This significantly simplifies the internals of PrimitiveMut,
and removes the need to refactor BytesMut and ProtoStrMut
to have the same runtime branching.
PiperOrigin-RevId: 589292565
This change implements maps with keys and values of type string e.g. Map<ProtoStr, i32> and Map<ProtoStr, ProtoStr>.
Implementing the Map type for ProtoStr has been different from scalar types because ProtoStr is an unsized type i.e. its size is not known at compile time. The existing Map implementation assumed sized types in many places. To make unsized types fit into the existing code architecture I have added an associated type 'Value' to the MapWith*KeyOps traits. The associated type needs to be sized and is the type returned by the Map::get(self, key) method e.g. for aProtoStr, the `type Value = &ProtoStr`.
PiperOrigin-RevId: 588783751
accessors_test.rs is getting a bit unwieldy, approaching 1K LOC. This CL breaks out the repeated tests into their own file (accessors_repeated_test.rs), as we expect the tests here to grow. This follows the precedent of `accessors_map_test.rs`.
PiperOrigin-RevId: 588554476
Before this CL, we weren't generating view accessors for messages with depth > 1.
We weren't getting to message::GetterForViewOrMut because we were detecting FieldDescriptor::TYPE_MESSAGE and bailing out.
That check has now been expunged, and we now properly emit the right view, even for messages embedded within messages.
Added tests for:
- another level of submsg access depth
- accessing a message declared outside of the current message (that is, not a direct nested message within the same message)
- accessing the accessor of the accessor of the accessor of a recursively defined message
PiperOrigin-RevId: 588460599
This CL implements Maps for scalar types for the C++ runtime. It's orthogonal to cl/580453646. This CL is constrained by having to force template instantiation of proto2::Map<K, V>. Put differently, a Rust protobuf::Map<K, V> implementation needs to call 'extern "C"' functions with both key and value type in the function name (e.g. __pb_rust_Map_i32_f64_get()). We use macros to generate a Map implementation for every (K,V)-pair. An alternative would have been to use vtables.
Luckily a key in a protobuf map can only be integer types, bool and string. So the number of key types is bounded by the specification, while the number of value types is not i.e. any protobuf message can be a value in a map. Given these constraints we introduce one 'MapKeyOps' trait per key type e.g. MapKeyBOOLOps or MapKeyI32Ops. These traits need to be implemented for every value type e.g. 'impl MapKeyBOOLOps for i32' will implement 'Map::<bool, i32>'. In particular the MapKeyOps traits can also be implemented for generated messages without violating the orphan rule.
This CL also contains significant changes to the UPB runtime so that both upb.rs and cpp.rs export a similar interface to simplify the implementation in map.rs and the generated code.
This CL does not yet implement the Proxied trait.
PiperOrigin-RevId: 582951914
msg.submsg().x() and msg.submsg().x_mut() should now be callable for strings and bytes. Main idea here was to return &[u8] for bytes (vs [u8]) and &ProtoStr instead of &str or &[u8] for strings.
This CL also expunges IsSimpleScalar.
PiperOrigin-RevId: 582809307
We've had access to views for submessages for a while:
If you hit some_message.submsg().some_int(), you'll get a view for that int.
Until now, there hasn't been a way to get some_message.submsg_mut(), so we introduce the mutational pathway here.
We haven't added fully-functioning mutation, but this is a step towards that goal.
subview was inaccurate, so I've refactored and renamed: { accessor_fns_for_views, accessor_fns_for_muts }.
PiperOrigin-RevId: 581984371
We continue our foray into googletest-rust [1], this time with homegrown matchers.
Our unit tests will now be able to check is_unset() and is_set() for all types that implement ProxiedWithPresence. In practice, this boils down to [u8] and ProtoStr.
Note that we've broken out matchers_upb and matchers_cpp, similar to what was done with aliasing here [2].
