Merge pull request #76 from haberman/movesymtab

Moved upb_symtab to def.h/def.c.
pull/13171/head
Joshua Haberman 8 years ago committed by GitHub
commit 9a9a1097a7
  1. 1
      Makefile
  2. 1
      upb/bindings/lua/upb.h
  3. 1
      upb/bindings/lua/upb/table.c
  4. 490
      upb/def.c
  5. 173
      upb/def.h
  6. 1
      upb/msg.h
  7. 2
      upb/pb/glue.h
  8. 495
      upb/symtab.c
  9. 195
      upb/symtab.h

@ -153,7 +153,6 @@ upb_SRCS = \
upb/msg.c \ upb/msg.c \
upb/refcounted.c \ upb/refcounted.c \
upb/sink.c \ upb/sink.c \
upb/symtab.c \
upb/table.c \ upb/table.c \
upb/upb.c \ upb/upb.c \

@ -9,7 +9,6 @@
#include "upb/def.h" #include "upb/def.h"
#include "upb/handlers.h" #include "upb/handlers.h"
#include "upb/msg.h" #include "upb/msg.h"
#include "upb/symtab.h"
/* Lua 5.1/5.2 compatibility code. */ /* Lua 5.1/5.2 compatibility code. */
#if LUA_VERSION_NUM == 501 #if LUA_VERSION_NUM == 501

@ -22,7 +22,6 @@
#include "upb/bindings/lua/upb.h" #include "upb/bindings/lua/upb.h"
#include "upb/def.h" #include "upb/def.h"
#include "upb/structdefs.int.h" #include "upb/structdefs.int.h"
#include "upb/symtab.h"
#include "upb/table.int.h" #include "upb/table.int.h"
static void lupbtable_setnum(lua_State *L, int tab, const char *key, static void lupbtable_setnum(lua_State *L, int tab, const char *key,

@ -2141,3 +2141,493 @@ bool upb_filedef_adddep(upb_filedef *f, const upb_filedef *dep) {
return false; return false;
} }
} }
static void upb_symtab_free(upb_refcounted *r) {
upb_symtab *s = (upb_symtab*)r;
upb_strtable_iter i;
upb_strtable_begin(&i, &s->symtab);
for (; !upb_strtable_done(&i); upb_strtable_next(&i)) {
const upb_def *def = upb_value_getptr(upb_strtable_iter_value(&i));
upb_def_unref(def, s);
}
upb_strtable_uninit(&s->symtab);
upb_gfree(s);
}
upb_symtab *upb_symtab_new(const void *owner) {
static const struct upb_refcounted_vtbl vtbl = {NULL, &upb_symtab_free};
upb_symtab *s = upb_gmalloc(sizeof(*s));
if (!s) {
return NULL;
}
upb_refcounted_init(upb_symtab_upcast_mutable(s), &vtbl, owner);
upb_strtable_init(&s->symtab, UPB_CTYPE_PTR);
return s;
}
void upb_symtab_freeze(upb_symtab *s) {
upb_refcounted *r;
bool ok;
UPB_ASSERT(!upb_symtab_isfrozen(s));
r = upb_symtab_upcast_mutable(s);
/* The symtab does not take ref2's (see refcounted.h) on the defs, because
* defs cannot refer back to the table and therefore cannot create cycles. So
* 0 will suffice for maxdepth here. */
ok = upb_refcounted_freeze(&r, 1, NULL, 0);
UPB_ASSERT(ok);
}
const upb_def *upb_symtab_lookup(const upb_symtab *s, const char *sym) {
upb_value v;
upb_def *ret = upb_strtable_lookup(&s->symtab, sym, &v) ?
upb_value_getptr(v) : NULL;
return ret;
}
const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym) {
upb_value v;
upb_def *def = upb_strtable_lookup(&s->symtab, sym, &v) ?
upb_value_getptr(v) : NULL;
return def ? upb_dyncast_msgdef(def) : NULL;
}
const upb_enumdef *upb_symtab_lookupenum(const upb_symtab *s, const char *sym) {
upb_value v;
upb_def *def = upb_strtable_lookup(&s->symtab, sym, &v) ?
upb_value_getptr(v) : NULL;
return def ? upb_dyncast_enumdef(def) : NULL;
}
/* Given a symbol and the base symbol inside which it is defined, find the
* symbol's definition in t. */
static upb_def *upb_resolvename(const upb_strtable *t,
const char *base, const char *sym) {
if(strlen(sym) == 0) return NULL;
if(sym[0] == '.') {
/* Symbols starting with '.' are absolute, so we do a single lookup.
* Slice to omit the leading '.' */
upb_value v;
return upb_strtable_lookup(t, sym + 1, &v) ? upb_value_getptr(v) : NULL;
} else {
/* Remove components from base until we find an entry or run out.
* TODO: This branch is totally broken, but currently not used. */
(void)base;
UPB_ASSERT(false);
return NULL;
}
}
const upb_def *upb_symtab_resolve(const upb_symtab *s, const char *base,
const char *sym) {
upb_def *ret = upb_resolvename(&s->symtab, base, sym);
return ret;
}
/* Starts a depth-first traversal at "def", recursing into any subdefs
* (ie. submessage types). Adds duplicates of existing defs to addtab
* wherever necessary, so that the resulting symtab will be consistent once
* addtab is added.
*
* More specifically, if any def D is found in the DFS that:
*
* 1. can reach a def that is being replaced by something in addtab, AND
*
* 2. is not itself being replaced already (ie. this name doesn't already
* exist in addtab)
*
* ...then a duplicate (new copy) of D will be added to addtab.
*
* Returns true if this happened for any def reachable from "def."
*
* It is slightly tricky to do this correctly in the presence of cycles. If we
* detect that our DFS has hit a cycle, we might not yet know if any SCCs on
* our stack can reach a def in addtab or not. Once we figure this out, that
* answer needs to apply to *all* defs in these SCCs, even if we visited them
* already. So a straight up one-pass cycle-detecting DFS won't work.
*
* To work around this problem, we traverse each SCC (which we already
* computed, since these defs are frozen) as a single node. We first compute
* whether the SCC as a whole can reach any def in addtab, then we dup (or not)
* the entire SCC. This requires breaking the encapsulation of upb_refcounted,
* since that is where we get the data about what SCC we are in. */
static bool upb_resolve_dfs(const upb_def *def, upb_strtable *addtab,
const void *new_owner, upb_inttable *seen,
upb_status *s) {
upb_value v;
bool need_dup;
const upb_def *base;
const void* memoize_key;
/* Memoize results of this function for efficiency (since we're traversing a
* DAG this is not needed to limit the depth of the search).
