Begin porting old decoder to new interfaces.

Doesn't build yet.
pull/13171/head
Joshua Haberman 14 years ago
parent 2ea9737e5d
commit 5511aa16b0
  1. 763
      stream/upb_decoder.c

@ -9,215 +9,174 @@
#include <inttypes.h>
#include <stddef.h>
#include <stdlib.h>
#include "upb_def.h"
#define UPB_GROUP_END_OFFSET UINT32_MAX
// Returns true if the give wire type and field type combination is valid,
// taking into account both packed and non-packed encodings.
static bool upb_check_type(upb_wire_type_t wt, upb_fielddef *f) {
// TODO: need to take into account the label; only repeated fields are
// allowed to use packed encoding.
return (1 << wt) & upb_types[f->type].allowed_wire_types;
}
// Performs zig-zag decoding, which is used by sint32 and sint64.
static int32_t upb_zzdec_32(uint32_t n) { return (n >> 1) ^ -(int32_t)(n & 1); }
static int64_t upb_zzdec_64(uint64_t n) { return (n >> 1) ^ -(int64_t)(n & 1); }
/* upb_decoder ****************************************************************/
// The decoder keeps a stack with one entry per level of recursion.
// upb_decoder_frame is one frame of that stack.
typedef struct {
upb_msgdef *msgdef;
upb_strlen_t end_offset; // For groups, UPB_GROUP_END_OFFSET.
} upb_decoder_frame;
struct upb_decoder {
upb_src src; // upb_decoder is a upb_src.
upb_msgdef *toplevel_msgdef;
upb_bytesrc *bytesrc;
// The buffer of input data. NULL is equivalent to the empty string.
upb_string *buf;
// Holds residual bytes when fewer than UPB_MAX_ENCODED_SIZE bytes remain.
uint8_t tmpbuf[UPB_MAX_ENCODED_SIZE];
// The number of bytes we have yet to consume from "buf" or tmpbuf. This is
// always >= 0 unless we were just reset or are eof.
int32_t buf_bytesleft;
// The offset within "buf" from where we are currently reading. This can be
// <0 if we are reading some residual bytes from the previous buffer, which
// are stored in tmpbuf and combined with bytes from "buf".
int32_t buf_offset;
// The overall stream offset of the beginning of "buf".
uint32_t buf_stream_offset;
// Wire type of the key we just read.
upb_wire_type_t wire_type;
// Delimited length of the string field we are reading.
upb_strlen_t delimited_len;
upb_strlen_t packed_end_offset;
// Fielddef for the key we just read.
upb_fielddef *field;
// We keep a stack of messages we have recursed into.
upb_decoder_frame *top, *limit, stack[UPB_MAX_NESTING];
};
/* Functions to read wire values. *********************************************/
// These functions are internal to the decode, but might be moved into an
// internal header file if we at some point in the future opt to do code
// generation, because the generated code would want to inline these functions.
// The same applies to the functions to read .proto values below.
/* upb_decoder buffering. *****************************************************/
const uint8_t *upb_get_v_uint64_t_full(const uint8_t *buf, const uint8_t *end,
uint64_t *val, upb_status *status);
static upb_strlen_t upb_decoder_offset(upb_decoder *d)
// Gets a varint (wire type: UPB_WIRE_TYPE_VARINT).
INLINE const uint8_t *upb_get_v_uint64_t(const uint8_t *buf, const uint8_t *end,
uint64_t *val, upb_status *status)
{
return d->buf_stream_offset + d->buf_offset;
// We inline this common case (1-byte varints), if that fails we dispatch to
// the full (non-inlined) version.
if((*buf & 0x80) == 0) {
*val = *buf & 0x7f;
return buf + 1;
} else {
return upb_get_v_uint64_t_full(buf, end, val, status);
}
}
static bool upb_decoder_nextbuf(upb_decoder *d)
// Gets a varint -- called when we only need 32 bits of it. Note that a 32-bit
// varint is not a true wire type.
