third_party/utf8_range: support arm neon (#18126)

Protobuf uses utf8_range library for utf8 string validation.
Currently, only SSE implementation is integrated.
This patch adapts utf8_range Neon implementation to protobuf.

Closes #18126

COPYBARA_INTEGRATE_REVIEW=https://github.com/protocolbuffers/protobuf/pull/18126 from cyb70289:utf8-neon 5edbcc2692
PiperOrigin-RevId: 680711032
pull/18514/head
Yibo Cai 2 months ago committed by Copybara-Service
parent cd6df36de5
commit d83ad15cd1
  1. 2
      ruby/.gitignore
  2. 2
      ruby/Rakefile
  3. 8
      third_party/utf8_range/BUILD.bazel
  4. 283
      third_party/utf8_range/utf8_range.c
  5. 117
      third_party/utf8_range/utf8_range_neon.inc
  6. 273
      third_party/utf8_range/utf8_range_sse.inc

2
ruby/.gitignore vendored

@ -9,5 +9,7 @@ tmp/
tests/google/ tests/google/
ext/google/protobuf_c/third_party/utf8_range/utf8_range.h ext/google/protobuf_c/third_party/utf8_range/utf8_range.h
ext/google/protobuf_c/third_party/utf8_range/utf8_range.c ext/google/protobuf_c/third_party/utf8_range/utf8_range.c
ext/google/protobuf_c/third_party/utf8_range/utf8_range_sse.inc
ext/google/protobuf_c/third_party/utf8_range/utf8_range_neon.inc
ext/google/protobuf_c/third_party/utf8_range/LICENSE ext/google/protobuf_c/third_party/utf8_range/LICENSE
lib/google/protobuf/*_pb.rb lib/google/protobuf/*_pb.rb

@ -81,7 +81,7 @@ task :copy_third_party do
# We need utf8_range in-tree. # We need utf8_range in-tree.
utf8_root = '../third_party/utf8_range' utf8_root = '../third_party/utf8_range'
%w[ %w[
utf8_range.h utf8_range.c LICENSE utf8_range.h utf8_range.c utf8_range_sse.inc utf8_range_neon.inc LICENSE
].each do |file| ].each do |file|
FileUtils.cp File.join(utf8_root, file), FileUtils.cp File.join(utf8_root, file),
"ext/google/protobuf_c/third_party/utf8_range" "ext/google/protobuf_c/third_party/utf8_range"

@ -35,6 +35,8 @@ filegroup(
srcs = [ srcs = [
"utf8_range.c", "utf8_range.c",
"utf8_range.h", "utf8_range.h",
"utf8_range_neon.inc",
"utf8_range_sse.inc",
], ],
visibility = ["//:__subpackages__"], visibility = ["//:__subpackages__"],
) )
@ -44,7 +46,11 @@ cc_library(
srcs = [ srcs = [
"utf8_range.c", "utf8_range.c",
], ],
hdrs = ["utf8_range.h"], hdrs = [
"utf8_range.h",
"utf8_range_neon.inc",
"utf8_range_sse.inc",
],
strip_include_prefix = "/third_party/utf8_range", strip_include_prefix = "/third_party/utf8_range",
) )

@ -21,12 +21,6 @@
#include <stdint.h> #include <stdint.h>
#include <string.h> #include <string.h>
#ifdef __SSE4_1__
#include <emmintrin.h>
#include <smmintrin.h>
#include <tmmintrin.h>
#endif
#if defined(__GNUC__) #if defined(__GNUC__)
#define FORCE_INLINE_ATTR __attribute__((always_inline)) #define FORCE_INLINE_ATTR __attribute__((always_inline))
#elif defined(_MSC_VER) #elif defined(_MSC_VER)
@ -143,7 +137,7 @@ static size_t utf8_range_ValidateUTF8Naive(const char* data, const char* end,
return err_pos + (1 - return_position); return err_pos + (1 - return_position);
} }
#ifdef __SSE4_1__ #if defined(__SSE4_1__) || (defined(__ARM_NEON) && defined(__ARM_64BIT_STATE))
/* Returns the number of bytes needed to skip backwards to get to the first /* Returns the number of bytes needed to skip backwards to get to the first
byte of codepoint. byte of codepoint.
