parent
648afe3da6
commit
3d0c7c45da
26 changed files with 2416 additions and 985 deletions
@ -0,0 +1,62 @@ |
||||
#!/usr/bin/ruby |
||||
# |
||||
# Tests for Ruby upb extension. |
||||
|
||||
require 'test/unit' |
||||
require 'set' |
||||
require 'upb' |
||||
|
||||
def get_descriptor |
||||
File.open("upb/descriptor/descriptor.pb").read |
||||
end |
||||
|
||||
def load_descriptor |
||||
symtab = Upb::SymbolTable.new |
||||
symtab.load_descriptor(get_descriptor()) |
||||
return symtab |
||||
end |
||||
|
||||
def get_message_class(name) |
||||
return Upb.get_message_class(load_descriptor().lookup(name)) |
||||
end |
||||
|
||||
class TestRubyExtension < Test::Unit::TestCase |
||||
def test_parsedescriptor |
||||
msgdef = load_descriptor.lookup("google.protobuf.FileDescriptorSet") |
||||
assert_instance_of(Upb::MessageDef, msgdef) |
||||
|
||||
file_descriptor_set = Upb.get_message_class(msgdef) |
||||
msg = file_descriptor_set.parse(get_descriptor()) |
||||
|
||||
# A couple message types we know should exist. |
||||
names = Set.new(["DescriptorProto", "FieldDescriptorProto"]) |
||||
|
||||
msg.file.each { |file| |
||||
file.message_type.each { |message_type| |
||||
names.delete(message_type.name) |
||||
} |
||||
} |
||||
|
||||
assert_equal(0, names.size) |
||||
end |
||||
|
||||
def test_parseserialize |
||||
field_descriptor_proto = get_message_class("google.protobuf.FieldDescriptorProto") |
||||
field_options = get_message_class("google.protobuf.FieldOptions") |
||||
|
||||
field = field_descriptor_proto.new |
||||
|
||||
field.name = "MyName" |
||||
field.number = 5 |
||||
field.options = field_options.new |
||||
field.options.packed = true |
||||
|
||||
serialized = Upb::Message.serialize(field) |
||||
|
||||
field2 = field_descriptor_proto.parse(serialized) |
||||
|
||||
assert_equal("MyName", field2.name) |
||||
assert_equal(5, field2.number) |
||||
assert_equal(true, field2.options.packed) |
||||
end |
||||
end |
@ -1,2 +0,0 @@ |
||||
This is PROTOTYPE code -- all interfaces are experimental |
||||
and will almost certainly change. |
@ -0,0 +1,30 @@ |
||||
|
||||
# Ruby extension |
||||
|
||||
To build, run (from the top upb directory): |
||||
|
||||
$ make ruby |
||||
$ sudo make install |
||||
|
||||
To test, run: |
||||
|
||||
$ make rubytest |
||||
|
||||
The binding currently supports: |
||||
|
||||
- loading message types from descriptors. |
||||
- constructing message instances |
||||
- reading and writing their members |
||||
- parsing and serializing the messages |
||||
- all data types (including nested and repeated) |
||||
|
||||
The binding does *not* currently support: |
||||
|
||||
- defining message types directly in Ruby code. |
||||
- generating Ruby code for a .proto file. |
||||
- type-checking for setters |
||||
- homogenous / type-checked arrays |
||||
- default values |
||||
|
||||
Because code generation is not currently implemented, the interface to import |
||||
a specific message type is kind of clunky for the moment. |
@ -1,9 +1,13 @@ |
||||
#!/usr/bin/ruby |
||||
|
||||
require 'mkmf' |
||||
|
||||
# Extra args are passed on the command-line. |
||||
$CFLAGS += (" " + ARGV[0]) |
||||
|
||||
find_header("upb/upb.h", "../../..") or raise "Can't find upb headers" |
||||
find_library("upb_pic", "upb_msgdef_new", "../../../lib") or raise "Can't find upb lib" |
||||
find_library("upb.pb_pic", "upb_decoder_init", "../../../lib") or raise "Can't find upb.pb lib" |
||||
find_library("upb.descriptor_pic", "upb_descreader_init", "../../../lib") or raise "Can't find upb.descriptor lib" |
||||
$CFLAGS += " -Wall" |
||||
find_library("upb.pb_pic", "upb_pbdecoder_init", "../../../lib") or raise "Can't find upb.pb lib" |
||||
|
||||
create_makefile("upb") |
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,421 +1,496 @@ |
||||
/*
|
||||
* upb - a minimalist implementation of protocol buffers. |
||||
* |
||||
* Copyright (c) 2009 Google Inc. See LICENSE for details. |
||||
* Copyright (c) 2014 Google Inc. See LICENSE for details. |
||||
* Author: Josh Haberman <jhaberman@gmail.com> |
||||
* |
||||
* Since we are implementing pure handlers (ie. without any out-of-band access |
||||
* to pre-computed lengths), we have to buffer all submessages before we can |
||||
* emit even their first byte. |
||||
* |
||||
* Not knowing the size of submessages also means we can't write a perfect |