[1] https://github.com/google/googletest-rust
[2] 9a0bc392b3 (diff-08e5182ff36ad340a3bfb628995524a2a36a89b59a514ba027b0f25e048dd5c3R90)
PiperOrigin-RevId: 573895179
We had previously commented out the upb portion of simple_nested_test.
This is because nonmutable getters have submessages being NULL by default.
This means that trying to fetch anything, like a simple scalar from that nested message would segfault.
This CL makes the externC return an Option<RawMessage> since we've discovered that upb can return NULL. This way, we can check for `None` and handle the NULL case appropriately.
We know that the NULL pathway can only come from terra upb, since
cpp automagically constructs submsgs if they don't exist.
We've augmented upb.rs to contain a scratch space that allocates a zeroed-out contiguous chunk of memory @64KB. Since a block of zeroed-out memory is a legit message from upb's point of view, we can provide $pbr$::ScratchSpace::zeroed_block() to upb in order to get the default submessage behavior we want from upb.
This block is lazily allocated upon first request. This means that a consumer of the cpp kernel will not incur an additional cost.
PiperOrigin-RevId: 573840755
$Msg$View is incorrect, we need to actually invoke the getter_thunks. We'll use void* to get us off to the races.
Sprinkled in TODOs as appropriate; and we'll tackle imports in another CL. For now, its important to return the actual raw message, and that's what this CL does for our base uses.
PiperOrigin-RevId: 564785201
This is predominantly a wrapper around `BytesMut`, for simplicity.
Bytes and string fields are mostly the same, except for possible UTF-8 handling.
This also implements some minor parts of `ProtoStr` that were missed.
PiperOrigin-RevId: 561422951
This makes a few changes:
- It changes generated messages to reference message innards as a type in `__runtime` instead of branching on what fields should be there. That results in much less bifurcation in gencode and lets runtime-agnostic code reference raw message innards.
- It adds a generic mechanism for creating vtable-based mutators. These vtables point to thunks generated for interacting with C++ or upb fields. Right now, the design results in 2-word (msg+vtable) mutators for C++ and 3-word mutators (msg+arena+vtable) for UPB. See upb.rs for an explanation of the design options. I chose the `RawMessage+&Arena` design for mutator data as opposed to a `&MessageInner` design because it did not result in extra-indirection layout changes for message mutators. We could revisit this in the future with performance data, since this results in all field mutators being 3 words large instead of the register-friendly 2 words.
- And lastly, as a nearby change that touches on many of the same topics, it adds some extra SAFETY comments for Send/Sync in message gencode.
PiperOrigin-RevId: 559483437
Only emit has_field() if the field support presence. Only emit field_opt() getter if the field is both optional and supports presence.
PiperOrigin-RevId: 555133374
This CL adds function bodies for: {as_view, into_view, as_mut, into_mut, set_on} [1].
Our prior cl/552609955 didn't have `RawMessage` inside $Msg$Mut, so that's also been rectified in this CL.
[1] Everything in this set is a part of the Proxied trait, except set_on, which belongs to the SettableValue trait.
PiperOrigin-RevId: 553935803
This CL sets up the basic plumbing end-to-end for singular message fields.
We add skeletonized support for `Proxied` messages. This is done
by creating structs for $Msg$View and $Msg$Mut, and providing
stubbed impls.
PiperOrigin-RevId: 552609955
If a proto_library has more than one srcs, we designate the first one as the primary (that file will be passed to rustc as the crate root). All other files will represent (internal) submodules of the crate.
In general, Rust users won't see which .proto file a message came from, they will only see a crate corresponding to the entire proto_library, and in it public submodules for all `package` statements in all .proto files in the proto_library sources. Therefore in this CL we reexport all messages from non primary sources into their corresponding public modules (= packages declared in their owning .proto files).
Besides the common case this CL also handles .proto files without package statement, and a subset of behaviors needed for public import functionality.
PiperOrigin-RevId: 549543321