*/ */
@ -175,6 +169,12 @@ static inline const char* utf8_range_SkipAscii(const char* data,
return data; return data;
} }
#if defined(__SSE4_1__)
#include "utf8_range_sse.inc"
#elif defined(__ARM_NEON) && defined(__ARM_64BIT_STATE)
#include "utf8_range_neon.inc"
#endif
static FORCE_INLINE_ATTR inline size_t utf8_range_Validate( static FORCE_INLINE_ATTR inline size_t utf8_range_Validate(
const char* data, size_t len, int return_position) { const char* data, size_t len, int return_position) {
if (len == 0) return 1 - return_position; if (len == 0) return 1 - return_position;
@ -187,274 +187,11 @@ static FORCE_INLINE_ATTR inline size_t utf8_range_Validate(
return (return_position ? (data - (end - len)) : 0) + return (return_position ? (data - (end - len)) : 0) +
utf8_range_ValidateUTF8Naive(data, end, return_position); utf8_range_ValidateUTF8Naive(data, end, return_position);
} }
#ifndef __SSE4_1__ #if defined(__SSE4_1__) || (defined(__ARM_NEON) && defined(__ARM_64BIT_STATE))
return utf8_range_ValidateUTF8Simd(data, end, return_position);
#else
return (return_position ? (data - (end - len)) : 0) + return (return_position ? (data - (end - len)) : 0) +
utf8_range_ValidateUTF8Naive(data, end, return_position); utf8_range_ValidateUTF8Naive(data, end, return_position);
#else
/* This code checks that utf-8 ranges are structurally valid 16 bytes at once
* using superscalar instructions.
* The mapping between ranges of codepoint and their corresponding utf-8
* sequences is below.
*/
/*
* U+0000...U+007F 00...7F
* U+0080...U+07FF C2...DF 80...BF
* U+0800...U+0FFF E0 A0...BF 80...BF
* U+1000...U+CFFF E1...EC 80...BF 80...BF
* U+D000...U+D7FF ED 80...9F 80...BF
* U+E000...U+FFFF EE...EF 80...BF 80...BF
* U+10000...U+3FFFF F0 90...BF 80...BF 80...BF
* U+40000...U+FFFFF F1...F3 80...BF 80...BF 80...BF
* U+100000...U+10FFFF F4 80...8F 80...BF 80...BF
*/
/* First we compute the type for each byte, as given by the table below.
* This type will be used as an index later on.
*/
/*
* Index Min Max Byte Type
* 0 00 7F Single byte sequence
* 1,2,3 80 BF Second, third and fourth byte for many of the sequences.
* 4 A0 BF Second byte after E0
* 5 80 9F Second byte after ED
* 6 90 BF Second byte after F0
* 7 80 8F Second byte after F4
* 8 C2 F4 First non ASCII byte
* 9..15 7F 80 Invalid byte
*/
/* After the first step we compute the index for all bytes, then we permute
the bytes according to their indices to check the ranges from the range
table.
* The range for a given type can be found in the range_min_table and
range_max_table, the range for type/index X is in range_min_table[X] ...
range_max_table[X].
*/
/* Algorithm:
* Put index zero to all bytes.
* Find all non ASCII characters, give them index 8.
* For each tail byte in a codepoint sequence, give it an index corresponding
to the 1 based index from the end.
* If the first byte of the codepoint is in the [C0...DF] range, we write
index 1 in the following byte.
* If the first byte of the codepoint is in the range [E0...EF], we write
indices 2 and 1 in the next two bytes.
* If the first byte of the codepoint is in the range [F0...FF] we write
indices 3,2,1 into the next three bytes.
* For finding the number of bytes we need to look at high nibbles (4 bits)
and do the lookup from the table, it can be done with shift by 4 + shuffle
instructions. We call it `first_len`.
* Then we shift first_len by 8 bits to get the indices of the 2nd bytes.
* Saturating sub 1 and shift by 8 bits to get the indices of the 3rd bytes.
* Again to get the indices of the 4th bytes.
* Take OR of all that 4 values and check within range.
