It is entirely optional: MessageDef/EnumDef can still exist
on their own. But this can represent a def's file when it is
desirable to do so (eg. for code generators).
This approach will require that we change the way we handle
extensions. But I think it will be a good change overall.
Specifically, we previously handled extensions by duplicating
the extended message and then adding the extension as a regular
field to the duplicated message. This required also duplicating
any messages that could reach the extended message.
In the new world we will need a way of declaring and looking up
extensions separately from the message being extended.
This change also involves some notable changes to the generated
code:
- files are now called foo.upbdefs.h instead of foo.upb.h.
This reflects the fact that we might possibly generate several
different output files for a .proto file, and this one is just
for defs.
- we no longer generate selectors in the .h file.
- the upbdefs.c no longer vends a SymbolTable. Now it vends the
individual messages (and possibly a FileDef later). I think this
will compose better once we can generate files where one
generated files imports another.
We also make the descriptor reader vend a list of FileDefs now.
This is the best conceptual match for parsing a FileDescriptorSet.
A large part of this change contains surface-level
porting, like moving variable declarations to the
top of the block.
However there are a few more substantial things too:
- moved internal-only struct definitions to a separate
file (structdefs.int.h), for greater encapsulation
and ABI compatibility.
- removed the UPB_UPCAST macro, since it requires access
to the internal-only struct definitions. Replaced uses
with calls to inline, type-safe casting functions.
- removed the UPB_DEFINE_CLASS/UPB_DEFINE_STRUCT macros.
Class and struct definitions are now more explicit -- you
get to see the actual class/struct keywords in the source.
The casting convenience functions have been moved into
UPB_DECLARE_DERIVED_TYPE() and UPB_DECLARE_DERIVED_TYPE2().
- the new way that we duplicate base methods in derived types
is also more convenient and requires less duplication.
It is also less greppable, but hopefully that is not
too big a problem.
Compiler flags (-std=c89 -pedantic) should help to rigorously
enforce that the code is free of C99-isms.
A few functions are not available in C89 (strtoll). There
are temporary, hacky solutions in place.
This is a sync of our internal developing of JSON parsing and
serialization. It implements native understanding of MapEntry
submessages, so that map fields with (key, value) pairs are serialized
as JSON maps (objects) natively rather than as arrays of objects with
'key' and 'value' fields. The parser also now understands how to emit
handler calls corresponding to MapEntry objects when processing a map
field.
This sync also picks up a bugfix in `table.c` to handle an alloc-failed
case.
This change adds support for a OneofDef (upb_oneofdef), which represents
a 'oneof' as introduced by Protocol Buffers. This is semantically a
union type that contains fields and in turn may be added to a
MessageDef. This change does not alter parsing or the handler
abstraction in any way, because a oneof has impact only at a higher
semantic level (i.e., any sort of storage of the fields in a message
object), which is user-specific with respect to upb.
- rewritten decoder; interpreted decoder is bytecode-based,
JIT decoder no longer falls back to the interpreter.
- C++ improvements: C++11-compatible iterators, upb::reffed_ptr
for RAII refcounting, better upcast/downcast support.
- removed the gross upb_value abstraction from public upb.h.
- Better error reporting for upb::Def setters.
- error reporting for upb::Handlers setters.
- made the start/endmsg handlers a little less special-cased.
Major changes:
- Got rid of all bytestream interfaces in favor of
using regular handlers.
- new Pipeline object represents a upb pipeline, does
bump allocation internally to manage memory.
- proto2 support now can handle extensions.
Many things have changed and been simplified.
The memory-management story for upb_def and upb_handlers
is much more robust; upb_def and upb_handlers should be
fairly stable interfaces now. There is still much work
to do for the runtime component (upb_sink).
Many improvements, too many to mention. One significant
perf regression warrants investigation:
omitfp.parsetoproto2_googlemessage1.upb_jit: 343 -> 252 (-26.53)
plain.parsetoproto2_googlemessage1.upb_jit: 334 -> 251 (-24.85)
25% regression for this benchmark is bad, but since I don't think
there's any fundamental design issue that caused it I'm going to
go ahead with the commit anyway. Can investigate and fix later.
Other benchmarks were neutral or showed slight improvement.
Includes are now via upb/foo.h.
Files specific to the protobuf format are
now in upb/pb (the core library is concerned
with message definitions, handlers, and
byte streams, but knows nothing about any
particular serializationf format).
This is a significant change to the upb_stream
protocol, and should hopefully be the last
significant change.
All callbacks are now registered ahead-of-time
instead of having delegated callbacks registered
at runtime, which makes it much easier to
aggressively optimize ahead-of-time (like with a
JIT).
Other impacts of this change:
- You no longer need to have loaded descriptor.proto
as a upb_def to load other descriptors! This means
the special-case code we used for bootstrapping is
no longer necessary, and we no longer need to link
the descriptor for descriptor.proto into upb.
- A client can now register any upb_value as what
will be delivered to their value callback, not
just a upb_fielddef*. This should allow for other
clients to get more bang out of the streaming
decoder.
This change unfortunately causes a bit of a performance
regression -- I think largely due to highly
suboptimal code that GCC generates when structs
are returned by value. See:
http://blog.reverberate.org/2011/03/19/when-a-compilers-slow-code-actually-bites-you/
On the other hand, once we have a JIT this should
no longer matter.
Performance numbers:
plain.parsestream_googlemessage1.upb_table: 374 -> 396 (5.88)
plain.parsestream_googlemessage2.upb_table: 616 -> 449 (-27.11)
plain.parsetostruct_googlemessage1.upb_table_byref: 268 -> 269 (0.37)
plain.parsetostruct_googlemessage1.upb_table_byval: 215 -> 204 (-5.12)
plain.parsetostruct_googlemessage2.upb_table_byref: 307 -> 281 (-8.47)
plain.parsetostruct_googlemessage2.upb_table_byval: 297 -> 272 (-8.42)
omitfp.parsestream_googlemessage1.upb_table: 423 -> 410 (-3.07)
omitfp.parsestream_googlemessage2.upb_table: 679 -> 483 (-28.87)
omitfp.parsetostruct_googlemessage1.upb_table_byref: 287 -> 282 (-1.74)
omitfp.parsetostruct_googlemessage1.upb_table_byval: 226 -> 219 (-3.10)
omitfp.parsetostruct_googlemessage2.upb_table_byref: 315 -> 298 (-5.40)
omitfp.parsetostruct_googlemessage2.upb_table_byval: 297 -> 287 (-3.37)
The symtab that contains them is now hidden, and
you can look them up by name but there is no access
to the symtab itself, so there is no risk of
mutating it (by extending it, adding other defs
to it, etc).