Create an isolated build file for the numpy test to separate from runtime. PiperOrigin-RevId: 524913924pull/12484/head
parent
0339e176cf
commit
fe038fc9d2
5 changed files with 234 additions and 10 deletions
@ -0,0 +1,13 @@ |
||||
# Protobuf python numpy Tests |
||||
# This is removed from other tests to keep numpy (and @pip_deps) as a test-only dependency |
||||
|
||||
load("@pip_deps//:requirements.bzl", "requirement") |
||||
load("//python:internal.bzl", "internal_py_test") |
||||
|
||||
internal_py_test( |
||||
name = "numpy_test", |
||||
srcs = ["numpy_test.py"], |
||||
deps = [ |
||||
requirement("numpy"), |
||||
], |
||||
) |
@ -0,0 +1,215 @@ |
||||
# Protocol Buffers - Google's data interchange format |
||||
# Copyright 2008 Google Inc. All rights reserved. |
||||
# https://developers.google.com/protocol-buffers/ |
||||
# |
||||
# Redistribution and use in source and binary forms, with or without |
||||
# modification, are permitted provided that the following conditions are |
||||
# met: |
||||
# |
||||
# * Redistributions of source code must retain the above copyright |
||||
# notice, this list of conditions and the following disclaimer. |
||||
# * Redistributions in binary form must reproduce the above |
||||
# copyright notice, this list of conditions and the following disclaimer |
||||
# in the documentation and/or other materials provided with the |
||||
# distribution. |
||||
# * Neither the name of Google Inc. nor the names of its |
||||
# contributors may be used to endorse or promote products derived from |
||||
# this software without specific prior written permission. |
||||
# |
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
||||
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
||||
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
||||
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
||||
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||||
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||||
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||||
|
||||
"""Test use of numpy types with repeated and non-repeated scalar fields.""" |
||||
|
||||
import unittest |
||||
|
||||
import numpy as np |
||||
|
||||
from google.protobuf.internal import testing_refleaks |
||||
from google.protobuf import unittest_pb2 |
||||
|
||||
message = unittest_pb2.TestAllTypes() |
||||
np_float_scalar = np.float64(0.0) |
||||
np_1_float_array = np.zeros(shape=(1,), dtype=np.float64) |
||||
np_2_float_array = np.zeros(shape=(2,), dtype=np.float64) |
||||
np_11_float_array = np.zeros(shape=(1, 1), dtype=np.float64) |
||||
np_22_float_array = np.zeros(shape=(2, 2), dtype=np.float64) |
||||
|
||||
np_int_scalar = np.int64(0) |
||||
np_1_int_array = np.zeros(shape=(1,), dtype=np.int64) |
||||
np_2_int_array = np.zeros(shape=(2,), dtype=np.int64) |
||||
np_11_int_array = np.zeros(shape=(1, 1), dtype=np.int64) |
||||
np_22_int_array = np.zeros(shape=(2, 2), dtype=np.int64) |
||||
|
||||
np_uint_scalar = np.uint64(0) |
||||
np_1_uint_array = np.zeros(shape=(1,), dtype=np.uint64) |
||||
np_2_uint_array = np.zeros(shape=(2,), dtype=np.uint64) |
||||
np_11_uint_array = np.zeros(shape=(1, 1), dtype=np.uint64) |
||||
np_22_uint_array = np.zeros(shape=(2, 2), dtype=np.uint64) |
||||
|
||||
np_bool_scalar = np.bool_(False) |
||||
np_1_bool_array = np.zeros(shape=(1,), dtype=np.bool_) |