*/
/* For example:
* input C3 80 68 E2 80 20 A6 F0 A0 80 AC 20 F0 93 80 80
* first_len 1 0 0 2 0 0 0 3 0 0 0 0 3 0 0 0
* 1st byte 8 0 0 8 0 0 0 8 0 0 0 0 8 0 0 0
* 2nd byte 0 1 0 0 2 0 0 0 3 0 0 0 0 3 0 0 // Shift + sub
* 3rd byte 0 0 0 0 0 1 0 0 0 2 0 0 0 0 2 0 // Shift + sub
* 4th byte 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 // Shift + sub
* Index 8 1 0 8 2 1 0 8 3 2 1 0 8 3 2 1 // OR of results
*/
/* Checking for errors:
* Error checking is done by looking up the high nibble (4 bits) of each byte
against an error checking table.
* Because the lookup value for the second byte depends of the value of the
first byte in codepoint, we use saturated operations to adjust the index.
* Specifically we need to add 2 for E0, 3 for ED, 3 for F0 and 4 for F4 to
match the correct index.
* If we subtract from all bytes EF then EO -> 241, ED -> 254, F0 -> 1,
F4 -> 5
* Do saturating sub 240, then E0 -> 1, ED -> 14 and we can do lookup to
match the adjustment
* Add saturating 112, then F0 -> 113, F4 -> 117, all that were > 16 will
be more 128 and lookup in ef_fe_table will return 0 but for F0
and F4 it will be 4 and 5 accordingly
*/
/*
* Then just check the appropriate ranges with greater/smaller equal
instructions. Check tail with a naive algorithm.
* To save from previous 16 byte checks we just align previous_first_len to
get correct continuations of the codepoints.
*/
/*
* Map high nibble of "First Byte" to legal character length minus 1
* 0x00 ~ 0xBF --> 0
* 0xC0 ~ 0xDF --> 1
* 0xE0 ~ 0xEF --> 2
* 0xF0 ~ 0xFF --> 3
*/
const __m128i first_len_table =
_mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3);
/* Map "First Byte" to 8-th item of range table (0xC2 ~ 0xF4) */
const __m128i first_range_table =
_mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8);
/*
* Range table, map range index to min and max values
*/
const __m128i range_min_table =
_mm_setr_epi8(0x00, 0x80, 0x80, 0x80, 0xA0, 0x80, 0x90, 0x80, 0xC2, 0x7F,
0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F);
const __m128i range_max_table =
_mm_setr_epi8(0x7F, 0xBF, 0xBF, 0xBF, 0xBF, 0x9F, 0xBF, 0x8F, 0xF4, 0x80,
0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
/*
* Tables for fast handling of four special First Bytes(E0,ED,F0,F4), after
* which the Second Byte are not 80~BF. It contains "range index adjustment".
* +------------+---------------+------------------+----------------+
* | First Byte | original range| range adjustment | adjusted range |
* +------------+---------------+------------------+----------------+
* | E0 | 2 | 2 | 4 |
* +------------+---------------+------------------+----------------+
* | ED | 2 | 3 | 5 |
* +------------+---------------+------------------+----------------+
* | F0 | 3 | 3 | 6 |
* +------------+---------------+------------------+----------------+
* | F4 | 4 | 4 | 8 |
* +------------+---------------+------------------+----------------+
*/
/* df_ee_table[1] -> E0, df_ee_table[14] -> ED as ED - E0 = 13 */
// The values represent the adjustment in the Range Index table for a correct
// index.
const __m128i df_ee_table =
_mm_setr_epi8(0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0);
/* ef_fe_table[1] -> F0, ef_fe_table[5] -> F4, F4 - F0 = 4 */
// The values represent the adjustment in the Range Index table for a correct
// index.