||||
* zero-copy implementation, even with buffering. Lengths are stored as |
||||
* varints, which means that we don't know how many bytes to reserve for the |
||||
* length until we know what the length is. |
||||
* |
||||
* This leaves us with three main choices: |
||||
* |
||||
* 1. buffer all submessage data in a temporary buffer, then copy it exactly |
||||
* once into the output buffer. |
||||
* |
||||
* 2. attempt to buffer data directly into the output buffer, estimating how |
||||
* many bytes each length will take. When our guesses are wrong, use |
||||
* memmove() to grow or shrink the allotted space. |
||||
* |
||||
* 3. buffer directly into the output buffer, allocating a max length |
||||
* ahead-of-time for each submessage length. If we overallocated, we waste |
||||
* space, but no memcpy() or memmove() is required. This approach requires |
||||
* defining a maximum size for submessages and rejecting submessages that |
||||
* exceed that size. |
||||
* |
||||
* (2) and (3) have the potential to have better performance, but they are more |
||||
* complicated and subtle to implement: |
||||
* |
||||
* (3) requires making an arbitrary choice of the maximum message size; it |
||||
* wastes space when submessages are shorter than this and fails |
||||
* completely when they are longer. This makes it more finicky and |
||||
* requires configuration based on the input. It also makes it impossible |
||||
* to perfectly match the output of reference encoders that always use the |
||||
* optimal amount of space for each length. |
||||
* |
||||
* (2) requires guessing the the size upfront, and if multiple lengths are |
||||
* guessed wrong the minimum required number of memmove() operations may |
||||
* be complicated to compute correctly. Implemented properly, it may have |
||||
* a useful amortized or average cost, but more investigation is required |
||||
* to determine this and what the optimal algorithm is to achieve it. |
||||
* |
||||
* (1) makes you always pay for exactly one copy, but its implementation is |
||||
* the simplest and its performance is predictable. |
||||
* |
||||
* So for now, we implement (1) only. If we wish to optimize later, we should |
||||
* be able to do it without affecting users. |
||||
* |
||||
* The strategy is to buffer the segments of data that do *not* depend on |
||||
* unknown lengths in one buffer, and keep a separate buffer of segment pointers |
||||
* and lengths. When the top-level submessage ends, we can go beginning to end, |
||||
* alternating the writing of lengths with memcpy() of the rest of the data. |
||||
* At the top level though, no buffering is required. |
||||
*/ |
||||
|
||||
#include "upb/pb/encoder.h" |
||||
#include "upb/pb/varint.int.h" |
||||
|
||||
#include <stdlib.h> |
||||
#include "upb/descriptor.h" |
||||
|
||||
/* Functions for calculating sizes of wire values. ****************************/ |
||||
|
||||
static size_t upb_v_uint64_t_size(uint64_t val) { |
||||
#ifdef __GNUC__ |
||||
int high_bit = 63 - __builtin_clzll(val); // 0-based, undef if val == 0.
|
||||
#else |
||||
int high_bit = 0; |
||||
uint64_t tmp = val; |
||||
while(tmp >>= 1) high_bit++; |
||||
#endif |
||||
return val == 0 ? 1 : high_bit / 7 + 1; |
||||
} |
||||
|
||||
static size_t upb_v_int32_t_size(int32_t val) { |
||||
// v_uint32's are sign-extended to maintain wire compatibility with int64s.
|
||||
return upb_v_uint64_t_size((int64_t)val); |
||||
/* low-level buffering ********************************************************/ |
||||
|
||||
// Low-level functions for interacting with the output buffer.
|
||||
|
||||
// TODO(haberman): handle pushback
|
||||
static void putbuf(upb_pb_encoder *e, const char *buf, size_t len) { |
||||
size_t n = upb_bytessink_putbuf(e->output_, e->subc, buf, len, NULL); |
||||
UPB_ASSERT_VAR(n, n == len); |
||||
} |
||||
static size_t upb_v_uint32_t_size(uint32_t val) { |
||||
return upb_v_uint64_t_size(val); |
||||
|
||||
static upb_pb_encoder_segment *top(upb_pb_encoder *e) { |
||||
return &e->segbuf[*e->top]; |
||||
} |
||||
static size_t upb_f_uint64_t_size(uint64_t val) { |
||||
(void)val; // Length is independent of value.
|
||||
return sizeof(uint64_t); |
||||
|
||||
// Call to ensure that at least "bytes" bytes are available for writing at
|
||||
// e->ptr. Returns false if the bytes could not be allocated.
