This significantly simplifies the internals of PrimitiveMut,
and removes the need to refactor BytesMut and ProtoStrMut
to have the same runtime branching.
PiperOrigin-RevId: 589292565
This change implements maps with keys and values of type string e.g. Map<ProtoStr, i32> and Map<ProtoStr, ProtoStr>.
Implementing the Map type for ProtoStr has been different from scalar types because ProtoStr is an unsized type i.e. its size is not known at compile time. The existing Map implementation assumed sized types in many places. To make unsized types fit into the existing code architecture I have added an associated type 'Value' to the MapWith*KeyOps traits. The associated type needs to be sized and is the type returned by the Map::get(self, key) method e.g. for aProtoStr, the `type Value = &ProtoStr`.
PiperOrigin-RevId: 588783751
This CL implements Maps for scalar types for the C++ runtime. It's orthogonal to cl/580453646. This CL is constrained by having to force template instantiation of proto2::Map<K, V>. Put differently, a Rust protobuf::Map<K, V> implementation needs to call 'extern "C"' functions with both key and value type in the function name (e.g. __pb_rust_Map_i32_f64_get()). We use macros to generate a Map implementation for every (K,V)-pair. An alternative would have been to use vtables.
Luckily a key in a protobuf map can only be integer types, bool and string. So the number of key types is bounded by the specification, while the number of value types is not i.e. any protobuf message can be a value in a map. Given these constraints we introduce one 'MapKeyOps' trait per key type e.g. MapKeyBOOLOps or MapKeyI32Ops. These traits need to be implemented for every value type e.g. 'impl MapKeyBOOLOps for i32' will implement 'Map::<bool, i32>'. In particular the MapKeyOps traits can also be implemented for generated messages without violating the orphan rule.
This CL also contains significant changes to the UPB runtime so that both upb.rs and cpp.rs export a similar interface to simplify the implementation in map.rs and the generated code.
This CL does not yet implement the Proxied trait.
PiperOrigin-RevId: 582951914
This is predominantly a wrapper around `BytesMut`, for simplicity.
Bytes and string fields are mostly the same, except for possible UTF-8 handling.
This also implements some minor parts of `ProtoStr` that were missed.
PiperOrigin-RevId: 561422951
This makes a few changes:
- It changes generated messages to reference message innards as a type in `__runtime` instead of branching on what fields should be there. That results in much less bifurcation in gencode and lets runtime-agnostic code reference raw message innards.
- It adds a generic mechanism for creating vtable-based mutators. These vtables point to thunks generated for interacting with C++ or upb fields. Right now, the design results in 2-word (msg+vtable) mutators for C++ and 3-word mutators (msg+arena+vtable) for UPB. See upb.rs for an explanation of the design options. I chose the `RawMessage+&Arena` design for mutator data as opposed to a `&MessageInner` design because it did not result in extra-indirection layout changes for message mutators. We could revisit this in the future with performance data, since this results in all field mutators being 3 words large instead of the register-friendly 2 words.
- And lastly, as a nearby change that touches on many of the same topics, it adds some extra SAFETY comments for Send/Sync in message gencode.
PiperOrigin-RevId: 559483437
This adds `#![deny(unsafe_op_in_unsafe_fn)]` which removes the
implicit `unsafe` block that `unsafe fn` does.
It also adds many more `SAFETY` docs, corrects some incomplete
ones, and catches a null pointer returned by `upb_Arena_New`.
PiperOrigin-RevId: 549067106
In this CL I'd like to call existing C++ Protobuf API from the V0 Rust API. Since parts of the C++ API are defined inline and using (obviously) C++ name mangling, we need to create a "thunks.cc" file that:
1) Generates code for C++ API function we use from Rust
2) Exposes these functions without any name mangling (meaning using `extern "C"`)
In this CL we add Bazel logic to generate "thunks" file, compile it, and propagate its object to linking. We also add logic to protoc to generate this "thunks" file.
The protoc logic is rather rudimentary still. I hope to focus on protoc code quality in my followup work on V0 Rust API using C++ kernel.
PiperOrigin-RevId: 523479839
This turns out to be quite of a yak shave to be able to perfectly test both kernels without having to pass extra Blaze flags.
PiperOrigin-RevId: 521850709
In this CL we're adding the barebones infrastructure to generate Rust proto messages using UPB as a backend. The API is what we call a V0, not yet production-quality, not yet rigorously designed, just something to enable parallel work.
The interesting part of switching backend between UPB and C++ will come in a followup.
PiperOrigin-RevId: 517089760
The internal design is consistent with other <lang>_proto_library rules. rust_proto_library attaches rust_proto_library_aspect on its `deps` attribute. The aspect traverses the dependency, and when it visits proto_library (detected by ProtoInfo provider) it registers 2 actions:
1) to run protoc with Rust backend to emit gencode
2) to compile the gencode using Rustc
Action (2) gets the Rust proto runtime as an input as well.
Coming in a followup is support and test coverage for proto_library.deps.
PiperOrigin-RevId: 514521285
This code is experimental and should not be expected to emit working code, and callers are liable to break without warning.
It is being released now so that development can occur in the open, but users should not expect this to be supported any time soon.
PiperOrigin-RevId: 508095929
I updated our Bazel CI jobs to cover `//pkg/...` and thereby exercise this new
test. That made me realize that `//pkg/...` was not fully buildable because
there was a reference to the non-existent target `@utf8_range//:dist_files`, so
I also fixed that.
PiperOrigin-RevId: 498437497
* Update ruby_generator.cc to allow proto2 imports in proto3, with updated unit tests
* Update Makefile.am with new ruby_generated_code_proto2_import.proto
* Fix ruby_generator unit test to use temporary test directory for imported protos
* Add test for imported proto2 to ruby/tests
* Fix proto_path, restore to ../src/protoc, and fix/cleanup unit test.
* Rename Proto2TestMessage to TestImportedMessage for consistency, for ruby compiler tests
This change only adds basic proto2 support without advanced features
like extensions, custom options, maps, etc.
The protoc binary now generates ruby code for proto2 syntax.
However, for now, it is restricted to proto2 files without advanced features
like extensions, in which case it still errors out.
This change also modifies the DSL to add proto messages to the DescriptorPool.
There is a new DSL Builder#add_file to create a new FileDescriptor. With this,
the generated ruby DSL looks something like:
Google::Protobuf::DescriptorPool.generated_pool.build do
add_file "test.proto" do
add_message "foo" do
optional :val, :int32, 1
end
end
end