INLINE const uint8_t *upb_get_v_uint32_t(const uint8_t *buf, const uint8_t *end,
uint32_t *val, upb_status *status)
{
assert(d->buf_bytesleft < UPB_MAX_ENCODED_SIZE);
// Copy residual bytes to temporary buffer.
if(d->buf_bytesleft > 0) {
memcpy(d->tmpbuf, upb_string_getrobuf(d->buf) + d->buf_offset,
d->buf_bytesleft);
uint64_t val64;
const uint8_t *ret = upb_get_v_uint64_t(buf, end, &val64, status);
*val = (uint32_t)val64; // Discard the high bits.
return ret;
}
// Recycle old buffer.
if(d->buf) {
d->buf_offset -= upb_string_len(d->buf);
d->buf_stream_offset += upb_string_len(d->buf);
// Gets a fixed-length 32-bit integer (wire type: UPB_WIRE_TYPE_32BIT).
INLINE const uint8_t *upb_get_f_uint32_t(const uint8_t *buf, const uint8_t *end,
uint32_t *val, upb_status *status)
{
const uint8_t *uint32_end = buf + sizeof(uint32_t);
if(uint32_end > end) {
status->code = UPB_STATUS_NEED_MORE_DATA;
return end;
}
memcpy(val, buf, sizeof(uint32_t));
return uint32_end;
}
d->buf = upb_string_tryrecycle(d->buf);
// Pull next buffer.
if(upb_bytesrc_get(d->bytesrc, d->buf, UPB_MAX_ENCODED_SIZE)) {
d->buf_bytesleft += upb_string_len(d->buf);
return true;
} else {
return false;
// Gets a fixed-length 64-bit integer (wire type: UPB_WIRE_TYPE_64BIT).
INLINE const uint8_t *upb_get_f_uint64_t(const uint8_t *buf, const uint8_t *end,
uint64_t *val, upb_status *status)
{
const uint8_t *uint64_end = buf + sizeof(uint64_t);
if(uint64_end > end) {
status->code = UPB_STATUS_NEED_MORE_DATA;
return end;
}
memcpy(val, buf, sizeof(uint64_t));
return uint64_end;
}
static const uint8_t *upb_decoder_getbuf_full(upb_decoder *d, uint32_t *bytes)
INLINE const uint8_t *upb_skip_v_uint64_t(const uint8_t *buf,
const uint8_t *end,
upb_status *status)
{
if(d->buf_bytesleft < UPB_MAX_ENCODED_SIZE && !upb_bytesrc_eof(d->bytesrc))
upb_decoder_nextbuf(d);
if(d->buf_bytesleft < UPB_MAX_ENCODED_SIZE) {
if(upb_bytesrc_eof(d->bytesrc) && d->buf_bytesleft > 0) {
// We're working through the last few bytes of the buffer.
} else if(upb_bytesrc_eof(d->bytesrc)) {
// End of stream, no more bytes left.
assert(d->buf_bytesleft == 0);
d->src.eof = true;
return NULL;
} else {
// We are short of bytes even though the bytesrc isn't EOF; must be error.
upb_copyerr(&d->src.status, upb_bytesrc_status(d->bytesrc));
return NULL;
const uint8_t *const maxend = buf + 10;
uint8_t last = 0x80;
for(; buf < (uint8_t*)end && (last & 0x80); buf++)
last = *buf;
if(buf >= end && buf <= maxend && (last & 0x80)) {
status->code = UPB_STATUS_NEED_MORE_DATA;
buf = end;
} else if(buf > maxend) {
status->code = UPB_ERROR_UNTERMINATED_VARINT;
buf = end;
}
return buf;
}
if(d->buf_offset >= 0) {
// Common case: the main buffer contains at least UPB_MAX_ENCODED_SIZE
// contiguous bytes, so we can read directly out of it.
*bytes = d->buf_bytesleft;
return (uint8_t*)upb_string_getrobuf(d->buf) + d->buf_offset;
} else {
// We need to accumulate UPB_MAX_ENCODED_SIZE bytes; len is how many we
// have so far.
upb_strlen_t len = -d->buf_offset;
if(d->buf) {
upb_strlen_t to_copy =
UPB_MIN(UPB_MAX_ENCODED_SIZE - len, upb_string_len(d->buf));
memcpy(d->tmpbuf + len, upb_string_getrobuf(d->buf), to_copy);
len += to_copy;
}
// Pad the buffer out to UPB_MAX_ENCODED_SIZE.
memset(d->tmpbuf + len, 0x80, UPB_MAX_ENCODED_SIZE - len);
*bytes = len;
return d->tmpbuf;
}
}
// Returns a pointer to a buffer of data that is at least UPB_MAX_ENCODED_SIZE
// bytes long. This buffer contains the next bytes in the stream (even if
// those bytes span multiple buffers). *bytes is set to the number of actual
// stream bytes that are available in the returned buffer. If
// *bytes < UPB_MAX_ENCODED_SIZE, the buffer is padded with 0x80 bytes.