||||
np_2_bool_array = np.zeros(shape=(2,), dtype=np.bool_) |
||||
np_11_bool_array = np.zeros(shape=(1, 1), dtype=np.bool_) |
||||
np_22_bool_array = np.zeros(shape=(2, 2), dtype=np.bool_) |
||||
|
||||
|
||||
@testing_refleaks.TestCase |
||||
class NumpyIntProtoTest(unittest.TestCase): |
||||
|
||||
# Assigning dim 1 ndarray of ints to repeated field should pass |
||||
def testNumpyDim1IntArrayToRepeated_IsValid(self): |
||||
message.repeated_int64[:] = np_1_int_array |
||||
message.repeated_int64[:] = np_2_int_array |
||||
|
||||
message.repeated_uint64[:] = np_1_uint_array |
||||
message.repeated_uint64[:] = np_2_uint_array |
||||
|
||||
# Assigning dim 2 ndarray of ints to repeated field should fail |
||||
def testNumpyDim2IntArrayToRepeated_RaisesTypeError(self): |
||||
with self.assertRaises(TypeError): |
||||
message.repeated_int64[:] = np_11_int_array |
||||
with self.assertRaises(TypeError): |
||||
message.repeated_int64[:] = np_22_int_array |
||||
|
||||
with self.assertRaises(TypeError): |
||||
message.repeated_uint64[:] = np_11_uint_array |
||||
with self.assertRaises(TypeError): |
||||
message.repeated_uint64[:] = np_22_uint_array |
||||
|
||||
# Assigning any ndarray of floats to repeated int field should fail |
||||
def testNumpyFloatArrayToRepeated_RaisesTypeError(self): |
||||
with self.assertRaises(TypeError): |
||||
message.repeated_int64[:] = np_1_float_array |
||||
with self.assertRaises(TypeError): |
||||
message.repeated_int64[:] = np_11_float_array |
||||
with self.assertRaises(TypeError): |
||||
message.repeated_int64[:] = np_22_float_array |
||||
|
||||
# Assigning any np int to scalar field should pass |
||||
def testNumpyIntScalarToScalar_IsValid(self): |
||||
message.optional_int64 = np_int_scalar |
||||
message.optional_uint64 = np_uint_scalar |
||||
|
||||
# Assigning any ndarray of ints to scalar field should fail |
||||
def testNumpyIntArrayToScalar_RaisesTypeError(self): |
||||
with self.assertRaises(TypeError): |
||||
message.optional_int64 = np_1_int_array |
||||
with self.assertRaises(TypeError): |
||||
message.optional_int64 = np_11_int_array |
||||
with self.assertRaises(TypeError): |
||||
message.optional_int64 = np_22_int_array |
||||
|
||||
with self.assertRaises(TypeError): |
||||
message.optional_uint64 = np_1_uint_array |
||||
with self.assertRaises(TypeError): |
||||
message.optional_uint64 = np_11_uint_array |
||||
with self.assertRaises(TypeError): |
||||
message.optional_uint64 = np_22_uint_array |
||||
|
||||
# Assigning any ndarray of floats to scalar field should fail |
||||
def testNumpyFloatArrayToScalar_RaisesTypeError(self): |
||||
with self.assertRaises(TypeError): |
||||
message.optional_int64 = np_1_float_array |
||||
with self.assertRaises(TypeError): |
||||
message.optional_int64 = np_11_float_array |
||||
with self.assertRaises(TypeError): |
||||
message.optional_int64 = np_22_float_array |
||||
|
||||
|
||||
@testing_refleaks.TestCase |
||||
class NumpyFloatProtoTest(unittest.TestCase): |
||||
|
||||
# Assigning dim 1 ndarray of floats to repeated field should pass |
||||
def testNumpyDim1FloatArrayToRepeated_IsValid(self): |
||||
message.repeated_float[:] = np_1_float_array |
||||
message.repeated_float[:] = np_2_float_array |
||||
|
||||
# Assigning dim 2 ndarray of floats to repeated field should fail |
||||