const __m128i ef_fe_table =
_mm_setr_epi8(0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
__m128i prev_input = _mm_set1_epi8(0);
__m128i prev_first_len = _mm_set1_epi8(0);
__m128i error = _mm_set1_epi8(0);
while (end - data >= 16) {
const __m128i input =
_mm_loadu_si128((const __m128i*)(data));
/* high_nibbles = input >> 4 */
const __m128i high_nibbles =
_mm_and_si128(_mm_srli_epi16(input, 4), _mm_set1_epi8(0x0F));
/* first_len = legal character length minus 1 */
/* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */
/* first_len = first_len_table[high_nibbles] */
__m128i first_len = _mm_shuffle_epi8(first_len_table, high_nibbles);
/* First Byte: set range index to 8 for bytes within 0xC0 ~ 0xFF */
/* range = first_range_table[high_nibbles] */
__m128i range = _mm_shuffle_epi8(first_range_table, high_nibbles);
/* Second Byte: set range index to first_len */
/* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */
/* range |= (first_len, prev_first_len) << 1 byte */
range = _mm_or_si128(range, _mm_alignr_epi8(first_len, prev_first_len, 15));
/* Third Byte: set range index to saturate_sub(first_len, 1) */
/* 0 for 00~7F, 0 for C0~DF, 1 for E0~EF, 2 for F0~FF */
__m128i tmp1;
__m128i tmp2;
/* tmp1 = saturate_sub(first_len, 1) */
tmp1 = _mm_subs_epu8(first_len, _mm_set1_epi8(1));
/* tmp2 = saturate_sub(prev_first_len, 1) */
tmp2 = _mm_subs_epu8(prev_first_len, _mm_set1_epi8(1));
/* range |= (tmp1, tmp2) << 2 bytes */
range = _mm_or_si128(range, _mm_alignr_epi8(tmp1, tmp2, 14));
/* Fourth Byte: set range index to saturate_sub(first_len, 2) */
/* 0 for 00~7F, 0 for C0~DF, 0 for E0~EF, 1 for F0~FF */
/* tmp1 = saturate_sub(first_len, 2) */
tmp1 = _mm_subs_epu8(first_len, _mm_set1_epi8(2));
/* tmp2 = saturate_sub(prev_first_len, 2) */
tmp2 = _mm_subs_epu8(prev_first_len, _mm_set1_epi8(2));
/* range |= (tmp1, tmp2) << 3 bytes */
range = _mm_or_si128(range, _mm_alignr_epi8(tmp1, tmp2, 13));
/*
* Now we have below range indices calculated
* Correct cases:
* - 8 for C0~FF
* - 3 for 1st byte after F0~FF
* - 2 for 1st byte after E0~EF or 2nd byte after F0~FF
* - 1 for 1st byte after C0~DF or 2nd byte after E0~EF or
* 3rd byte after F0~FF
* - 0 for others
* Error cases:
* >9 for non ascii First Byte overlapping
* E.g., F1 80 C2 90 --> 8 3 10 2, where 10 indicates error
*/
/* Adjust Second Byte range for special First Bytes(E0,ED,F0,F4) */
/* Overlaps lead to index 9~15, which are illegal in range table */
__m128i shift1;
__m128i pos;
__m128i range2;
/* shift1 = (input, prev_input) << 1 byte */
shift1 = _mm_alignr_epi8(input, prev_input, 15);
pos = _mm_sub_epi8(shift1, _mm_set1_epi8(0xEF));
/*
* shift1: | EF F0 ... FE | FF 00 ... ... DE | DF E0 ... EE |
* pos: | 0 1 15 | 16 17 239| 240 241 255|
* pos-240: | 0 0 0 | 0 0 0 | 0 1 15 |
* pos+112: | 112 113 127| >= 128 | >= 128 |
*/
tmp1 = _mm_subs_epu8(pos, _mm_set1_epi8(-16));
range2 = _mm_shuffle_epi8(df_ee_table, tmp1);
tmp2 = _mm_adds_epu8(pos, _mm_set1_epi8(112));
range2 = _mm_add_epi8(range2, _mm_shuffle_epi8(ef_fe_table, tmp2));
range = _mm_add_epi8(range, range2);
/* Load min and max values per calculated range index */
__m128i min_range = _mm_shuffle_epi8(range_min_table, range);
__m128i max_range = _mm_shuffle_epi8(range_max_table, range);
/* Check value range */
if (return_position) {
error = _mm_cmplt_epi8(input, min_range);
error = _mm_or_si128(error, _mm_cmpgt_epi8(input, max_range));
/* 5% performance drop from this conditional branch */
if (!_mm_testz_si128(error, error)) {
break;
}
} else {
error = _mm_or_si128(error, _mm_cmplt_epi8(input, min_range));
error = _mm_or_si128(error, _mm_cmpgt_epi8(input, max_range));
}
prev_input = input;
prev_first_len = first_len;
data += 16;
}
/* If we got to the end, we don't need to skip any bytes backwards */
if (return_position && (data - (end - len)) == 0) {
return utf8_range_ValidateUTF8Naive(data, end, return_position);
}
/* Find previous codepoint (not 80~BF) */
data -= utf8_range_CodepointSkipBackwards(_mm_extract_epi32(prev_input, 3));
if (return_position) {
return (data - (end - len)) +
utf8_range_ValidateUTF8Naive(data, end, return_position);
}
/* Test if there was any error */
if (!_mm_testz_si128(error, error)) {
return 0;
}
/* Check the tail */
return utf8_range_ValidateUTF8Naive(data, end, return_position);
#endif #endif
} }

@ -0,0 +1,117 @@
#include <arm_neon.h>
/* This code is almost the same as SSE implementation, please reference
* utf8-range-sse.inc for detailed explanation.