//
// After the data has been read, upb_decoder_consume() should be called to
// indicate how many bytes were consumed.
static const uint8_t *upb_decoder_getbuf(upb_decoder *d, uint32_t *bytes)
INLINE const uint8_t *upb_skip_f_uint32_t(const uint8_t *buf,
const uint8_t *end,
upb_status *status)
{
if(d->buf_bytesleft >= UPB_MAX_ENCODED_SIZE && d->buf_offset >= 0) {
// Common case: the main buffer contains at least UPB_MAX_ENCODED_SIZE
// contiguous bytes, so we can read directly out of it.
*bytes = d->buf_bytesleft;
return (uint8_t*)upb_string_getrobuf(d->buf) + d->buf_offset;
} else {
return upb_decoder_getbuf_full(d, bytes);
const uint8_t *uint32_end = buf + sizeof(uint32_t);
if(uint32_end > end) {
status->code = UPB_STATUS_NEED_MORE_DATA;
return end;
}
return uint32_end;
}
static bool upb_decoder_consume(upb_decoder *d, uint32_t bytes)
INLINE const uint8_t *upb_skip_f_uint64_t(const uint8_t *buf,
const uint8_t *end,
upb_status *status)
{
assert(bytes <= UPB_MAX_ENCODED_SIZE);
d->buf_offset += bytes;
d->buf_bytesleft -= bytes;
if(d->buf_offset < 0) {
// We still have residual bytes we have not consumed.
memmove(d->tmpbuf, d->tmpbuf + bytes, -d->buf_offset);
const uint8_t *uint64_end = buf + sizeof(uint64_t);
if(uint64_end > end) {
status->code = UPB_STATUS_NEED_MORE_DATA;
return end;
}
assert(d->buf_bytesleft >= 0);
// Detect end-of-submessage.
if(upb_decoder_offset(d) >= d->top->end_offset) {
d->src.eof = true;
return uint64_end;
}
return true;
}
/* Functions to read .proto values. *******************************************/
// Performs zig-zag decoding, which is used by sint32 and sint64.
INLINE int32_t upb_zzdec_32(uint32_t n) { return (n >> 1) ^ -(int32_t)(n & 1); }
INLINE int64_t upb_zzdec_64(uint64_t n) { return (n >> 1) ^ -(int64_t)(n & 1); }
static bool upb_decoder_skipbytes(upb_decoder *d, int32_t bytes)
// Parses a tag, places the result in *tag.
INLINE const uint8_t *decode_tag(const uint8_t *buf, const uint8_t *end,
upb_tag *tag, upb_status *status)
{
d->buf_offset += bytes;
d->buf_bytesleft -= bytes;
while(d->buf_bytesleft < 0) {
if(!upb_decoder_nextbuf(d)) return false;
uint32_t tag_int;
const uint8_t *ret = upb_get_v_uint32_t(buf, end, &tag_int, status);
tag->wire_type = (upb_wire_type_t)(tag_int & 0x07);
tag->field_number = tag_int >> 3;
return ret;
}
// Detect end-of-submessage.
if(upb_decoder_offset(d) >= d->top->end_offset) {
d->src.eof = true;
}
// The decoder keeps a stack with one entry per level of recursion.
// upb_decoder_frame is one frame of that stack.
typedef struct {
upb_msgdef *msgdef;
upb_fielddef *field;
size_t end_offset; // For groups, 0.
} upb_decoder_frame;
return true;
}
struct upb_decoder {
// Immutable state of the decoder.
upb_src src;
upb_dispatcher dispatcher;
upb_msgdef *toplevel_msgdef;
upb_decoder_frame stack[UPB_MAX_NESTING];
// Mutable state of the decoder.
/* Functions to read wire values. *********************************************/
// Where we will store any errors that occur.
upb_status *status;
// Parses remining bytes of a 64-bit varint that has already had its first byte
// parsed.