|
||||
static bool reserve(upb_pb_encoder *e, size_t bytes) { |
||||
if ((e->limit - e->ptr) < bytes) { |
||||
size_t needed = bytes + (e->ptr - e->buf); |
||||
size_t old_size = e->limit - e->buf; |
||||
size_t new_size = old_size; |
||||
while (new_size < needed) { |
||||
new_size *= 2; |
||||
} |
||||
|
||||
char *realloc_from = (e->buf == e->initbuf) ? NULL : e->buf; |
||||
char *new_buf = realloc(realloc_from, new_size); |
||||
|
||||
if (new_buf == NULL) { |
||||
return false; |
||||
} |
||||
|
||||
if (realloc_from == NULL) { |
||||
memcpy(new_buf, e->initbuf, old_size); |
||||
} |
||||
|
||||
e->ptr = new_buf + (e->ptr - e->buf); |
||||
e->runbegin = new_buf + (e->runbegin - e->buf); |
||||
e->limit = new_buf + new_size; |
||||
e->buf = new_buf; |
||||
} |
||||
|
||||
return true; |
||||
} |
||||
static size_t upb_f_uint32_t_size(uint32_t val) { |
||||
(void)val; // Length is independent of value.
|
||||
return sizeof(uint32_t); |
||||
|
||||
// Call when "bytes" bytes have been writte at e->ptr. The caller *must* have
|
||||
// previously called reserve() with at least this many bytes.
|
||||
static void advance(upb_pb_encoder *e, size_t bytes) { |
||||
assert((e->limit - e->ptr) >= bytes); |
||||
e->ptr += bytes; |
||||
} |
||||
|
||||
// Call when all of the bytes for a handler have been written. Flushes the
|
||||
// bytes if possible and necessary, returning false if this failed.
|
||||
static bool commit(upb_pb_encoder *e) { |
||||
if (!e->top) { |
||||
// We aren't inside a delimited region. Flush our accumulated bytes to
|
||||
// the output.
|
||||
//
|
||||
// TODO(haberman): in the future we may want to delay flushing for
|
||||
// efficiency reasons.
|
||||
putbuf(e, e->buf, e->ptr - e->buf); |
||||
e->ptr = e->buf; |
||||
} |
||||
|
||||
/* Functions to write wire values. ********************************************/ |
||||
return true; |
||||
} |
||||
|
||||
// Since we know in advance the longest that the value could be, we always make
|
||||
// sure that our buffer is long enough. This saves us from having to perform
|
||||
// bounds checks.
|
||||
// Writes the given bytes to the buffer, handling reserve/advance.
|
||||
static bool encode_bytes(upb_pb_encoder *e, const void *data, size_t len) { |
||||
if (!reserve(e, len)) { |
||||
return false; |
||||
} |
||||
|
||||
// Puts a varint (wire type: UPB_WIRE_TYPE_VARINT).
|
||||
static uint8_t *upb_put_v_uint64_t(uint8_t *buf, uint64_t val) |
||||
{ |
||||
do { |
||||
uint8_t byte = val & 0x7f; |
||||
val >>= 7; |
||||
if(val) byte |= 0x80; |
||||
*buf++ = byte; |
||||
} while(val); |
||||
return buf; |
||||
memcpy(e->ptr, data, len); |
||||
advance(e, len); |
||||
return true; |
||||
} |
||||
|
||||
// Puts an unsigned 32-bit varint, verbatim. Never uses the high 64 bits.
|
||||
static uint8_t *upb_put_v_uint32_t(uint8_t *buf, uint32_t val) |
||||
{ |
||||
return upb_put_v_uint64_t(buf, val); |
||||
// Finish the current run by adding the run totals to the segment and message
|
||||
// length.
|
||||
static void accumulate(upb_pb_encoder *e) { |
||||
assert(e->ptr >= e->runbegin); |
||||
size_t run_len = e->ptr - e->runbegin; |
||||
e->segptr->seglen += run_len; |
||||
top(e)->msglen += run_len; |
||||
e->runbegin = e->ptr; |
||||
} |
||||
|
||||
// Puts a signed 32-bit varint, first sign-extending to 64-bits. We do this to
|
||||
// maintain wire-compatibility with 64-bit signed integers.
|
||||
static uint8_t *upb_put_v_int32_t(uint8_t *buf, int32_t val) |
||||
{ |
||||
return upb_put_v_uint64_t(buf, (int64_t)val); |
||||
// Call to indicate the start of delimited region for which the full length is
|
||||
// not yet known. All data will be buffered until the length is known.
|
||||
// Delimited regions may be nested; their lengths will all be tracked properly.
|
||||
static bool start_delim(upb_pb_encoder *e) { |
||||
if (e->top) { |
||||
// We are already buffering, advance to the next segment and push it on the
|
||||
// stack.
|
||||
accumulate(e); |
||||
|
||||
if (++e->top == e->stacklimit) { |
||||
// TODO(haberman): grow stack?