* The only difference is the range adjustment step. NEON code is more
* straightforward.
*/
static FORCE_INLINE_ATTR inline size_t utf8_range_ValidateUTF8Simd(
const char* data, const char* end, int return_position) {
const uint8x16_t first_len_tbl = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3,
};
const uint8x16_t first_range_tbl = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8,
};
const uint8x16_t range_min_tbl = {
0x00, 0x80, 0x80, 0x80, 0xA0, 0x80, 0x90, 0x80,
0xC2, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
};
const uint8x16_t range_max_tbl = {
0x7F, 0xBF, 0xBF, 0xBF, 0xBF, 0x9F, 0xBF, 0x8F,
0xF4, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
/* Range adjustment in NEON uint8x16x2 table. Note that lanes are interleaved
* in register. The table below is plotted vertically to ease understanding.
* The 1st column is for E0~EF, 2nd column for F0~FF.
*/
// clang-format off
const uint8_t range_adjust_tbl_data[] = {
/* index -> 0~15 16~31 <- index */
/* E0 -> */ 2, 3, /* <- F0 */
0, 0,
0, 0,
0, 0,
0, 4, /* <- F4 */
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
/* ED -> */ 3, 0,
0, 0,
0, 0,
};
// clang-format on
const uint8x16x2_t range_adjust_tbl = vld2q_u8(range_adjust_tbl_data);
const uint8x16_t const_1 = vdupq_n_u8(1);
const uint8x16_t const_2 = vdupq_n_u8(2);
const uint8x16_t const_e0 = vdupq_n_u8(0xE0);
uint8x16_t prev_input = vdupq_n_u8(0);
uint8x16_t prev_first_len = vdupq_n_u8(0);
uint8x16_t error = vdupq_n_u8(0);
const char* const data_original = data;
while (end - data >= 16) {
const uint8x16_t input = vld1q_u8((const uint8_t*)data);
const uint8x16_t high_nibbles = vshrq_n_u8(input, 4);
const uint8x16_t first_len = vqtbl1q_u8(first_len_tbl, high_nibbles);
uint8x16_t range = vqtbl1q_u8(first_range_tbl, high_nibbles);
range = vorrq_u8(range, vextq_u8(prev_first_len, first_len, 15));
uint8x16_t shift2 = vextq_u8(prev_first_len, first_len, 14);
shift2 = vqsubq_u8(shift2, const_1);
range = vorrq_u8(range, shift2);
uint8x16_t shift3 = vextq_u8(prev_first_len, first_len, 13);
shift3 = vqsubq_u8(shift3, const_2);
range = vorrq_u8(range, shift3);
uint8x16_t shift1 = vextq_u8(prev_input, input, 15);
shift1 = vsubq_u8(shift1, const_e0);
range = vaddq_u8(range, vqtbl2q_u8(range_adjust_tbl, shift1));
const uint8x16_t min_range = vqtbl1q_u8(range_min_tbl, range);
const uint8x16_t max_range = vqtbl1q_u8(range_max_tbl, range);
if (return_position) {
error = vcltq_u8(input, min_range);
error = vorrq_u8(error, vcgtq_u8(input, max_range));
if (vmaxvq_u32(vreinterpretq_u32_u8(error))) {
break;
}
} else {
error = vorrq_u8(error, vcltq_u8(input, min_range));
error = vorrq_u8(error, vcgtq_u8(input, max_range));
}
prev_input = input;
prev_first_len = first_len;
data += 16;
}
if (return_position && data == data_original) {
return utf8_range_ValidateUTF8Naive(data, end, return_position);
}
const int32_t prev = vgetq_lane_s32(vreinterpretq_s32_u8(prev_input), 3);
data -= utf8_range_CodepointSkipBackwards(prev);
if (return_position) {
return (data - data_original) +
utf8_range_ValidateUTF8Naive(data, end, return_position);
}
if (vmaxvq_u32(vreinterpretq_u32_u8(error))) {
return 0;
}
return utf8_range_ValidateUTF8Naive(data, end, return_position);
}

@ -0,0 +1,273 @@
#include <emmintrin.h>
#include <smmintrin.h>
#include <tmmintrin.h>
static FORCE_INLINE_ATTR inline size_t utf8_range_ValidateUTF8Simd(
const char* data, const char* end, int return_position) {
/* This code checks that utf-8 ranges are structurally valid 16 bytes at once
* using superscalar instructions.