*
* We memoize by SCC instead of by individual def. */
memoize_key = def->base.group;
if (upb_inttable_lookupptr(seen, memoize_key, &v))
return upb_value_getbool(v);
/* Visit submessages for all messages in the SCC. */
need_dup = false;
base = def;
do {
upb_value v;
const upb_msgdef *m;
UPB_ASSERT(upb_def_isfrozen(def));
if (def->type == UPB_DEF_FIELD) continue;
if (upb_strtable_lookup(addtab, upb_def_fullname(def), &v)) {
need_dup = true;
}
/* For messages, continue the recursion by visiting all subdefs, but only
* ones in different SCCs. */
m = upb_dyncast_msgdef(def);
if (m) {
upb_msg_field_iter i;
for(upb_msg_field_begin(&i, m);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
upb_fielddef *f = upb_msg_iter_field(&i);
const upb_def *subdef;
if (!upb_fielddef_hassubdef(f)) continue;
subdef = upb_fielddef_subdef(f);
/* Skip subdefs in this SCC. */
if (def->base.group == subdef->base.group) continue;
/* |= to avoid short-circuit; we need its side-effects. */
need_dup |= upb_resolve_dfs(subdef, addtab, new_owner, seen, s);
if (!upb_ok(s)) return false;
}
}
} while ((def = (upb_def*)def->base.next) != base);
if (need_dup) {
/* Dup all defs in this SCC that don't already have entries in addtab. */
def = base;
do {
const char *name;
if (def->type == UPB_DEF_FIELD) continue;
name = upb_def_fullname(def);
if (!upb_strtable_lookup(addtab, name, NULL)) {
upb_def *newdef = upb_def_dup(def, new_owner);
if (!newdef) goto oom;
newdef->came_from_user = false;
if (!upb_strtable_insert(addtab, name, upb_value_ptr(newdef)))
goto oom;
}
} while ((def = (upb_def*)def->base.next) != base);
}
upb_inttable_insertptr(seen, memoize_key, upb_value_bool(need_dup));
return need_dup;
oom:
upb_status_seterrmsg(s, "out of memory");
return false;
}
/* TODO(haberman): we need a lot more testing of error conditions.
* The came_from_user stuff in particular is not tested. */
static bool symtab_add(upb_symtab *s, upb_def *const*defs, size_t n,
void *ref_donor, upb_refcounted *freeze_also,
upb_status *status) {
size_t i;
size_t add_n;
size_t freeze_n;
upb_strtable_iter iter;
upb_refcounted **add_objs = NULL;
upb_def **add_defs = NULL;
size_t add_objs_size;
upb_strtable addtab;
upb_inttable seen;
if (n == 0 && !freeze_also) {
return true;
}
UPB_ASSERT(!upb_symtab_isfrozen(s));
if (!upb_strtable_init(&addtab, UPB_CTYPE_PTR)) {
upb_status_seterrmsg(status, "out of memory");
return false;
}
/* Add new defs to our "add" set. */
for (i = 0; i < n; i++) {
upb_def *def = defs[i];
const char *fullname;
upb_fielddef *f;
if (upb_def_isfrozen(def)) {
upb_status_seterrmsg(status, "added defs must be mutable");
goto err;
}
UPB_ASSERT(!upb_def_isfrozen(def));
fullname = upb_def_fullname(def);
if (!fullname) {
upb_status_seterrmsg(
status, "Anonymous defs cannot be added to a symtab");
goto err;
}
f = upb_dyncast_fielddef_mutable(def);
if (f) {
if (!upb_fielddef_containingtypename(f)) {
upb_status_seterrmsg(status,
"Standalone fielddefs must have a containing type "
"(extendee) name set");
goto err;
}
} else {
if (upb_strtable_lookup(&addtab, fullname, NULL)) {
upb_status_seterrf(status, "Conflicting defs named '%s'", fullname);
goto err;
}
/* We need this to back out properly, because if there is a failure we
* need to donate the ref back to the caller. */
def->came_from_user = true;
upb_def_donateref(def, ref_donor, s);
if (!upb_strtable_insert(&addtab, fullname, upb_value_ptr(def)))
goto oom_err;
}
}
/* Add standalone fielddefs (ie. extensions) to the appropriate messages.
* If the appropriate message only exists in the existing symtab, duplicate
* it so we have a mutable copy we can add the fields to. */
for (i = 0; i < n; i++) {
upb_def *def = defs[i];
upb_fielddef *f = upb_dyncast_fielddef_mutable(def);
const char *msgname;
upb_value v;
upb_msgdef *m;
if (!f) continue;
msgname = upb_fielddef_containingtypename(f);
/* We validated this earlier in this function. */
UPB_ASSERT(msgname);
/* If the extendee name is absolutely qualified, move past the initial ".".