|
||||
return false; |
||||
} |
||||
|
||||
if (++e->segptr == e->seglimit) { |
||||
upb_pb_encoder_segment *realloc_from = |
||||
(e->segbuf == e->seginitbuf) ? NULL : e->segbuf; |
||||
size_t old_size = |
||||
(e->seglimit - e->segbuf) * sizeof(upb_pb_encoder_segment); |
||||
size_t new_size = old_size * 2; |
||||
upb_pb_encoder_segment *new_buf = realloc(realloc_from, new_size); |
||||
|
||||
if (new_buf == NULL) { |
||||
return false; |
||||
} |
||||
|
||||
if (realloc_from == NULL) { |
||||
memcpy(new_buf, e->seginitbuf, old_size); |
||||
} |
||||
|
||||
e->segptr = new_buf + (e->segptr - e->segbuf); |
||||
e->seglimit = new_buf + (new_size / sizeof(upb_pb_encoder_segment)); |
||||
e->segbuf = new_buf; |
||||
} |
||||
} else { |
||||
// We were previously at the top level, start buffering.
|
||||
e->segptr = e->segbuf; |
||||
e->top = e->stack; |
||||
e->runbegin = e->ptr; |
||||
} |
||||
|
||||
*e->top = e->segptr - e->segbuf; |
||||
e->segptr->seglen = 0; |
||||
e->segptr->msglen = 0; |
||||
|
||||
return true; |
||||
} |
||||
|
||||
static void upb_put32(uint8_t *buf, uint32_t val) { |
||||
buf[0] = val & 0xff; |
||||
buf[1] = (val >> 8) & 0xff; |
||||
buf[2] = (val >> 16) & 0xff; |
||||
buf[3] = (val >> 24); |
||||
// Call to indicate the end of a delimited region. We now know the length of
|
||||
// the delimited region. If we are not nested inside any other delimited
|
||||
// regions, we can now emit all of the buffered data we accumulated.
|
||||
static bool end_delim(upb_pb_encoder *e) { |
||||
accumulate(e); |
||||
size_t msglen = top(e)->msglen; |
||||
|
||||
if (e->top == e->stack) { |
||||
// All lengths are now available, emit all buffered data.
|
||||
char buf[UPB_PB_VARINT_MAX_LEN]; |
||||
upb_pb_encoder_segment *s; |
||||
const char *ptr = e->buf; |
||||
for (s = e->segbuf; s <= e->segptr; s++) { |
||||
size_t lenbytes = upb_vencode64(s->msglen, buf); |
||||
putbuf(e, buf, lenbytes); |
||||
putbuf(e, ptr, s->seglen); |
||||
ptr += s->seglen; |
||||
} |
||||
|
||||
e->ptr = e->buf; |
||||
e->top = NULL; |
||||
} else { |
||||
// Need to keep buffering; propagate length info into enclosing submessages.
|
||||
--e->top; |
||||
top(e)->msglen += msglen + upb_varint_size(msglen); |
||||
} |
||||
|
||||
return true; |
||||
} |
||||
|
||||
// Puts a fixed-length 32-bit integer (wire type: UPB_WIRE_TYPE_32BIT).
|
||||
static uint8_t *upb_put_f_uint32_t(uint8_t *buf, uint32_t val) |
||||
{ |
||||
uint8_t *uint32_end = buf + sizeof(uint32_t); |
||||
#if UPB_UNALIGNED_READS_OK |
||||
*(uint32_t*)buf = val; |
||||
#else |
||||
upb_put32(buf, val); |
||||
#endif |
||||
return uint32_end; |
||||
|
||||
/* tag_t **********************************************************************/ |
||||
|
||||
// A precomputed (pre-encoded) tag and length.
|
||||
|
||||
typedef struct { |
||||
uint8_t bytes; |
||||
char tag[7]; |
||||
} tag_t; |
||||
|
||||
// Allocates a new tag for this field, and sets it in these handlerattr.
|
||||
static void new_tag(upb_handlers *h, const upb_fielddef *f, upb_wiretype_t wt, |
||||
upb_handlerattr *attr) { |
||||
uint32_t n = upb_fielddef_number(f); |
||||
|
||||
tag_t *tag = malloc(sizeof(tag_t)); |
||||
tag->bytes = upb_vencode64((n << 3) | wt, tag->tag); |
||||
|
||||
upb_handlerattr_init(attr); |
||||
upb_handlerattr_sethandlerdata(attr, tag); |
||||
upb_handlers_addcleanup(h, tag, free); |
||||
} |
||||
|
||||
// Puts a fixed-length 64-bit integer (wire type: UPB_WIRE_TYPE_64BIT).
|
||||
static uint8_t *upb_put_f_uint64_t(uint8_t *buf, uint64_t val) |
||||
{ |
||||
uint8_t *uint64_end = buf + sizeof(uint64_t); |
||||
#if UPB_UNALIGNED_READS_OK |
||||
*(uint64_t*)buf = val; |
||||
#else |
||||
upb_put32(buf, (uint32_t)val); |
||||
upb_put32(buf, (uint32_t)(val >> 32)); |
||||
#endif |
||||
return uint64_end; |
||||
static bool encode_tag(upb_pb_encoder *e, const tag_t *tag) { |
||||
return encode_bytes(e, tag->tag, tag->bytes); |
||||
} |
||||
|
||||
/* Functions to write and calculate sizes for .proto values. ******************/ |
||||
|
||||
// Performs zig-zag encoding, which is used by sint32 and sint64.