INLINE bool upb_decoder_readv64(upb_decoder *d, uint32_t *low, uint32_t *high)
{
upb_strlen_t bytes_available;
const uint8_t *buf = upb_decoder_getbuf(d, &bytes_available);
const uint8_t *start = buf;
if(!buf) return false;
// Stack entries store the offset where the submsg ends (for groups, 0).
upb_decoder_frame *top, *limit;
// Current input buffer.
upb_string *buf;
// The offset within the overall stream represented by the *beginning* of buf.
upb_strlen_t buf_stream_offset;
// Our current offset *within* buf. Will be negative if we are buffering
// from previous buffers in tmpbuf.
upb_strlen_t buf_offset;
// Holds any bytes we have from previous buffers. The number of bytes we
// have encoded here is -buf_offset, if buf_offset<0, 0 otherwise.
uint8_t tmpbuf[UPB_MAX_ENCODED_SIZE];
};
upb_flow_t upb_decode_varint(upb_decoder *d, ptrs *p,
uint32_t *low, uint32_t *high) {
if (p->end - p->ptr > UPB_MAX_ENCODED_SIZE) {
// Fast path; we know we have a complete varint in our existing buffer.
*high = 0;
uint32_t b;
uint8_t *ptr = p->ptr;
b = *(buf++); *low = (b & 0x7f) ; if(!(b & 0x80)) goto done;
b = *(buf++); *low |= (b & 0x7f) << 7; if(!(b & 0x80)) goto done;
b = *(buf++); *low |= (b & 0x7f) << 14; if(!(b & 0x80)) goto done;
@ -232,364 +191,202 @@ INLINE bool upb_decoder_readv64(upb_decoder *d, uint32_t *low, uint32_t *high)
if(bytes_available >= 10) {
upb_seterr(&d->src.status, UPB_STATUS_ERROR, "Varint was unterminated "
"after 10 bytes, stream offset: %u", upb_decoder_offset(d));
} else {
upb_seterr(&d->src.status, UPB_STATUS_ERROR, "Stream ended in the middle "
"of a varint, stream offset: %u", upb_decoder_offset(d));
}
return false;
}
done:
return upb_decoder_consume(d, buf - start);
p->ptr = ptr;
} else {
// Slow path: we may have to combine one or more buffers to get a whole
// varint worth of data.
uint8_t buf[UPB_MAX_ENCODED_SIZE];
uint8_t *p = buf, *end = buf + sizeof(buf);
for(ing bitpos = 0; p < end && getbyte(d, p) && (last & 0x80); p++, bitpos += 7)
*val |= ((uint64_t)((last = *p) & 0x7F)) << bitpos;
if(d->status->code == UPB_EOF && (last & 0x80)) {
upb_seterr(status, UPB_ERROR,
"Provided data ended in the middle of a varint.\n");
} else if(buf == maxend) {
upb_seterr(status, UPB_ERROR,
"Varint was unterminated after 10 bytes.\n");
} else {
// Success.
return;
}
// Gets a varint -- called when we only need 32 bits of it. Note that a 32-bit
// varint is not a true wire type.
static bool upb_decoder_readv32(upb_decoder *d, uint32_t *val)
{
uint32_t high;
if(!upb_decoder_readv64(d, val, &high)) return false;
// We expect the high bits to be zero, except that signed 32-bit values are
// first sign-extended to be wire-compatible with 64 bits, in which case we
// expect the high bits to be all one.
//
// We could perform a slightly more sophisticated check by having the caller
// indicate whether a signed or unsigned value is being read. We could check
// that the high bits are all zeros for unsigned, and properly sign-extended
// for signed.
if(high != 0 && ~high != 0) {
upb_seterr(&d->src.status, UPB_STATUS_ERROR, "Read a 32-bit varint, but "
"the high bits contained data we should not truncate: "
"%ux, stream offset: %u", high, upb_decoder_offset(d));
return false;
ungetbytes(d, buf, p - buf);
}
return true;
}
// Gets a fixed-length 32-bit integer (wire type: UPB_WIRE_TYPE_32BIT). Caller
// promises that 4 bytes are available at buf.
static bool upb_decoder_readf32(upb_decoder *d, uint32_t *val)
static const void *get_msgend(upb_decoder *d)
{
upb_strlen_t bytes_available;
const uint8_t *buf = upb_decoder_getbuf(d, &bytes_available);
if(!buf) return false;
if(bytes_available < 4) {
upb_seterr(&d->src.status, UPB_STATUS_ERROR,
"Stream ended in the middle of a 32-bit value");
return false;
}
memcpy(val, buf, 4);
// TODO: byte swap if big-endian.
return upb_decoder_consume(d, 4);
if(d->top->end_offset > 0)
return upb_string_getrobuf(d->buf) + (d->top->end_offset - d->buf_stream_offset);
else
return (void*)UINTPTR_MAX; // group.