* The mapping between ranges of codepoint and their corresponding utf-8
* sequences is below.
*/
/*
* U+0000...U+007F 00...7F
* U+0080...U+07FF C2...DF 80...BF
* U+0800...U+0FFF E0 A0...BF 80...BF
* U+1000...U+CFFF E1...EC 80...BF 80...BF
* U+D000...U+D7FF ED 80...9F 80...BF
* U+E000...U+FFFF EE...EF 80...BF 80...BF
* U+10000...U+3FFFF F0 90...BF 80...BF 80...BF
* U+40000...U+FFFFF F1...F3 80...BF 80...BF 80...BF
* U+100000...U+10FFFF F4 80...8F 80...BF 80...BF
*/
/* First we compute the type for each byte, as given by the table below.
* This type will be used as an index later on.
*/
/*
* Index Min Max Byte Type
* 0 00 7F Single byte sequence
* 1,2,3 80 BF Second, third and fourth byte for many of the sequences.
* 4 A0 BF Second byte after E0
* 5 80 9F Second byte after ED
* 6 90 BF Second byte after F0
* 7 80 8F Second byte after F4
* 8 C2 F4 First non ASCII byte
* 9..15 7F 80 Invalid byte
*/
/* After the first step we compute the index for all bytes, then we permute
the bytes according to their indices to check the ranges from the range
table.
* The range for a given type can be found in the range_min_table and
range_max_table, the range for type/index X is in range_min_table[X] ...
range_max_table[X].
*/
/* Algorithm:
* Put index zero to all bytes.
* Find all non ASCII characters, give them index 8.
* For each tail byte in a codepoint sequence, give it an index corresponding
to the 1 based index from the end.
* If the first byte of the codepoint is in the [C0...DF] range, we write
index 1 in the following byte.
* If the first byte of the codepoint is in the range [E0...EF], we write
indices 2 and 1 in the next two bytes.
* If the first byte of the codepoint is in the range [F0...FF] we write
indices 3,2,1 into the next three bytes.
* For finding the number of bytes we need to look at high nibbles (4 bits)
and do the lookup from the table, it can be done with shift by 4 + shuffle
instructions. We call it `first_len`.
* Then we shift first_len by 8 bits to get the indices of the 2nd bytes.
* Saturating sub 1 and shift by 8 bits to get the indices of the 3rd bytes.
* Again to get the indices of the 4th bytes.
* Take OR of all that 4 values and check within range.
*/
/* For example:
* input C3 80 68 E2 80 20 A6 F0 A0 80 AC 20 F0 93 80 80
* first_len 1 0 0 2 0 0 0 3 0 0 0 0 3 0 0 0
* 1st byte 8 0 0 8 0 0 0 8 0 0 0 0 8 0 0 0
* 2nd byte 0 1 0 0 2 0 0 0 3 0 0 0 0 3 0 0 // Shift + sub
* 3rd byte 0 0 0 0 0 1 0 0 0 2 0 0 0 0 2 0 // Shift + sub
* 4th byte 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 // Shift + sub
* Index 8 1 0 8 2 1 0 8 3 2 1 0 8 3 2 1 // OR of results
*/
/* Checking for errors:
* Error checking is done by looking up the high nibble (4 bits) of each byte
against an error checking table.