|
||||
static uint32_t upb_zzenc_32(int32_t n) { return (n << 1) ^ (n >> 31); } |
||||
static uint64_t upb_zzenc_64(int64_t n) { return (n << 1) ^ (n >> 63); } |
||||
/* encoding of wire types *****************************************************/ |
||||
|
||||
/* Use macros to define a set of two functions for each .proto type:
|
||||
* |
||||
* // Converts and writes a .proto value into buf. "end" indicates the end
|
||||
* // of the current available buffer (if the buffer does not contain enough
|
||||
* // space UPB_STATUS_NEED_MORE_DATA is returned). On success, *outbuf will
|
||||
* // point one past the data that was written.
|
||||
* uint8_t *upb_put_INT32(uint8_t *buf, int32_t val); |
||||
* |
||||
* // Returns the number of bytes required to encode val.
|
||||
* size_t upb_get_INT32_size(int32_t val); |
||||
* |
||||
* // Given a .proto value s (source) convert it to a wire value.
|
||||
* uint32_t upb_vtowv_INT32(int32_t s); |
||||
*/ |
||||
static bool encode_fixed64(upb_pb_encoder *e, uint64_t val) { |
||||
// TODO(haberman): byte-swap for big endian.
|
||||
return encode_bytes(e, &val, sizeof(uint64_t)); |
||||
} |
||||
|
||||
#define VTOWV(type, wire_t, val_t) \ |
||||
static wire_t upb_vtowv_ ## type(val_t s) |
||||
static bool encode_fixed32(upb_pb_encoder *e, uint32_t val) { |
||||
// TODO(haberman): byte-swap for big endian.
|
||||
return encode_bytes(e, &val, sizeof(uint32_t)); |
||||
} |
||||
|
||||
#define PUT(type, v_or_f, wire_t, val_t, member_name) \ |
||||
static uint8_t *upb_put_ ## type(uint8_t *buf, val_t val) { \
|
||||
wire_t tmp = upb_vtowv_ ## type(val); \
|
||||
return upb_put_ ## v_or_f ## _ ## wire_t(buf, tmp); \
|
||||
static bool encode_varint(upb_pb_encoder *e, uint64_t val) { |
||||
if (!reserve(e, UPB_PB_VARINT_MAX_LEN)) { |
||||
return false; |
||||
} |
||||
|
||||
#define T(type, v_or_f, wire_t, val_t, member_name) \ |
||||
static size_t upb_get_ ## type ## _size(val_t val) { \
|
||||
return upb_ ## v_or_f ## _ ## wire_t ## _size(val); \
|
||||
} \
|
||||
VTOWV(type, wire_t, val_t); /* prototype for PUT below */ \
|
||||
PUT(type, v_or_f, wire_t, val_t, member_name) \
|
||||
VTOWV(type, wire_t, val_t) |
||||
|
||||
T(INT32, v, int32_t, int32_t, int32) { return (uint32_t)s; } |
||||
T(INT64, v, uint64_t, int64_t, int64) { return (uint64_t)s; } |
||||
T(UINT32, v, uint32_t, uint32_t, uint32) { return s; } |
||||
T(UINT64, v, uint64_t, uint64_t, uint64) { return s; } |
||||
T(SINT32, v, uint32_t, int32_t, int32) { return upb_zzenc_32(s); } |
||||
T(SINT64, v, uint64_t, int64_t, int64) { return upb_zzenc_64(s); } |
||||
T(FIXED32, f, uint32_t, uint32_t, uint32) { return s; } |
||||
T(FIXED64, f, uint64_t, uint64_t, uint64) { return s; } |
||||
T(SFIXED32, f, uint32_t, int32_t, int32) { return (uint32_t)s; } |
||||
T(SFIXED64, f, uint64_t, int64_t, int64) { return (uint64_t)s; } |
||||
T(BOOL, v, uint32_t, bool, _bool) { return (uint32_t)s; } |
||||
T(ENUM, v, uint32_t, int32_t, int32) { return (uint32_t)s; } |
||||
T(DOUBLE, f, uint64_t, double, _double) { |
||||
upb_value v; |
||||
v._double = s; |
||||
return v.uint64; |
||||
advance(e, upb_vencode64(val, e->ptr)); |
||||
return true; |
||||
} |
||||
T(FLOAT, f, uint32_t, float, _float) { |
||||
upb_value v; |
||||
v._float = s; |
||||
return v.uint32; |
||||
|
||||
static uint64_t dbl2uint64(double d) { |
||||
uint64_t ret; |
||||
memcpy(&ret, &d, sizeof(uint64_t)); |
||||
return ret; |
||||
} |
||||
#undef VTOWV |
||||
#undef PUT |
||||
#undef T |
||||
|
||||
static uint8_t *upb_encode_value(uint8_t *buf, upb_field_type_t ft, upb_value v) |