* TODO(haberman): it is not obvious what it would mean if this was not
* absolutely qualified. */
if (msgname[0] == '.') {
msgname++;
}
if (upb_strtable_lookup(&addtab, msgname, &v)) {
/* Extendee is in the set of defs the user asked us to add. */
m = upb_value_getptr(v);
} else {
/* Need to find and dup the extendee from the existing symtab. */
const upb_msgdef *frozen_m = upb_symtab_lookupmsg(s, msgname);
if (!frozen_m) {
upb_status_seterrf(status,
"Tried to extend message %s that does not exist "
"in this SymbolTable.",
msgname);
goto err;
}
m = upb_msgdef_dup(frozen_m, s);
if (!m) goto oom_err;
if (!upb_strtable_insert(&addtab, msgname, upb_value_ptr(m))) {
upb_msgdef_unref(m, s);
goto oom_err;
}
}
if (!upb_msgdef_addfield(m, f, ref_donor, status)) {
goto err;
}
}
/* Add dups of any existing def that can reach a def with the same name as
* anything in our "add" set. */
if (!upb_inttable_init(&seen, UPB_CTYPE_BOOL)) goto oom_err;
upb_strtable_begin(&iter, &s->symtab);
for (; !upb_strtable_done(&iter); upb_strtable_next(&iter)) {
upb_def *def = upb_value_getptr(upb_strtable_iter_value(&iter));
upb_resolve_dfs(def, &addtab, s, &seen, status);
if (!upb_ok(status)) goto err;
}
upb_inttable_uninit(&seen);
/* Now using the table, resolve symbolic references for subdefs. */
upb_strtable_begin(&iter, &addtab);
for (; !upb_strtable_done(&iter); upb_strtable_next(&iter)) {
const char *base;
upb_def *def = upb_value_getptr(upb_strtable_iter_value(&iter));
upb_msgdef *m = upb_dyncast_msgdef_mutable(def);
upb_msg_field_iter j;
if (!m) continue;
/* Type names are resolved relative to the message in which they appear. */
base = upb_msgdef_fullname(m);
for(upb_msg_field_begin(&j, m);
!upb_msg_field_done(&j);
upb_msg_field_next(&j)) {
upb_fielddef *f = upb_msg_iter_field(&j);
const char *name = upb_fielddef_subdefname(f);
if (name && !upb_fielddef_subdef(f)) {
/* Try the lookup in the current set of to-be-added defs first. If not
* there, try existing defs. */
upb_def *subdef = upb_resolvename(&addtab, base, name);
if (subdef == NULL) {
subdef = upb_resolvename(&s->symtab, base, name);
}
if (subdef == NULL) {
upb_status_seterrf(
status, "couldn't resolve name '%s' in message '%s'", name, base);
goto err;
} else if (!upb_fielddef_setsubdef(f, subdef, status)) {
goto err;
}
}
}
}
/* We need an array of the defs in addtab, for passing to
* upb_refcounted_freeze(). */
add_objs_size = upb_strtable_count(&addtab);
if (freeze_also) {
add_objs_size++;
}
add_defs = upb_gmalloc(sizeof(void*) * add_objs_size);
if (add_defs == NULL) goto oom_err;
upb_strtable_begin(&iter, &addtab);
for (add_n = 0; !upb_strtable_done(&iter); upb_strtable_next(&iter)) {
add_defs[add_n++] = upb_value_getptr(upb_strtable_iter_value(&iter));
}
/* Validate defs. */
if (!_upb_def_validate(add_defs, add_n, status)) {
goto err;
}
/* Cheat a little and give the array a new type.
* This is probably undefined behavior, but this code will be deleted soon. */
add_objs = (upb_refcounted**)add_defs;
freeze_n = add_n;
if (freeze_also) {
add_objs[freeze_n++] = freeze_also;
}
if (!upb_refcounted_freeze(add_objs, freeze_n, status,
UPB_MAX_MESSAGE_DEPTH * 2)) {
goto err;
}
/* This must be delayed until all errors have been detected, since error
* recovery code uses this table to cleanup defs. */
upb_strtable_uninit(&addtab);
/* TODO(haberman) we don't properly handle errors after this point (like
* OOM in upb_strtable_insert() below). */
for (i = 0; i < add_n; i++) {
upb_def *def = (upb_def*)add_objs[i];
const char *name = upb_def_fullname(def);
upb_value v;
bool success;
if (upb_strtable_remove(&s->symtab, name, &v)) {
const upb_def *def = upb_value_getptr(v);
upb_def_unref(def, s);
}
success = upb_strtable_insert(&s->symtab, name, upb_value_ptr(def));
UPB_ASSERT(success == true);
}
upb_gfree(add_defs);
return true;
oom_err:
upb_status_seterrmsg(status, "out of memory");
err: {
/* For defs the user passed in, we need to donate the refs back. For defs
* we dup'd, we need to just unref them. */
upb_strtable_begin(&iter, &addtab);
for (; !upb_strtable_done(&iter); upb_strtable_next(&iter)) {
upb_def *def = upb_value_getptr(upb_strtable_iter_value(&iter));
bool came_from_user = def->came_from_user;
def->came_from_user = false;
if (came_from_user) {
upb_def_donateref(def, s, ref_donor);
} else {
upb_def_unref(def, s);
}
}
}
upb_strtable_uninit(&addtab);
upb_gfree(add_defs);
UPB_ASSERT(!upb_ok(status));
return false;
}
bool upb_symtab_add(upb_symtab *s, upb_def *const*defs, size_t n,
void *ref_donor, upb_status *status) {
return symtab_add(s, defs, n, ref_donor, NULL, status);
}
bool upb_symtab_addfile(upb_symtab *s, upb_filedef *file, upb_status *status) {
size_t n;
size_t i;
upb_def **defs;
bool ret;
n = upb_filedef_defcount(file);
defs = upb_gmalloc(sizeof(*defs) * n);
if (defs == NULL) {
upb_status_seterrmsg(status, "Out of memory");
return false;
}
for (i = 0; i < n; i++) {
defs[i] = upb_filedef_mutabledef(file, i);
}
ret = symtab_add(s, defs, n, NULL, upb_filedef_upcast_mutable(file), status);
upb_gfree(defs);
return ret;
}
/* Iteration. */
static void advance_to_matching(upb_symtab_iter *iter) {
if (iter->type == UPB_DEF_ANY)
return;
while (!upb_strtable_done(&iter->iter) &&
iter->type != upb_symtab_iter_def(iter)->type) {
upb_strtable_next(&iter->iter);
}
}
void upb_symtab_begin(upb_symtab_iter *iter, const upb_symtab *s,
upb_deftype_t type) {
upb_strtable_begin(&iter->iter, &s->symtab);
iter->type = type;
advance_to_matching(iter);
}
void upb_symtab_next(upb_symtab_iter *iter) {
upb_strtable_next(&iter->iter);
advance_to_matching(iter);
}
bool upb_symtab_done(const upb_symtab_iter *iter) {
return upb_strtable_done(&iter->iter);
}
const upb_def *upb_symtab_iter_def(const upb_symtab_iter *iter) {
return upb_value_getptr(upb_strtable_iter_value(&iter->iter));
}

@ -35,6 +35,7 @@ class FieldDef;
class FileDef; class FileDef;
class MessageDef; class MessageDef;
class OneofDef; class OneofDef;
class SymbolTable;
} }
#endif #endif
@ -43,6 +44,9 @@ UPB_DECLARE_DERIVED_TYPE(upb::OneofDef, upb::RefCounted, upb_oneofdef,
upb_refcounted) upb_refcounted)
UPB_DECLARE_DERIVED_TYPE(upb::FileDef, upb::RefCounted, upb_filedef, UPB_DECLARE_DERIVED_TYPE(upb::FileDef, upb::RefCounted, upb_filedef,
upb_refcounted) upb_refcounted)
UPB_DECLARE_DERIVED_TYPE(upb::SymbolTable, upb::RefCounted,
upb_symtab, upb_refcounted)
/* The maximum message depth that the type graph can have. This is a resource /* The maximum message depth that the type graph can have. This is a resource
* limit for the C stack since we sometimes need to recursively traverse the * limit for the C stack since we sometimes need to recursively traverse the
@ -1417,6 +1421,175 @@ UPB_INLINE upb_def *upb_filedef_mutabledef(upb_filedef *f, int i) {
UPB_END_EXTERN_C UPB_END_EXTERN_C
typedef struct {
UPB_PRIVATE_FOR_CPP
upb_strtable_iter iter;
upb_deftype_t type;
} upb_symtab_iter;
#ifdef __cplusplus
/* Non-const methods in upb::SymbolTable are NOT thread-safe. */
class upb::SymbolTable {
public:
/* Returns a new symbol table with a single ref owned by "owner."