* Because the lookup value for the second byte depends of the value of the
first byte in codepoint, we use saturated operations to adjust the index.
* Specifically we need to add 2 for E0, 3 for ED, 3 for F0 and 4 for F4 to
match the correct index.
* If we subtract from all bytes EF then EO -> 241, ED -> 254, F0 -> 1,
F4 -> 5
* Do saturating sub 240, then E0 -> 1, ED -> 14 and we can do lookup to
match the adjustment
* Add saturating 112, then F0 -> 113, F4 -> 117, all that were > 16 will
be more 128 and lookup in ef_fe_table will return 0 but for F0
and F4 it will be 4 and 5 accordingly
*/
/*
* Then just check the appropriate ranges with greater/smaller equal
instructions. Check tail with a naive algorithm.
* To save from previous 16 byte checks we just align previous_first_len to
get correct continuations of the codepoints.
*/
/*
* Map high nibble of "First Byte" to legal character length minus 1
* 0x00 ~ 0xBF --> 0
* 0xC0 ~ 0xDF --> 1
* 0xE0 ~ 0xEF --> 2
* 0xF0 ~ 0xFF --> 3
*/
const __m128i first_len_table =
_mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3);
/* Map "First Byte" to 8-th item of range table (0xC2 ~ 0xF4) */
const __m128i first_range_table =
_mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8);
/*
* Range table, map range index to min and max values
*/
const __m128i range_min_table =
_mm_setr_epi8(0x00, 0x80, 0x80, 0x80, 0xA0, 0x80, 0x90, 0x80, 0xC2, 0x7F,
0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F);
const __m128i range_max_table =
_mm_setr_epi8(0x7F, 0xBF, 0xBF, 0xBF, 0xBF, 0x9F, 0xBF, 0x8F, 0xF4, 0x80,
0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
/*
* Tables for fast handling of four special First Bytes(E0,ED,F0,F4), after
* which the Second Byte are not 80~BF. It contains "range index adjustment".
* +------------+---------------+------------------+----------------+
* | First Byte | original range| range adjustment | adjusted range |
* +------------+---------------+------------------+----------------+
* | E0 | 2 | 2 | 4 |
* +------------+---------------+------------------+----------------+
* | ED | 2 | 3 | 5 |
* +------------+---------------+------------------+----------------+
* | F0 | 3 | 3 | 6 |
* +------------+---------------+------------------+----------------+
* | F4 | 4 | 4 | 8 |
* +------------+---------------+------------------+----------------+
*/
/* df_ee_table[1] -> E0, df_ee_table[14] -> ED as ED - E0 = 13 */
// The values represent the adjustment in the Range Index table for a correct
// index.
const __m128i df_ee_table =
_mm_setr_epi8(0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0);
/* ef_fe_table[1] -> F0, ef_fe_table[5] -> F4, F4 - F0 = 4 */
// The values represent the adjustment in the Range Index table for a correct
// index.
const __m128i ef_fe_table =
_mm_setr_epi8(0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
__m128i prev_input = _mm_set1_epi8(0);
__m128i prev_first_len = _mm_set1_epi8(0);
__m128i error = _mm_set1_epi8(0);
// Save buffer start address for later use
const char* const data_original = data;
while (end - data >= 16) {
const __m128i input = _mm_loadu_si128((const __m128i*)(data));
/* high_nibbles = input >> 4 */
const __m128i high_nibbles =
_mm_and_si128(_mm_srli_epi16(input, 4), _mm_set1_epi8(0x0F));
/* first_len = legal character length minus 1 */
/* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */
/* first_len = first_len_table[high_nibbles] */
__m128i first_len = _mm_shuffle_epi8(first_len_table, high_nibbles);
/* First Byte: set range index to 8 for bytes within 0xC0 ~ 0xFF */