||||
{ |
||||
#define CASE(t, member_name) \ |
||||
case UPB_TYPE(t): return upb_put_ ## t(buf, v.member_name); |
||||
switch(ft) { |
||||
CASE(DOUBLE, _double) |
||||
CASE(FLOAT, _float) |
||||
CASE(INT32, int32) |
||||
CASE(INT64, int64) |
||||
CASE(UINT32, uint32) |
||||
CASE(UINT64, uint64) |
||||
CASE(SINT32, int32) |
||||
CASE(SINT64, int64) |
||||
CASE(FIXED32, uint32) |
||||
CASE(FIXED64, uint64) |
||||
CASE(SFIXED32, int32) |
||||
CASE(SFIXED64, int64) |
||||
CASE(BOOL, _bool) |
||||
CASE(ENUM, int32) |
||||
default: assert(false); return buf; |
||||
static uint32_t flt2uint32(float d) { |
||||
uint32_t ret; |
||||
memcpy(&ret, &d, sizeof(uint32_t)); |
||||
return ret; |
||||
} |
||||
|
||||
|
||||
/* encoding of proto types ****************************************************/ |
||||
|
||||
static bool startmsg(void *c, const void *hd) { |
||||
upb_pb_encoder *e = c; |
||||
UPB_UNUSED(hd); |
||||
if (e->depth++ == 0) { |
||||
upb_bytessink_start(e->output_, 0, &e->subc); |
||||
} |
||||
#undef CASE |
||||
return true; |
||||
} |
||||
|
||||
static uint32_t _upb_get_value_size(upb_field_type_t ft, upb_value v) |
||||
{ |
||||
#define CASE(t, member_name) \ |
||||
case UPB_TYPE(t): return upb_get_ ## t ## _size(v.member_name); |
||||
switch(ft) { |
||||
CASE(DOUBLE, _double) |
||||
CASE(FLOAT, _float) |
||||
CASE(INT32, int32) |
||||
CASE(INT64, int64) |
||||
CASE(UINT32, uint32) |
||||
CASE(UINT64, uint64) |
||||
CASE(SINT32, int32) |
||||
CASE(SINT64, int64) |
||||
CASE(FIXED32, uint32) |
||||
CASE(FIXED64, uint64) |
||||
CASE(SFIXED32, int32) |
||||
CASE(SFIXED64, int64) |
||||
CASE(BOOL, _bool) |
||||
CASE(ENUM, int32) |
||||
default: assert(false); return 0; |
||||
static bool endmsg(void *c, const void *hd, upb_status *status) { |
||||
upb_pb_encoder *e = c; |
||||
UPB_UNUSED(hd); |
||||
UPB_UNUSED(status); |
||||
if (--e->depth == 0) { |
||||
upb_bytessink_end(e->output_); |
||||
} |
||||
#undef CASE |
||||
return true; |
||||
} |
||||
|
||||
static uint8_t *_upb_put_tag(uint8_t *buf, upb_field_number_t num, |
||||
upb_wire_type_t wt) |
||||
{ |
||||
return upb_put_UINT32(buf, wt | (num << 3)); |
||||
static void *encode_startdelimfield(void *c, const void *hd) { |
||||
bool ok = encode_tag(c, hd) && commit(c) && start_delim(c); |
||||
return ok ? c : UPB_BREAK; |
||||
} |
||||
|
||||
static uint32_t _upb_get_tag_size(upb_field_number_t num) |
||||
{ |
||||
return upb_get_UINT32_size(num << 3); |
||||
static bool encode_enddelimfield(void *c, const void *hd) { |
||||
UPB_UNUSED(hd); |
||||
return end_delim(c); |
||||
} |
||||
|
||||
static void *encode_startgroup(void *c, const void *hd) { |
||||
return (encode_tag(c, hd) && commit(c)) ? c : UPB_BREAK; |
||||
} |
||||
|
||||
/* upb_sizebuilder ************************************************************/ |
||||
static bool encode_endgroup(void *c, const void *hd) { |
||||
return encode_tag(c, hd) && commit(c); |
||||
} |
||||
|
||||
struct upb_sizebuilder { |
||||
// Accumulating size for the current level.
|
||||
uint32_t size; |
||||
static void *encode_startstr(void *c, const void *hd, size_t size_hint) { |
||||
UPB_UNUSED(size_hint); |
||||
return encode_startdelimfield(c, hd); |
||||
} |
||||
|
||||
// Stack of sizes for our current nesting.
|
||||
uint32_t stack[UPB_MAX_NESTING], *top; |
||||
static size_t encode_strbuf(void *c, const void *hd, const char *buf, |
||||
size_t len, const upb_bufhandle *h) { |
||||
UPB_UNUSED(hd); |
||||
UPB_UNUSED(h); |
||||
return encode_bytes(c, buf, len) ? len : 0; |
||||
} |
||||
|
||||
// Vector of sizes.