}
// Gets a fixed-length 64-bit integer (wire type: UPB_WIRE_TYPE_64BIT). Caller
// promises that 8 bytes are available at buf.
static bool upb_decoder_readf64(upb_decoder *d, uint64_t *val)
static bool isgroup(const void *submsg_end)
{
upb_strlen_t bytes_available;
const uint8_t *buf = upb_decoder_getbuf(d, &bytes_available);
if(!buf) return false;
if(bytes_available < 8) {
upb_seterr(&d->src.status, UPB_STATUS_ERROR,
"Stream ended in the middle of a 64-bit value");
return false;
}
memcpy(val, buf, 8);
// TODO: byte swap if big-endian.
return upb_decoder_consume(d, 8);
return submsg_end == (void*)UINTPTR_MAX;
}
// Returns the length of a varint (wire type: UPB_WIRE_TYPE_VARINT), allowing
// it to be easily skipped. Caller promises that 10 bytes are available at
// "buf". The function will return a maximum of 11 bytes before quitting.
static uint8_t upb_decoder_skipv64(upb_decoder *d)
{
uint32_t bytes_available;
const uint8_t *buf = upb_decoder_getbuf(d, &bytes_available);
if(!buf) return false;
uint8_t i;
for(i = 0; i < 10 && buf[i] & 0x80; i++)
; // empty loop body.
if(i > 10) {
upb_seterr(&d->src.status, UPB_STATUS_ERROR, "Unterminated varint.");
return false;
}
return upb_decoder_consume(d, i);
extern upb_wire_type_t upb_expected_wire_types[];
// Returns true if wt is the correct on-the-wire type for ft.
INLINE bool upb_check_type(upb_wire_type_t wt, upb_field_type_t ft) {
// This doesn't currently support packed arrays.
return upb_types[ft].expected_wire_type == wt;
}
/* upb_src implementation for upb_decoder. ************************************/
// Pushes a new stack frame for a submessage with the given len (which will
// be zero if the submessage is a group).
static const uint8_t *push(upb_decoder *d, const uint8_t *start,
uint32_t submsg_len, upb_fielddef *f,
upb_status *status)
{
d->top->field = f;
d->top++;
if(d->top >= d->limit) {
upb_seterr(status, UPB_ERROR_MAX_NESTING_EXCEEDED,
"Nesting exceeded maximum (%d levels)\n",
UPB_MAX_NESTING);
return NULL;
}
upb_decoder_frame *frame = d->top;
frame->end_offset = d->completed_offset + submsg_len;
frame->msgdef = upb_downcast_msgdef(f->def);
bool upb_decoder_skipval(upb_decoder *d);
upb_dispatch_startsubmsg(&d->dispatcher, f);
return get_msgend(d);
}
upb_fielddef *upb_decoder_getdef(upb_decoder *d)
// Pops a stack frame, returning a pointer for where the next submsg should
// end (or a pointer that is out of range for a group).
static const void *pop(upb_decoder *d, const uint8_t *start, upb_status *status)
{
if (d->src.eof) return NULL;
// Handles the packed field case.
if(d->field) {
return d->field;
}
uint32_t key = 0;
again:
if(!upb_decoder_readv32(d, &key)) return NULL;
upb_wire_type_t wire_type = key & 0x7;
int32_t field_number = key >> 3;
if(wire_type == UPB_WIRE_TYPE_DELIMITED) {
// For delimited wire values we parse the length now, since we need it in
// all cases.
if(!upb_decoder_readv32(d, &d->delimited_len)) return NULL;
} else if(wire_type == UPB_WIRE_TYPE_END_GROUP) {
if(d->top->end_offset == UPB_GROUP_END_OFFSET) {
d->src.eof = true;
} else {
upb_seterr(&d->src.status, UPB_STATUS_ERROR, "End group seen but current "
d->top--;
upb_dispatch_endsubmsg(&d->dispatcher);
return get_msgend(d);
}
void upb_decoder_run(upb_src *src, upb_status *status) {
// buf is our current offset, moves from start to end.