* Returns NULL if memory allocation failed. */
static reffed_ptr<SymbolTable> New();
/* Include RefCounted base methods. */
UPB_REFCOUNTED_CPPMETHODS
/* For all lookup functions, the returned pointer is not owned by the
* caller; it may be invalidated by any non-const call or unref of the
* SymbolTable! To protect against this, take a ref if desired. */
/* Freezes the symbol table: prevents further modification of it.
* After the Freeze() operation is successful, the SymbolTable must only be
* accessed via a const pointer.
*
* Unlike with upb::MessageDef/upb::EnumDef/etc, freezing a SymbolTable is not
* a necessary step in using a SymbolTable. If you have no need for it to be
* immutable, there is no need to freeze it ever. However sometimes it is
* useful, and SymbolTables that are statically compiled into the binary are
* always frozen by nature. */
void Freeze();
/* Resolves the given symbol using the rules described in descriptor.proto,
* namely:
*
* If the name starts with a '.', it is fully-qualified. Otherwise,
* C++-like scoping rules are used to find the type (i.e. first the nested
* types within this message are searched, then within the parent, on up
* to the root namespace).
*
* If not found, returns NULL. */
const Def* Resolve(const char* base, const char* sym) const;
/* Finds an entry in the symbol table with this exact name. If not found,
* returns NULL. */
const Def* Lookup(const char *sym) const;
const MessageDef* LookupMessage(const char *sym) const;
const EnumDef* LookupEnum(const char *sym) const;
/* TODO: introduce a C++ iterator, but make it nice and templated so that if
* you ask for an iterator of MessageDef the iterated elements are strongly
* typed as MessageDef*. */
/* Adds the given mutable defs to the symtab, resolving all symbols
* (including enum default values) and finalizing the defs. Only one def per
* name may be in the list, but defs can replace existing defs in the symtab.
* All defs must have a name -- anonymous defs are not allowed. Anonymous
* defs can still be frozen by calling upb_def_freeze() directly.
*
* Any existing defs that can reach defs that are being replaced will
* themselves be replaced also, so that the resulting set of defs is fully
* consistent.
*
* This logic implemented in this method is a convenience; ultimately it
* calls some combination of upb_fielddef_setsubdef(), upb_def_dup(), and
* upb_freeze(), any of which the client could call themself. However, since
* the logic for doing so is nontrivial, we provide it here.
*
* The entire operation either succeeds or fails. If the operation fails,
* the symtab is unchanged, false is returned, and status indicates the
* error. The caller passes a ref on all defs to the symtab (even if the
* operation fails).
*
* TODO(haberman): currently failure will leave the symtab unchanged, but may
* leave the defs themselves partially resolved. Does this matter? If so we
* could do a prepass that ensures that all symbols are resolvable and bail
* if not, so we don't mutate anything until we know the operation will
* succeed.
*
* TODO(haberman): since the defs must be mutable, refining a frozen def
* requires making mutable copies of the entire tree. This is wasteful if
* only a few messages are changing. We may want to add a way of adding a
* tree of frozen defs to the symtab (perhaps an alternate constructor where
* you pass the root of the tree?) */
bool Add(Def*const* defs, size_t n, void* ref_donor, Status* status);
bool Add(const std::vector<Def*>& defs, void *owner, Status* status) {
return Add((Def*const*)&defs[0], defs.size(), owner, status);
}
/* Resolves all subdefs for messages in this file and attempts to freeze the
* file. If this succeeds, adds all the symbols to this SymbolTable
* (replacing any existing ones with the same names). */
bool AddFile(FileDef* file, Status* s);
private:
UPB_DISALLOW_POD_OPS(SymbolTable, upb::SymbolTable)
};
#endif /* __cplusplus */
UPB_BEGIN_EXTERN_C
/* Native C API. */
/* Include refcounted methods like upb_symtab_ref(). */
UPB_REFCOUNTED_CMETHODS(upb_symtab, upb_symtab_upcast)
upb_symtab *upb_symtab_new(const void *owner);
void upb_symtab_freeze(upb_symtab *s);
const upb_def *upb_symtab_resolve(const upb_symtab *s, const char *base,
const char *sym);
const upb_def *upb_symtab_lookup(const upb_symtab *s, const char *sym);
const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym);
const upb_enumdef *upb_symtab_lookupenum(const upb_symtab *s, const char *sym);
bool upb_symtab_add(upb_symtab *s, upb_def *const*defs, size_t n,
void *ref_donor, upb_status *status);
bool upb_symtab_addfile(upb_symtab *s, upb_filedef *file, upb_status* status);
/* upb_symtab_iter i;
* for(upb_symtab_begin(&i, s, type); !upb_symtab_done(&i);
* upb_symtab_next(&i)) {
* const upb_def *def = upb_symtab_iter_def(&i);
* // ...
* }
*
* For C we don't have separate iterators for const and non-const.