|
||||
uint32_t *sizes; |
||||
int sizes_len; |
||||
int sizes_size; |
||||
#define T(type, ctype, convert, encode) \ |
||||
static bool encode_scalar_##type(void *e, const void *hd, ctype val) { \
|
||||
return encode_tag(e, hd) && encode(e, (convert)(val)) && commit(e); \
|
||||
} \
|
||||
static bool encode_packed_##type(void *e, const void *hd, ctype val) { \
|
||||
UPB_UNUSED(hd); \
|
||||
return encode(e, (convert)(val)); \
|
||||
} |
||||
|
||||
upb_status status; |
||||
}; |
||||
T(double, double, dbl2uint64, encode_fixed64) |
||||
T(float, float, flt2uint32, encode_fixed32); |
||||
T(int64, int64_t, uint64_t, encode_varint); |
||||
T(int32, int32_t, uint32_t, encode_varint); |
||||
T(fixed64, uint64_t, uint64_t, encode_fixed64); |
||||
T(fixed32, uint32_t, uint32_t, encode_fixed32); |
||||
T(bool, bool, bool, encode_varint); |
||||
T(uint32, uint32_t, uint32_t, encode_varint); |
||||
T(uint64, uint64_t, uint64_t, encode_varint); |
||||
T(enum, int32_t, uint32_t, encode_varint); |
||||
T(sfixed32, int32_t, uint32_t, encode_fixed32); |
||||
T(sfixed64, int64_t, uint64_t, encode_fixed64); |
||||
T(sint32, int32_t, upb_zzenc_32, encode_varint); |
||||
T(sint64, int64_t, upb_zzenc_64, encode_varint); |
||||
|
||||
// upb_sink callbacks.
|
||||
static upb_sink_status _upb_sizebuilder_valuecb(upb_sink *sink, upb_fielddef *f, |
||||
upb_value val, |
||||
upb_status *status) |
||||
{ |
||||
(void)status; |
||||
upb_sizebuilder *sb = (upb_sizebuilder*)sink; |
||||
uint32_t size = 0; |
||||
size += _upb_get_tag_size(f->number); |
||||
size += _upb_get_value_size(f->type, val); |
||||
sb->size += size; |
||||
return UPB_SINK_CONTINUE; |
||||
} |
||||
#undef T |
||||
|
||||
static upb_sink_status _upb_sizebuilder_strcb(upb_sink *sink, upb_fielddef *f, |
||||
upb_strptr str, |
||||
int32_t start, uint32_t end, |
||||
upb_status *status) |
||||
{ |
||||
(void)status; |
||||
(void)str; // String data itself is not used.
|
||||
upb_sizebuilder *sb = (upb_sizebuilder*)sink; |
||||
if(start >= 0) { |
||||
uint32_t size = 0; |
||||
size += _upb_get_tag_size(f->number); |
||||
size += upb_get_UINT32_size(end - start); |
||||
sb->size += size; |
||||
} |
||||
return UPB_SINK_CONTINUE; |
||||
} |
||||
|
||||
static upb_sink_status _upb_sizebuilder_startcb(upb_sink *sink, upb_fielddef *f, |
||||
upb_status *status) |
||||
{ |
||||
(void)status; |
||||
(void)f; // Unused (we calculate tag size and delimiter in endcb).
|
||||
upb_sizebuilder *sb = (upb_sizebuilder*)sink; |
||||
if(f->type == UPB_TYPE(MESSAGE)) { |
||||
*sb->top = sb->size; |
||||
sb->top++; |
||||
sb->size = 0; |
||||
} else { |
||||
assert(f->type == UPB_TYPE(GROUP)); |
||||
sb->size += _upb_get_tag_size(f->number); |
||||
} |
||||
return UPB_SINK_CONTINUE; |
||||
} |
||||
/* code to build the handlers *************************************************/ |
||||
|
||||
static void newhandlers_callback(const void *closure, upb_handlers *h) { |
||||
UPB_UNUSED(closure); |
||||
|
||||
static upb_sink_status _upb_sizebuilder_endcb(upb_sink *sink, upb_fielddef *f, |
||||
upb_status *status) |
||||
{ |
||||
(void)status; |
||||
upb_sizebuilder *sb = (upb_sizebuilder*)sink; |
||||
if(f->type == UPB_TYPE(MESSAGE)) { |
||||
sb->top--; |
||||
if(sb->sizes_len == sb->sizes_size) { |
||||
sb->sizes_size *= 2; |
||||
sb->sizes = realloc(sb->sizes, sb->sizes_size * sizeof(*sb->sizes)); |
||||
upb_handlers_setstartmsg(h, startmsg, NULL); |
||||
upb_handlers_setendmsg(h, endmsg, NULL); |
||||
|
||||
const upb_msgdef *m = upb_handlers_msgdef(h); |
||||
upb_msg_iter i; |
||||
for(upb_msg_begin(&i, m); !upb_msg_done(&i); upb_msg_next(&i)) { |
||||
const upb_fielddef *f = upb_msg_iter_field(&i); |
||||
bool packed = upb_fielddef_isseq(f) && upb_fielddef_isprimitive(f) && |
||||
upb_fielddef_packed(f); |
||||
upb_handlerattr attr; |
||||
upb_wiretype_t wt = |
||||
packed ? UPB_WIRE_TYPE_DELIMITED |
||||
: upb_pb_native_wire_types[upb_fielddef_descriptortype(f)]; |
||||
|
||||
// Pre-encode the tag for this field.