def testNumpyDim2FloatArrayToRepeated_RaisesTypeError(self): |
||||
with self.assertRaises(TypeError): |
||||
message.repeated_float[:] = np_11_float_array |
||||
with self.assertRaises(TypeError): |
||||
message.repeated_float[:] = np_22_float_array |
||||
|
||||
# Assigning any np float to scalar field should pass |
||||
def testNumpyFloatScalarToScalar_IsValid(self): |
||||
message.optional_float = np_float_scalar |
||||
|
||||
# Assigning any ndarray of float to scalar field should fail |
||||
def testNumpyFloatArrayToScalar_RaisesTypeError(self): |
||||
with self.assertRaises(TypeError): |
||||
message.optional_float = np_1_float_array |
||||
with self.assertRaises(TypeError): |
||||
message.optional_float = np_11_float_array |
||||
with self.assertRaises(TypeError): |
||||
message.optional_float = np_22_float_array |
||||
|
||||
|
||||
@testing_refleaks.TestCase |
||||
class NumpyBoolProtoTest(unittest.TestCase): |
||||
|
||||
# Assigning dim 1 ndarray of bool to repeated field should pass |
||||
def testNumpyDim1BoolArrayToRepeated_IsValid(self): |
||||
message.repeated_bool[:] = np_1_bool_array |
||||
message.repeated_bool[:] = np_2_bool_array |
||||
|
||||
# Assigning dim 2 ndarray of bool to repeated field should fail |
||||
def testNumpyDim2BoolArrayToRepeated_RaisesTypeError(self): |
||||
with self.assertRaises(TypeError): |
||||
message.repeated_bool[:] = np_11_bool_array |
||||
with self.assertRaises(TypeError): |
||||
message.repeated_bool[:] = np_22_bool_array |
||||
|
||||
# Assigning any np bool to scalar field should pass |
||||
def testNumpyBoolScalarToScalar_IsValid(self): |
||||
message.optional_bool = np_bool_scalar |
||||
|
||||
# Assigning any ndarray of bool to scalar field should fail |
||||
def testNumpyBoolArrayToScalar_RaisesTypeError(self): |
||||
with self.assertRaises(TypeError): |
||||
message.optional_bool = np_1_bool_array |
||||
with self.assertRaises(TypeError): |
||||
message.optional_bool = np_11_bool_array |
||||
with self.assertRaises(TypeError): |
||||
message.optional_bool = np_22_bool_array |
||||
|
||||
|
||||
@testing_refleaks.TestCase |
||||
class NumpyProtoIndexingTest(unittest.TestCase): |
||||
|
||||
def testNumpyIntScalarIndexing_Passes(self): |
||||
data = unittest_pb2.TestAllTypes(repeated_int64=[0, 1, 2]) |
||||
self.assertEqual(0, data.repeated_int64[np.int64(0)]) |
||||
|
||||
def testNumpyNegative1IntScalarIndexing_Passes(self): |
||||
data = unittest_pb2.TestAllTypes(repeated_int64=[0, 1, 2]) |
||||
self.assertEqual(2, data.repeated_int64[np.int64(-1)]) |
||||
|
||||
def testNumpyFloatScalarIndexing_Fails(self): |
||||
data = unittest_pb2.TestAllTypes(repeated_int64=[0, 1, 2]) |
||||
with self.assertRaises(TypeError): |
||||
_ = data.repeated_int64[np.float64(0.0)] |
||||
|
||||
def testNumpyIntArrayIndexing_Fails(self): |
||||
data = unittest_pb2.TestAllTypes(repeated_int64=[0, 1, 2]) |
||||
with self.assertRaises(TypeError): |
||||
_ = data.repeated_int64[np.array([0])] |
||||
with self.assertRaises(TypeError): |
||||
_ = data.repeated_int64[np.ndarray((1,), buffer=np.array([0]), dtype=int)] |
||||
with self.assertRaises(TypeError): |
||||
_ = data.repeated_int64[np.ndarray((1, 1), |
||||
buffer=np.array([0]), |
||||
dtype=int)] |
||||
|
||||
if __name__ == '__main__': |
||||
unittest.main() |
Loading…
Reference in new issue