* It is the caller's responsibility to cast the upb_fielddef* to
* const if the upb_msgdef* is const. */
void upb_symtab_begin(upb_symtab_iter *iter, const upb_symtab *s,
upb_deftype_t type);
void upb_symtab_next(upb_symtab_iter *iter);
bool upb_symtab_done(const upb_symtab_iter *iter);
const upb_def *upb_symtab_iter_def(const upb_symtab_iter *iter);
UPB_END_EXTERN_C
#ifdef __cplusplus
/* C++ inline wrappers. */
namespace upb {
inline reffed_ptr<SymbolTable> SymbolTable::New() {
upb_symtab *s = upb_symtab_new(&s);
return reffed_ptr<SymbolTable>(s, &s);
}
inline void SymbolTable::Freeze() {
return upb_symtab_freeze(this);
}
inline const Def *SymbolTable::Resolve(const char *base,
const char *sym) const {
return upb_symtab_resolve(this, base, sym);
}
inline const Def* SymbolTable::Lookup(const char *sym) const {
return upb_symtab_lookup(this, sym);
}
inline const MessageDef *SymbolTable::LookupMessage(const char *sym) const {
return upb_symtab_lookupmsg(this, sym);
}
inline bool SymbolTable::Add(
Def*const* defs, size_t n, void* ref_donor, Status* status) {
return upb_symtab_add(this, (upb_def*const*)defs, n, ref_donor, status);
}
inline bool SymbolTable::AddFile(FileDef* file, Status* s) {
return upb_symtab_addfile(this, file, s);
}
} /* namespace upb */
#endif
#ifdef __cplusplus #ifdef __cplusplus
UPB_INLINE const char* upb_safecstr(const std::string& str) { UPB_INLINE const char* upb_safecstr(const std::string& str) {

@ -29,7 +29,6 @@
#include "upb/def.h" #include "upb/def.h"
#include "upb/handlers.h" #include "upb/handlers.h"
#include "upb/sink.h" #include "upb/sink.h"
#include "upb/symtab.h"
#ifdef __cplusplus #ifdef __cplusplus

@ -22,7 +22,7 @@
#define UPB_GLUE_H #define UPB_GLUE_H
#include <stdbool.h> #include <stdbool.h>
#include "upb/symtab.h" #include "upb/def.h"
#ifdef __cplusplus #ifdef __cplusplus
#include <vector> #include <vector>

@ -1,495 +0,0 @@
#include "upb/structdefs.int.h"
#include "upb/symtab.h"
#include <string.h>
static void upb_symtab_free(upb_refcounted *r) {
upb_symtab *s = (upb_symtab*)r;
upb_strtable_iter i;
upb_strtable_begin(&i, &s->symtab);
for (; !upb_strtable_done(&i); upb_strtable_next(&i)) {
const upb_def *def = upb_value_getptr(upb_strtable_iter_value(&i));
upb_def_unref(def, s);
}
upb_strtable_uninit(&s->symtab);
upb_gfree(s);
}
upb_symtab *upb_symtab_new(const void *owner) {
static const struct upb_refcounted_vtbl vtbl = {NULL, &upb_symtab_free};
upb_symtab *s = upb_gmalloc(sizeof(*s));
if (!s) {
return NULL;
}
upb_refcounted_init(upb_symtab_upcast_mutable(s), &vtbl, owner);
upb_strtable_init(&s->symtab, UPB_CTYPE_PTR);
return s;
}
void upb_symtab_freeze(upb_symtab *s) {
upb_refcounted *r;
bool ok;
UPB_ASSERT(!upb_symtab_isfrozen(s));
r = upb_symtab_upcast_mutable(s);
/* The symtab does not take ref2's (see refcounted.h) on the defs, because
* defs cannot refer back to the table and therefore cannot create cycles. So
* 0 will suffice for maxdepth here. */
ok = upb_refcounted_freeze(&r, 1, NULL, 0);
UPB_ASSERT(ok);
}
const upb_def *upb_symtab_lookup(const upb_symtab *s, const char *sym) {
upb_value v;
upb_def *ret = upb_strtable_lookup(&s->symtab, sym, &v) ?
upb_value_getptr(v) : NULL;
return ret;
}
const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym) {
upb_value v;
upb_def *def = upb_strtable_lookup(&s->symtab, sym, &v) ?
upb_value_getptr(v) : NULL;
return def ? upb_dyncast_msgdef(def) : NULL;
}
const upb_enumdef *upb_symtab_lookupenum(const upb_symtab *s, const char *sym) {
upb_value v;
upb_def *def = upb_strtable_lookup(&s->symtab, sym, &v) ?
upb_value_getptr(v) : NULL;
return def ? upb_dyncast_enumdef(def) : NULL;
}
/* Given a symbol and the base symbol inside which it is defined, find the
* symbol's definition in t. */
static upb_def *upb_resolvename(const upb_strtable *t,
const char *base, const char *sym) {
if(strlen(sym) == 0) return NULL;
if(sym[0] == '.') {
/* Symbols starting with '.' are absolute, so we do a single lookup.
* Slice to omit the leading '.' */
upb_value v;
return upb_strtable_lookup(t, sym + 1, &v) ? upb_value_getptr(v) : NULL;
} else {
/* Remove components from base until we find an entry or run out.
* TODO: This branch is totally broken, but currently not used. */
(void)base;
UPB_ASSERT(false);
return NULL;
}
}
const upb_def *upb_symtab_resolve(const upb_symtab *s, const char *base,
const char *sym) {
upb_def *ret = upb_resolvename(&s->symtab, base, sym);
return ret;
}
/* Starts a depth-first traversal at "def", recursing into any subdefs
* (ie. submessage types). Adds duplicates of existing defs to addtab
* wherever necessary, so that the resulting symtab will be consistent once
* addtab is added.
*
* More specifically, if any def D is found in the DFS that:
*
* 1. can reach a def that is being replaced by something in addtab, AND
*
* 2. is not itself being replaced already (ie. this name doesn't already
* exist in addtab)
*
* ...then a duplicate (new copy) of D will be added to addtab.
*
* Returns true if this happened for any def reachable from "def."
*
* It is slightly tricky to do this correctly in the presence of cycles. If we
* detect that our DFS has hit a cycle, we might not yet know if any SCCs on
* our stack can reach a def in addtab or not. Once we figure this out, that
* answer needs to apply to *all* defs in these SCCs, even if we visited them
* already. So a straight up one-pass cycle-detecting DFS won't work.
*
* To work around this problem, we traverse each SCC (which we already
* computed, since these defs are frozen) as a single node. We first compute
* whether the SCC as a whole can reach any def in addtab, then we dup (or not)
* the entire SCC. This requires breaking the encapsulation of upb_refcounted,
* since that is where we get the data about what SCC we are in. */
static bool upb_resolve_dfs(const upb_def *def, upb_strtable *addtab,
const void *new_owner, upb_inttable *seen,
upb_status *s) {
upb_value v;
bool need_dup;
const upb_def *base;
const void* memoize_key;
/* Memoize results of this function for efficiency (since we're traversing a
* DAG this is not needed to limit the depth of the search).
