrite the former.
* Now works on systems that don't have hash_map.
Python
* Strings now use the "unicode" type rather than the "str" type.
String fields may still be assigned ASCII "str" values; they will
automatically be converted.
* Adding a property to an object representing a repeated field now
raises an exception. For example:
# No longer works (and never should have).
message.some_repeated_field.foo = 1