/* range = first_range_table[high_nibbles] */
__m128i range = _mm_shuffle_epi8(first_range_table, high_nibbles);
/* Second Byte: set range index to first_len */
/* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */
/* range |= (first_len, prev_first_len) << 1 byte */
range = _mm_or_si128(range, _mm_alignr_epi8(first_len, prev_first_len, 15));
/* Third Byte: set range index to saturate_sub(first_len, 1) */
/* 0 for 00~7F, 0 for C0~DF, 1 for E0~EF, 2 for F0~FF */
__m128i tmp1;
__m128i tmp2;
/* tmp1 = saturate_sub(first_len, 1) */
tmp1 = _mm_subs_epu8(first_len, _mm_set1_epi8(1));
/* tmp2 = saturate_sub(prev_first_len, 1) */
tmp2 = _mm_subs_epu8(prev_first_len, _mm_set1_epi8(1));
/* range |= (tmp1, tmp2) << 2 bytes */
range = _mm_or_si128(range, _mm_alignr_epi8(tmp1, tmp2, 14));
/* Fourth Byte: set range index to saturate_sub(first_len, 2) */
/* 0 for 00~7F, 0 for C0~DF, 0 for E0~EF, 1 for F0~FF */
/* tmp1 = saturate_sub(first_len, 2) */
tmp1 = _mm_subs_epu8(first_len, _mm_set1_epi8(2));
/* tmp2 = saturate_sub(prev_first_len, 2) */
tmp2 = _mm_subs_epu8(prev_first_len, _mm_set1_epi8(2));
/* range |= (tmp1, tmp2) << 3 bytes */
range = _mm_or_si128(range, _mm_alignr_epi8(tmp1, tmp2, 13));
/*
* Now we have below range indices calculated
* Correct cases:
* - 8 for C0~FF
* - 3 for 1st byte after F0~FF
* - 2 for 1st byte after E0~EF or 2nd byte after F0~FF
* - 1 for 1st byte after C0~DF or 2nd byte after E0~EF or
* 3rd byte after F0~FF
* - 0 for others
* Error cases:
* >9 for non ascii First Byte overlapping
* E.g., F1 80 C2 90 --> 8 3 10 2, where 10 indicates error
*/
/* Adjust Second Byte range for special First Bytes(E0,ED,F0,F4) */
/* Overlaps lead to index 9~15, which are illegal in range table */
__m128i shift1;
__m128i pos;
__m128i range2;
/* shift1 = (input, prev_input) << 1 byte */
shift1 = _mm_alignr_epi8(input, prev_input, 15);
pos = _mm_sub_epi8(shift1, _mm_set1_epi8(0xEF));
/*
* shift1: | EF F0 ... FE | FF 00 ... ... DE | DF E0 ... EE |
* pos: | 0 1 15 | 16 17 239| 240 241 255|
* pos-240: | 0 0 0 | 0 0 0 | 0 1 15 |
* pos+112: | 112 113 127| >= 128 | >= 128 |
*/
tmp1 = _mm_subs_epu8(pos, _mm_set1_epi8(-16));
range2 = _mm_shuffle_epi8(df_ee_table, tmp1);
tmp2 = _mm_adds_epu8(pos, _mm_set1_epi8(112));
range2 = _mm_add_epi8(range2, _mm_shuffle_epi8(ef_fe_table, tmp2));
range = _mm_add_epi8(range, range2);
/* Load min and max values per calculated range index */
__m128i min_range = _mm_shuffle_epi8(range_min_table, range);
__m128i max_range = _mm_shuffle_epi8(range_max_table, range);
/* Check value range */
if (return_position) {
error = _mm_cmplt_epi8(input, min_range);
error = _mm_or_si128(error, _mm_cmpgt_epi8(input, max_range));
/* 5% performance drop from this conditional branch */
if (!_mm_testz_si128(error, error)) {
break;
}
} else {
error = _mm_or_si128(error, _mm_cmplt_epi8(input, min_range));
error = _mm_or_si128(error, _mm_cmpgt_epi8(input, max_range));
}
prev_input = input;
prev_first_len = first_len;
data += 16;
}
/* If we got to the end, we don't need to skip any bytes backwards */
if (return_position && data == data_original) {
return utf8_range_ValidateUTF8Naive(data, end, return_position);
}
/* Find previous codepoint (not 80~BF) */
data -= utf8_range_CodepointSkipBackwards(_mm_extract_epi32(prev_input, 3));
if (return_position) {
return (data - data_original) +
utf8_range_ValidateUTF8Naive(data, end, return_position);
}
/* Test if there was any error */
if (!_mm_testz_si128(error, error)) {
return 0;
}
/* Check the tail */
return utf8_range_ValidateUTF8Naive(data, end, return_position);
}
Loading…
Cancel
Save