*
* We memoize by SCC instead of by individual def. */
memoize_key = def->base.group;
if (upb_inttable_lookupptr(seen, memoize_key, &v))
return upb_value_getbool(v);
/* Visit submessages for all messages in the SCC. */
need_dup = false;
base = def;
do {
upb_value v;
const upb_msgdef *m;
UPB_ASSERT(upb_def_isfrozen(def));
if (def->type == UPB_DEF_FIELD) continue;
if (upb_strtable_lookup(addtab, upb_def_fullname(def), &v)) {
need_dup = true;
}
/* For messages, continue the recursion by visiting all subdefs, but only
* ones in different SCCs. */
m = upb_dyncast_msgdef(def);
if (m) {
upb_msg_field_iter i;
for(upb_msg_field_begin(&i, m);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
upb_fielddef *f = upb_msg_iter_field(&i);
const upb_def *subdef;
if (!upb_fielddef_hassubdef(f)) continue;
subdef = upb_fielddef_subdef(f);
/* Skip subdefs in this SCC. */
if (def->base.group == subdef->base.group) continue;
/* |= to avoid short-circuit; we need its side-effects. */
need_dup |= upb_resolve_dfs(subdef, addtab, new_owner, seen, s);
if (!upb_ok(s)) return false;
}
}
} while ((def = (upb_def*)def->base.next) != base);
if (need_dup) {
/* Dup all defs in this SCC that don't already have entries in addtab. */
def = base;
do {
const char *name;
if (def->type == UPB_DEF_FIELD) continue;
name = upb_def_fullname(def);
if (!upb_strtable_lookup(addtab, name, NULL)) {
upb_def *newdef = upb_def_dup(def, new_owner);
if (!newdef) goto oom;
newdef->came_from_user = false;
if (!upb_strtable_insert(addtab, name, upb_value_ptr(newdef)))
goto oom;
}
} while ((def = (upb_def*)def->base.next) != base);
}
upb_inttable_insertptr(seen, memoize_key, upb_value_bool(need_dup));
return need_dup;
oom:
upb_status_seterrmsg(s, "out of memory");
return false;
}
/* TODO(haberman): we need a lot more testing of error conditions.
* The came_from_user stuff in particular is not tested. */
static bool symtab_add(upb_symtab *s, upb_def *const*defs, size_t n,
void *ref_donor, upb_refcounted *freeze_also,
upb_status *status) {
size_t i;
size_t add_n;
size_t freeze_n;
upb_strtable_iter iter;
upb_refcounted **add_objs = NULL;
upb_def **add_defs = NULL;
size_t add_objs_size;
upb_strtable addtab;
upb_inttable seen;
if (n == 0 && !freeze_also) {
return true;
}
UPB_ASSERT(!upb_symtab_isfrozen(s));
if (!upb_strtable_init(&addtab, UPB_CTYPE_PTR)) {
upb_status_seterrmsg(status, "out of memory");
return false;
}
/* Add new defs to our "add" set. */
for (i = 0; i < n; i++) {
upb_def *def = defs[i];
const char *fullname;
upb_fielddef *f;
if (upb_def_isfrozen(def)) {
upb_status_seterrmsg(status, "added defs must be mutable");
goto err;
}
UPB_ASSERT(!upb_def_isfrozen(def));
fullname = upb_def_fullname(def);
if (!fullname) {
upb_status_seterrmsg(
status, "Anonymous defs cannot be added to a symtab");
goto err;
}
f = upb_dyncast_fielddef_mutable(def);
if (f) {
if (!upb_fielddef_containingtypename(f)) {
upb_status_seterrmsg(status,
"Standalone fielddefs must have a containing type "
"(extendee) name set");
goto err;
}
} else {
if (upb_strtable_lookup(&addtab, fullname, NULL)) {
upb_status_seterrf(status, "Conflicting defs named '%s'", fullname);
goto err;
}
/* We need this to back out properly, because if there is a failure we
* need to donate the ref back to the caller. */
def->came_from_user = true;
upb_def_donateref(def, ref_donor, s);
if (!upb_strtable_insert(&addtab, fullname, upb_value_ptr(def)))
goto oom_err;
}
}
/* Add standalone fielddefs (ie. extensions) to the appropriate messages.
* If the appropriate message only exists in the existing symtab, duplicate
* it so we have a mutable copy we can add the fields to. */
for (i = 0; i < n; i++) {
upb_def *def = defs[i];
upb_fielddef *f = upb_dyncast_fielddef_mutable(def);
const char *msgname;
upb_value v;
upb_msgdef *m;
if (!f) continue;
msgname = upb_fielddef_containingtypename(f);
/* We validated this earlier in this function. */
UPB_ASSERT(msgname);
/* If the extendee name is absolutely qualified, move past the initial ".".
* TODO(haberman): it is not obvious what it would mean if this was not
* absolutely qualified. */
if (msgname[0] == '.') {
msgname++;
}
if (upb_strtable_lookup(&addtab, msgname, &v)) {
/* Extendee is in the set of defs the user asked us to add. */
m = upb_value_getptr(v);
} else {
/* Need to find and dup the extendee from the existing symtab. */
const upb_msgdef *frozen_m = upb_symtab_lookupmsg(s, msgname);
if (!frozen_m) {
upb_status_seterrf(status,
"Tried to extend message %s that does not exist "
"in this SymbolTable.",
msgname);
goto err;
}
m = upb_msgdef_dup(frozen_m, s);
if (!m) goto oom_err;
if (!upb_strtable_insert(&addtab, msgname, upb_value_ptr(m))) {
upb_msgdef_unref(m, s);
goto oom_err;
}
}
if (!upb_msgdef_addfield(m, f, ref_donor, status)) {
goto err;
}
}
/* Add dups of any existing def that can reach a def with the same name as
* anything in our "add" set. */
if (!upb_inttable_init(&seen, UPB_CTYPE_BOOL)) goto oom_err;
upb_strtable_begin(&iter, &s->symtab);
for (; !upb_strtable_done(&iter); upb_strtable_next(&iter)) {
upb_def *def = upb_value_getptr(upb_strtable_iter_value(&iter));
upb_resolve_dfs(def, &addtab, s, &seen, status);
if (!upb_ok(status)) goto err;
}
upb_inttable_uninit(&seen);
/* Now using the table, resolve symbolic references for subdefs. */
upb_strtable_begin(&iter, &addtab);
for (; !upb_strtable_done(&iter); upb_strtable_next(&iter)) {
const char *base;
upb_def *def = upb_value_getptr(upb_strtable_iter_value(&iter));
upb_msgdef *m = upb_dyncast_msgdef_mutable(def);
upb_msg_field_iter j;
if (!m) continue;
/* Type names are resolved relative to the message in which they appear. */
base = upb_msgdef_fullname(m);
for(upb_msg_field_begin(&j, m);
!upb_msg_field_done(&j);
upb_msg_field_next(&j)) {
upb_fielddef *f = upb_msg_iter_field(&j);
const char *name = upb_fielddef_subdefname(f);
if (name && !upb_fielddef_subdef(f)) {
/* Try the lookup in the current set of to-be-added defs first. If not
* there, try existing defs. */
upb_def *subdef = upb_resolvename(&addtab, base, name);
if (subdef == NULL) {
subdef = upb_resolvename(&s->symtab, base, name);
}
if (subdef == NULL) {
upb_status_seterrf(
status, "couldn't resolve name '%s' in message '%s'", name, base);
goto err;
} else if (!upb_fielddef_setsubdef(f, subdef, status)) {
goto err;
}
}
}
}
/* We need an array of the defs in addtab, for passing to
* upb_refcounted_freeze(). */
add_objs_size = upb_strtable_count(&addtab);
if (freeze_also) {
add_objs_size++;
}
add_defs = upb_gmalloc(sizeof(void*) * add_objs_size);
if (add_defs == NULL) goto oom_err;
upb_strtable_begin(&iter, &addtab);
for (add_n = 0; !upb_strtable_done(&iter); upb_strtable_next(&iter)) {
add_defs[add_n++] = upb_value_getptr(upb_strtable_iter_value(&iter));
}
/* Validate defs. */
if (!_upb_def_validate(add_defs, add_n, status)) {
goto err;
}
/* Cheat a little and give the array a new type.