const uint8_t *buf = (uint8_t*)upb_string_getrobuf(str) + d->buf_offset;
const uint8_t *end = (uint8_t*)upb_string_getrobuf(str) + upb_string_len(str);
const uint8_t *submsg_end = get_msgend(d, start);
upb_msgdef *msgdef = d->top->msgdef;
upb_string *str = NULL;
// Main loop: executed once per tag/field pair.
while(1) {
// Parse/handle tag.
upb_tag tag;
CHECK(decode_tag(d, &buf, &end, &tag));
// Decode wire data. Hopefully this branch will predict pretty well
// since most types will read a varint here.
upb_value val;
switch (tag.wire_type) {
case UPB_WIRE_TYPE_END_GROUP:
if(!isgroup(submsg_end)) {
upb_seterr(status, UPB_STATUS_ERROR, "End group seen but current "
"message is not a group, byte offset: %zd",
upb_decoder_offset(d));
d->completed_offset + (completed - start));
goto err;
}
return NULL;
submsg_end = pop(d, start, status, &msgdef);
completed = buf;
goto check_msgend;
case UPB_WIRE_TYPE_VARINT:
case UPB_WIRE_TYPE_DELIMITED:
// For the delimited case we are parsing the length.
CHECK(upb_decode_varint(d, &buf, &end, &val));
break;
case UPB_WIRE_TYPE_32BIT:
CHECK(upb_decode_32bit(d, &buf, &end, &val));
break;
case UPB_WIRE_TYPE_64BIT:
CHECK(upb_decode_64bit(d, &buf, &end, &val));
break;
}
// Look up field by tag number.
upb_fielddef *f = upb_msgdef_itof(d->top->msgdef, field_number);
upb_fielddef *f = upb_msg_itof(msgdef, tag.field_number);
if (!f) {
// Unknown field. If/when the upb_src interface supports reporting
// unknown fields we will implement that here.
upb_decoder_skipval(d);
goto again;
} else if (!upb_check_type(wire_type, f)) {
// This is a recoverable error condition. We skip the value but also
// return NULL and report the error.
upb_decoder_skipval(d);
// TODO: better error message.
upb_seterr(&d->src.status, UPB_STATUS_ERROR, "Incorrect wire type.\n");
return NULL;
}
d->field = f;
d->wire_type = wire_type;
return f;
}
bool upb_decoder_getval(upb_decoder *d, upb_valueptr val)
{
switch(upb_types[d->field->type].native_wire_type) {
case UPB_WIRE_TYPE_VARINT: {
uint32_t low, high;
if(!upb_decoder_readv64(d, &low, &high)) return false;
uint64_t u64 = ((uint64_t)high << 32) | low;
if(d->field->type == UPB_TYPE(SINT64))
*val.int64 = upb_zzdec_64(u64);
else
*val.uint64 = u64;
// Unknown field.
} else if (!upb_check_type(tag.wire_type, f->type)) {
// Field has incorrect type.
}
// Perform any further massaging of the data now that we have the fielddef.
// Now we can distinguish strings from submessages, and we know about
// zig-zag-encoded types.
// TODO: handle packed encoding.
switch (f->type) {
case UPB_TYPE(MESSAGE):
case UPB_TYPE(GROUP):
CHECK(push(d, start, upb_value_getint32(val), f, status, &msgdef));
goto check_msgend;
case UPB_TYPE(STRING):
case UPB_TYPE(BYTES):
CHECK(upb_decode_string(d, str, upb_value_getint32(val)));
upb_value_setstr(&val, str);
break;
}
case UPB_WIRE_TYPE_32BIT_VARINT: {
uint32_t u32;
if(!upb_decoder_readv32(d, &u32)) return false;
if(d->field->type == UPB_TYPE(SINT32))
*val.int32 = upb_zzdec_32(u32);
else
*val.uint32 = u32;
break;
}
case UPB_WIRE_TYPE_64BIT:
if(!upb_decoder_readf64(d, val.uint64)) return false;
case UPB_TYPE(SINT32):
upb_value_setint32(&val, upb_zzdec_32(upb_value_getint32(val)));
break;
case UPB_WIRE_TYPE_32BIT:
if(!upb_decoder_readf32(d, val.uint32)) return false;
case UPB_TYPE(SINT64):
upb_value_setint64(&val, upb_zzdec_64(upb_value_getint64(val)));
break;
default:
upb_seterr(&d->src.status, UPB_STATUS_ERROR,
"Attempted to call getval on a group.");
return false;
}
// For a packed field where we have not reached the end, we leave the field
// in the decoder so we will return it again without parsing a key.
