Prior to this change, if an error was returned, it would be
guaranteed to always return a short byte count. Now the two
concepts are a bit more orthogonal. There are cases where
the entire input is consumed even though an error was
encountered.
Prior to this change:
parse(buf, len) -> len + N
...would indicate that the next N bytes of the input are not
needed, *and* would advance the decoding position by this
much.
After this change:
parse(buf, len) -> len + N
parse(NULL, N) -> N
...can be used to achieve the same thing. But skipping the
N bytes is not explicitly performed by the user. A user that
doesn't want/need to skip can just say:
parsed = parse(buf, len);
if (parsed < len) {
// Handle suspend, advance stream by "parsed".
} else {
// Stream was advanced by "len" (even if parsed > len).
}
Updated unit tests to test this new behavior, and refactored
test utility code a bit to support it.
This was previously broken -- it would try to set
the status object on the parser, but the pointer
was never initialized. Also it didn't report
errors properly to the environment object.
A large part of this change contains surface-level
porting, like moving variable declarations to the
top of the block.
However there are a few more substantial things too:
- moved internal-only struct definitions to a separate
file (structdefs.int.h), for greater encapsulation
and ABI compatibility.
- removed the UPB_UPCAST macro, since it requires access
to the internal-only struct definitions. Replaced uses
with calls to inline, type-safe casting functions.
- removed the UPB_DEFINE_CLASS/UPB_DEFINE_STRUCT macros.
Class and struct definitions are now more explicit -- you
get to see the actual class/struct keywords in the source.
The casting convenience functions have been moved into
UPB_DECLARE_DERIVED_TYPE() and UPB_DECLARE_DERIVED_TYPE2().
- the new way that we duplicate base methods in derived types
is also more convenient and requires less duplication.
It is also less greppable, but hopefully that is not
too big a problem.
Compiler flags (-std=c89 -pedantic) should help to rigorously
enforce that the code is free of C99-isms.
A few functions are not available in C89 (strtoll). There
are temporary, hacky solutions in place.
Changes the data layout of tables slightly so that string
keys are prefixed with their size, rather than the size
being inline in the table itself.
This has a few benefits:
1. inttables shrink a bit, because there is no longer a wasted
and unused size field sitting in them.
2. This avoids the need to have a union in the table. This is
important for an impending C89 port of upb, since C89 has
literally no way of statically initializing a non-first union
member.
Also added a separate ndebug build for testing that
-DNDEBUG builds still work.
Also disabled reference debugging by default, since it
requires either a global lock or -DUPB_THREAD_UNSAFE.
This change has several parts:
1. Resurrected tools/upbc. The code was all there but the build was
broken for open-source. Now you can type "make tools/upbc" and
it will build all necessary Lua modules and create a robust shell
script for running upbc.
2. Changed Lua module loading to no longer rely on OS-level .so
dependencies. The net effect of this is that you now only need
to set LUA_PATH and LUA_CPATH; setting LD_LIBRARY_PATH or rpaths
is no longer required. Downside: this drops compatibility with
Lua 5.1, since it depends on a feature that only exists in Lua >=5.2
(and LuaJIT).
3. Since upbc works again, I fixed the re-generation of the descriptor
files (descriptor.upb.h, descriptor.upb.c). "make genfiles" will
re-generate these as well as the JIT code generator.
4. Added a Travis test target that ensures that the checked-in generated
files are not out of date. I would do this for the Ragel generated
file also, but we can't count on all versions of Ragel to necessarily
generate identical output.
5. Changed Makefile to no longer automatically run Ragel to regenerate
the JSON parser. This is unfortuante, because it's convenient when
you're developing the JSON parser. However, "git clone" sometimes
skews the timestamps a little bit so that "make" thinks it needs to
regenerate these files for a fresh "git clone." This would normally
be harmless, but if the user doesn't have Ragel installed, it makes
the build fail completely. So now you have to explicitly regenerate
the Ragel output. If you want to you can uncomment the auto-generation
during development.
This is a sync of our internal developing of JSON parsing and
serialization. It implements native understanding of MapEntry
submessages, so that map fields with (key, value) pairs are serialized
as JSON maps (objects) natively rather than as arrays of objects with
'key' and 'value' fields. The parser also now understands how to emit
handler calls corresponding to MapEntry objects when processing a map
field.
This sync also picks up a bugfix in `table.c` to handle an alloc-failed
case.
This change adds support for a OneofDef (upb_oneofdef), which represents
a 'oneof' as introduced by Protocol Buffers. This is semantically a
union type that contains fields and in turn may be added to a
MessageDef. This change does not alter parsing or the handler
abstraction in any way, because a oneof has impact only at a higher
semantic level (i.e., any sort of storage of the fields in a message
object), which is user-specific with respect to upb.
system. The Ruby module build now uses an amalgamated distribution of
upb, and successfully builds a Ruby gem called 'google-protobuf' with
module 'google/protobuf'.
There are a number of tweaks to get this to work:
- The #include dependence graph wasn't quite complete, and I had to add
a few #includes to get the tool to work.
- I had to change a number of symbol names to avoid conflicts between
'static' definitions in different .c files. This could be avoided if
the tool were smart enough to rename static symbols to have unique
prefixes instead, but (i) this requires semantic understanding of C,
and (ii) the macro-defined static functions (e.g., handlers for
primitive types in several places) would probably trip this up.
Verified that the resulting upb.h/upb.c compiles and doesn't have any
unresolved references.
This adds a Ruby extension in ruby/ that is based on the 'upb' library
(now included as a submodule), and adds support for Ruby code generation
to the protoc compiler.