* This is probably undefined behavior, but this code will be deleted soon. */
add_objs = (upb_refcounted**)add_defs;
freeze_n = add_n;
if (freeze_also) {
add_objs[freeze_n++] = freeze_also;
}
if (!upb_refcounted_freeze(add_objs, freeze_n, status,
UPB_MAX_MESSAGE_DEPTH * 2)) {
goto err;
}
/* This must be delayed until all errors have been detected, since error
* recovery code uses this table to cleanup defs. */
upb_strtable_uninit(&addtab);
/* TODO(haberman) we don't properly handle errors after this point (like
* OOM in upb_strtable_insert() below). */
for (i = 0; i < add_n; i++) {
upb_def *def = (upb_def*)add_objs[i];
const char *name = upb_def_fullname(def);
upb_value v;
bool success;
if (upb_strtable_remove(&s->symtab, name, &v)) {
const upb_def *def = upb_value_getptr(v);
upb_def_unref(def, s);
}
success = upb_strtable_insert(&s->symtab, name, upb_value_ptr(def));
UPB_ASSERT(success == true);
}
upb_gfree(add_defs);
return true;
oom_err:
upb_status_seterrmsg(status, "out of memory");
err: {
/* For defs the user passed in, we need to donate the refs back. For defs
* we dup'd, we need to just unref them. */
upb_strtable_begin(&iter, &addtab);
for (; !upb_strtable_done(&iter); upb_strtable_next(&iter)) {
upb_def *def = upb_value_getptr(upb_strtable_iter_value(&iter));
bool came_from_user = def->came_from_user;
def->came_from_user = false;
if (came_from_user) {
upb_def_donateref(def, s, ref_donor);
} else {
upb_def_unref(def, s);
}
}
}
upb_strtable_uninit(&addtab);
upb_gfree(add_defs);
UPB_ASSERT(!upb_ok(status));
return false;
}
bool upb_symtab_add(upb_symtab *s, upb_def *const*defs, size_t n,
void *ref_donor, upb_status *status) {
return symtab_add(s, defs, n, ref_donor, NULL, status);
}
bool upb_symtab_addfile(upb_symtab *s, upb_filedef *file, upb_status *status) {
size_t n;
size_t i;
upb_def **defs;
bool ret;
n = upb_filedef_defcount(file);
defs = upb_gmalloc(sizeof(*defs) * n);
if (defs == NULL) {
upb_status_seterrmsg(status, "Out of memory");
return false;
}
for (i = 0; i < n; i++) {
defs[i] = upb_filedef_mutabledef(file, i);
}
ret = symtab_add(s, defs, n, NULL, upb_filedef_upcast_mutable(file), status);
upb_gfree(defs);
return ret;
}
/* Iteration. */
static void advance_to_matching(upb_symtab_iter *iter) {
if (iter->type == UPB_DEF_ANY)
return;
while (!upb_strtable_done(&iter->iter) &&
iter->type != upb_symtab_iter_def(iter)->type) {
upb_strtable_next(&iter->iter);
}
}
void upb_symtab_begin(upb_symtab_iter *iter, const upb_symtab *s,
upb_deftype_t type) {
upb_strtable_begin(&iter->iter, &s->symtab);
iter->type = type;
advance_to_matching(iter);
}
void upb_symtab_next(upb_symtab_iter *iter) {
upb_strtable_next(&iter->iter);
advance_to_matching(iter);
}
bool upb_symtab_done(const upb_symtab_iter *iter) {
return upb_strtable_done(&iter->iter);
}
const upb_def *upb_symtab_iter_def(const upb_symtab_iter *iter) {
return upb_value_getptr(upb_strtable_iter_value(&iter->iter));
}

@ -1,195 +0,0 @@
/*
** upb::SymbolTable (upb_symtab)
**
** A symtab (symbol table) stores a name->def map of upb_defs. Clients could
** always create such tables themselves, but upb_symtab has logic for resolving
** symbolic references, and in particular, for keeping a whole set of consistent
** defs when replacing some subset of those defs. This logic is nontrivial.
**
** This is a mixed C/C++ interface that offers a full API to both languages.
** See the top-level README for more information.
*/
#ifndef UPB_SYMTAB_H_
#define UPB_SYMTAB_H_
#include "upb/def.h"
#ifdef __cplusplus
#include <vector>
namespace upb { class SymbolTable; }
#endif
UPB_DECLARE_DERIVED_TYPE(upb::SymbolTable, upb::RefCounted,
upb_symtab, upb_refcounted)
typedef struct {
UPB_PRIVATE_FOR_CPP
upb_strtable_iter iter;
upb_deftype_t type;
} upb_symtab_iter;
#ifdef __cplusplus
/* Non-const methods in upb::SymbolTable are NOT thread-safe. */
class upb::SymbolTable {
public:
/* Returns a new symbol table with a single ref owned by "owner."