if(d->wire_type != UPB_WIRE_TYPE_DELIMITED ||
upb_decoder_offset(d) >= d->packed_end_offset) {
d->field = NULL;
}
return true;
}
bool upb_decoder_getstr(upb_decoder *d, upb_string *str) {
// A string, bytes, or a length-delimited submessage. The latter isn't
// technically a string, but can be gotten as one to perform lazy parsing.
const int32_t total_len = d->delimited_len;
if (d->buf_offset >= 0 && (int32_t)total_len <= d->buf_bytesleft) {
// The entire string is inside our current buffer, so we can just
// return a substring of the buffer without copying.
upb_string_substr(str, d->buf,
upb_string_len(d->buf) - d->buf_bytesleft,
total_len);
upb_decoder_skipbytes(d, total_len);
} else {
// The string spans buffers, so we must copy from the residual buffer
// (if any bytes are there), then the buffer, and finally from the bytesrc.
uint8_t *ptr = (uint8_t*)upb_string_getrwbuf(
str, UPB_MIN(total_len, d->buf_bytesleft));
int32_t len = 0;
if(d->buf_offset < 0) {
// Residual bytes we need to copy from tmpbuf.
memcpy(ptr, d->tmpbuf, -d->buf_offset);
len += -d->buf_offset;
}
if(d->buf) {
// Bytes from the buffer.
memcpy(ptr + len, upb_string_getrobuf(d->buf) + d->buf_offset,
upb_string_len(str) - len);
}
upb_decoder_skipbytes(d, upb_string_len(str));
if(len < total_len) {
// Bytes from the bytesrc.
if(!upb_bytesrc_append(d->bytesrc, str, total_len - len)) {
upb_copyerr(&d->src.status, upb_bytesrc_status(d->bytesrc));
return false;
}
// Have to advance this since the buffering layer of the decoder will
// never see these bytes.
d->buf_stream_offset += total_len - len;
}
}
d->field = NULL;
return true;
// Other types need no further processing at this point.
}
CHECK(upb_dispatch_value(d->sink, f, val, status));
static bool upb_decoder_skipgroup(upb_decoder *d);
bool upb_decoder_startmsg(upb_decoder *d) {
if(++d->top >= d->limit) {
upb_seterr(&d->src.status, UPB_ERROR_MAX_NESTING_EXCEEDED,
"Nesting exceeded maximum (%d levels)\n",
UPB_MAX_NESTING);
return false;
check_msgend:
while(buf >= submsg_end) {
if(buf > submsg_end) {
upb_seterr(status, UPB_ERROR, "Expected submsg end offset "
"did not lie on a tag/value boundary.");
goto err;
}
upb_decoder_frame *frame = d->top;
if(d->field->type == UPB_TYPE(GROUP)) {
frame->end_offset = UPB_GROUP_END_OFFSET;
} else if (d->field->type == UPB_TYPE(MESSAGE)) {
frame->end_offset = upb_decoder_offset(d) + d->delimited_len;
} else {
upb_seterr(&d->src.status, UPB_STATUS_ERROR,
"Tried to startmsg a non-msg field.");
submsg_end = pop(d, start, status, &msgdef);
}
frame->msgdef = upb_downcast_msgdef(d->field->def);
d->field = NULL;
return true;
completed = buf;
}
bool upb_decoder_endmsg(upb_decoder *d) {
if(d->top > d->stack) {
--d->top;
if(!d->src.eof) {
if(d->top->end_offset == UPB_GROUP_END_OFFSET)
upb_decoder_skipgroup(d);
else
upb_decoder_skipbytes(d, d->top->end_offset - upb_decoder_offset(d));
}
// Detect end-of-submessage.