* Returns NULL if memory allocation failed. */
static reffed_ptr<SymbolTable> New();
/* Include RefCounted base methods. */
UPB_REFCOUNTED_CPPMETHODS
/* For all lookup functions, the returned pointer is not owned by the
* caller; it may be invalidated by any non-const call or unref of the
* SymbolTable! To protect against this, take a ref if desired. */
/* Freezes the symbol table: prevents further modification of it.
* After the Freeze() operation is successful, the SymbolTable must only be
* accessed via a const pointer.
*
* Unlike with upb::MessageDef/upb::EnumDef/etc, freezing a SymbolTable is not
* a necessary step in using a SymbolTable. If you have no need for it to be
* immutable, there is no need to freeze it ever. However sometimes it is
* useful, and SymbolTables that are statically compiled into the binary are
* always frozen by nature. */
void Freeze();
/* Resolves the given symbol using the rules described in descriptor.proto,
* namely:
*
* If the name starts with a '.', it is fully-qualified. Otherwise,
* C++-like scoping rules are used to find the type (i.e. first the nested
* types within this message are searched, then within the parent, on up
* to the root namespace).
*
* If not found, returns NULL. */
const Def* Resolve(const char* base, const char* sym) const;
/* Finds an entry in the symbol table with this exact name. If not found,
* returns NULL. */
const Def* Lookup(const char *sym) const;
const MessageDef* LookupMessage(const char *sym) const;
const EnumDef* LookupEnum(const char *sym) const;
/* TODO: introduce a C++ iterator, but make it nice and templated so that if
* you ask for an iterator of MessageDef the iterated elements are strongly
* typed as MessageDef*. */
/* Adds the given mutable defs to the symtab, resolving all symbols
* (including enum default values) and finalizing the defs. Only one def per
* name may be in the list, but defs can replace existing defs in the symtab.
* All defs must have a name -- anonymous defs are not allowed. Anonymous
* defs can still be frozen by calling upb_def_freeze() directly.
*
* Any existing defs that can reach defs that are being replaced will
* themselves be replaced also, so that the resulting set of defs is fully
* consistent.
*
* This logic implemented in this method is a convenience; ultimately it
* calls some combination of upb_fielddef_setsubdef(), upb_def_dup(), and
* upb_freeze(), any of which the client could call themself. However, since
* the logic for doing so is nontrivial, we provide it here.
*
* The entire operation either succeeds or fails. If the operation fails,
* the symtab is unchanged, false is returned, and status indicates the
* error. The caller passes a ref on all defs to the symtab (even if the
* operation fails).
*
* TODO(haberman): currently failure will leave the symtab unchanged, but may
* leave the defs themselves partially resolved. Does this matter? If so we
* could do a prepass that ensures that all symbols are resolvable and bail
* if not, so we don't mutate anything until we know the operation will
* succeed.
*
* TODO(haberman): since the defs must be mutable, refining a frozen def
* requires making mutable copies of the entire tree. This is wasteful if
* only a few messages are changing. We may want to add a way of adding a
* tree of frozen defs to the symtab (perhaps an alternate constructor where
* you pass the root of the tree?) */
bool Add(Def*const* defs, size_t n, void* ref_donor, Status* status);
bool Add(const std::vector<Def*>& defs, void *owner, Status* status) {
return Add((Def*const*)&defs[0], defs.size(), owner, status);
}
/* Resolves all subdefs for messages in this file and attempts to freeze the
* file. If this succeeds, adds all the symbols to this SymbolTable
* (replacing any existing ones with the same names). */
bool AddFile(FileDef* file, Status* s);
private:
UPB_DISALLOW_POD_OPS(SymbolTable, upb::SymbolTable)
};
#endif /* __cplusplus */
UPB_BEGIN_EXTERN_C
/* Native C API. */
/* Include refcounted methods like upb_symtab_ref(). */
UPB_REFCOUNTED_CMETHODS(upb_symtab, upb_symtab_upcast)
upb_symtab *upb_symtab_new(const void *owner);
void upb_symtab_freeze(upb_symtab *s);
const upb_def *upb_symtab_resolve(const upb_symtab *s, const char *base,
const char *sym);
const upb_def *upb_symtab_lookup(const upb_symtab *s, const char *sym);
const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym);
const upb_enumdef *upb_symtab_lookupenum(const upb_symtab *s, const char *sym);
bool upb_symtab_add(upb_symtab *s, upb_def *const*defs, size_t n,
void *ref_donor, upb_status *status);
bool upb_symtab_addfile(upb_symtab *s, upb_filedef *file, upb_status* status);
/* upb_symtab_iter i;
* for(upb_symtab_begin(&i, s, type); !upb_symtab_done(&i);
* upb_symtab_next(&i)) {
* const upb_def *def = upb_symtab_iter_def(&i);
* // ...
* }
*
* For C we don't have separate iterators for const and non-const.
* It is the caller's responsibility to cast the upb_fielddef* to
* const if the upb_msgdef* is const. */
void upb_symtab_begin(upb_symtab_iter *iter, const upb_symtab *s,
upb_deftype_t type);
void upb_symtab_next(upb_symtab_iter *iter);
bool upb_symtab_done(const upb_symtab_iter *iter);
const upb_def *upb_symtab_iter_def(const upb_symtab_iter *iter);
UPB_END_EXTERN_C
#ifdef __cplusplus
/* C++ inline wrappers. */
namespace upb {
inline reffed_ptr<SymbolTable> SymbolTable::New() {
upb_symtab *s = upb_symtab_new(&s);
return reffed_ptr<SymbolTable>(s, &s);
}
inline void SymbolTable::Freeze() {
return upb_symtab_freeze(this);
}
inline const Def *SymbolTable::Resolve(const char *base,
const char *sym) const {
return upb_symtab_resolve(this, base, sym);
}
inline const Def* SymbolTable::Lookup(const char *sym) const {
return upb_symtab_lookup(this, sym);
}
inline const MessageDef *SymbolTable::LookupMessage(const char *sym) const {
return upb_symtab_lookupmsg(this, sym);
}
inline bool SymbolTable::Add(
Def*const* defs, size_t n, void* ref_donor, Status* status) {
return upb_symtab_add(this, (upb_def*const*)defs, n, ref_donor, status);
}
inline bool SymbolTable::AddFile(FileDef* file, Status* s) {
return upb_symtab_addfile(this, file, s);
}
} /* namespace upb */
#endif
#endif /* UPB_SYMTAB_H_ */
Loading…
Cancel
Save