d->src.eof = upb_decoder_offset(d) >= d->top->end_offset;
return true;
} else {
return false;
}
err:
read = (char*)completed - (char*)start;
d->completed_offset += read;
return read;
}
bool upb_decoder_skipval(upb_decoder *d) {
upb_strlen_t bytes_to_skip;
d->field = NULL;
switch(d->wire_type) {
case UPB_WIRE_TYPE_VARINT: {
return upb_decoder_skipv64(d);
}
case UPB_WIRE_TYPE_START_GROUP:
if(!upb_decoder_startmsg(d)) return false;
if(!upb_decoder_skipgroup(d)) return false;
if(!upb_decoder_endmsg(d)) return false;
return true;
default:
// Including UPB_WIRE_TYPE_END_GROUP.
assert(false);
upb_seterr(&d->src.status, UPB_STATUS_ERROR, "Tried to skip an end group");
return false;
case UPB_WIRE_TYPE_64BIT:
bytes_to_skip = 8;
break;
case UPB_WIRE_TYPE_32BIT:
bytes_to_skip = 4;
break;
case UPB_WIRE_TYPE_DELIMITED:
// Works for both string/bytes *and* submessages.
bytes_to_skip = d->delimited_len;
break;
}
return upb_decoder_skipbytes(d, bytes_to_skip);
void upb_decoder_sethandlers(upb_src *src, upb_handlers *handlers) {
upb_decoder *d = (upb_decoder*)src;
upb_dispatcher_reset(&d->dispatcher, handlers);
d->top = d->stack;
d->completed_offset = 0;
d->top->msgdef = d->toplevel_msgdef;
// The top-level message is not delimited (we can keep receiving data for it
// indefinitely), so we treat it like a group.
d->top->end_offset = 0;
}
static bool upb_decoder_skipgroup(upb_decoder *d)
{
// This will be mututally recursive with upb_decoder_skipval() if the group
// has sub-groups. If we wanted to handle EAGAIN in the future, this
// approach would not work; we would need to track the group depth
// explicitly.
while(upb_decoder_getdef(d)) {
if(!upb_decoder_skipval(d)) return false;
}
// If we are at the end of the group like we want to be, then
// upb_decoder_getdef() returned NULL because of eof, not error.
if(!&d->src.eof) return false;
return true;
}
upb_src_vtable upb_decoder_src_vtbl = {
(upb_src_getdef_fptr)&upb_decoder_getdef,
(upb_src_getval_fptr)&upb_decoder_getval,
(upb_src_getstr_fptr)&upb_decoder_getstr,
(upb_src_skipval_fptr)&upb_decoder_skipval,
(upb_src_startmsg_fptr)&upb_decoder_startmsg,
(upb_src_endmsg_fptr)&upb_decoder_endmsg,
upb_decoder *upb_decoder_new(upb_msgdef *msgdef) {
static upb_src_vtbl vtbl = {
&upb_decoder_sethandlers,
&upb_decoder_run,
};
/* upb_decoder construction/destruction. **************************************/
upb_decoder *upb_decoder_new(upb_msgdef *msgdef)
{
upb_decoder *d = malloc(sizeof(*d));
upb_src_init(&d->src, &vtbl);
upb_dispatcher_init(&d->dispatcher);
d->toplevel_msgdef = msgdef;
d->limit = &d->stack[UPB_MAX_NESTING];
d->buf = NULL;
upb_src_init(&d->src, &upb_decoder_src_vtbl);
return d;
}
void upb_decoder_free(upb_decoder *d)
{
upb_string_unref(d->buf);
void upb_decoder_free(upb_decoder *d) {
free(d);
}
void upb_decoder_reset(upb_decoder *d, upb_bytesrc *bytesrc)
{
upb_string_unref(d->buf);
d->top = d->stack;
d->top->msgdef = d->toplevel_msgdef;
// The top-level message is not delimited (we can keep receiving data for it
// indefinitely), so we set the end offset as high as possible, but not equal
// to UINT32_MAX so it doesn't equal UPB_GROUP_END_OFFSET.
d->top->end_offset = UINT32_MAX - 1;
d->src.eof = false;
d->bytesrc = bytesrc;
d->field = NULL;
d->buf = NULL;
d->buf_bytesleft = 0;
d->buf_stream_offset = 0;
d->buf_offset = 0;
}
upb_src *upb_decoder_src(upb_decoder *d) {
return &d->src;
}

Loading…
Cancel
Save