|
||||
new_tag(h, f, wt, &attr); |
||||
|
||||
if (packed) { |
||||
upb_handlers_setstartseq(h, f, encode_startdelimfield, &attr); |
||||
upb_handlers_setendseq(h, f, encode_enddelimfield, &attr); |
||||
} |
||||
uint32_t child_size = sb->size; |
||||
uint32_t parent_size = *sb->top; |
||||
sb->sizes[sb->sizes_len++] = child_size; |
||||
// The size according to the parent includes the tag size and delimiter of
|
||||
// the submessage.
|
||||
parent_size += upb_get_UINT32_size(child_size); |
||||
parent_size += _upb_get_tag_size(f->number); |
||||
// Include size accumulated in parent before child began.
|
||||
sb->size = child_size + parent_size; |
||||
} else { |
||||
assert(f->type == UPB_TYPE(GROUP)); |
||||
// As an optimization, we could just add this number twice in startcb, to
|
||||
// avoid having to recalculate it.
|
||||
sb->size += _upb_get_tag_size(f->number); |
||||
|
||||
#define T(upper, lower, upbtype) \ |
||||
case UPB_DESCRIPTOR_TYPE_##upper: \
|
||||
if (packed) { \
|
||||
upb_handlers_set##upbtype(h, f, encode_packed_##lower, &attr); \
|
||||
} else { \
|
||||
upb_handlers_set##upbtype(h, f, encode_scalar_##lower, &attr); \
|
||||
} \
|
||||
break; |
||||
|
||||
switch (upb_fielddef_descriptortype(f)) { |
||||
T(DOUBLE, double, double); |
||||
T(FLOAT, float, float); |
||||
T(INT64, int64, int64); |
||||
T(INT32, int32, int32); |
||||
T(FIXED64, fixed64, uint64); |
||||
T(FIXED32, fixed32, uint32); |
||||
T(BOOL, bool, bool); |
||||
T(UINT32, uint32, uint32); |
||||
T(UINT64, uint64, uint64); |
||||
T(ENUM, enum, int32); |
||||
T(SFIXED32, sfixed32, int32); |
||||
T(SFIXED64, sfixed64, int64); |
||||
T(SINT32, sint32, int32); |
||||
T(SINT64, sint64, int64); |
||||
case UPB_DESCRIPTOR_TYPE_STRING: |
||||
case UPB_DESCRIPTOR_TYPE_BYTES: |
||||
upb_handlers_setstartstr(h, f, encode_startstr, &attr); |
||||
upb_handlers_setendstr(h, f, encode_enddelimfield, &attr); |
||||
upb_handlers_setstring(h, f, encode_strbuf, &attr); |
||||
break; |
||||
case UPB_DESCRIPTOR_TYPE_MESSAGE: |
||||
upb_handlers_setstartsubmsg(h, f, encode_startdelimfield, &attr); |
||||
upb_handlers_setendsubmsg(h, f, encode_enddelimfield, &attr); |
||||
break; |
||||
case UPB_DESCRIPTOR_TYPE_GROUP: { |
||||
// Endgroup takes a different tag (wire_type = END_GROUP).
|
||||
upb_handlerattr attr2; |
||||
new_tag(h, f, UPB_WIRE_TYPE_END_GROUP, &attr2); |
||||
|
||||
upb_handlers_setstartsubmsg(h, f, encode_startgroup, &attr); |
||||
upb_handlers_setendsubmsg(h, f, encode_endgroup, &attr2); |
||||
|
||||
upb_handlerattr_uninit(&attr2); |
||||
break; |
||||
} |
||||
} |
||||
|
||||
#undef T |
||||
|
||||
upb_handlerattr_uninit(&attr); |
||||
} |
||||
return UPB_SINK_CONTINUE; |
||||
} |
||||
|
||||
upb_sink_callbacks _upb_sizebuilder_sink_vtbl = { |
||||
_upb_sizebuilder_valuecb, |
||||
_upb_sizebuilder_strcb, |
||||
_upb_sizebuilder_startcb, |
||||
_upb_sizebuilder_endcb |
||||
}; |
||||
|
||||
|
||||
/* upb_sink callbacks *********************************************************/ |
||||
|
||||
struct upb_encoder { |
||||
upb_sink base; |
||||
//upb_bytesink *bytesink;
|
||||
uint32_t *sizes; |
||||
int size_offset; |
||||
}; |
||||
|
||||
|
||||
// Within one callback we may need to encode up to two separate values.
|
||||
#define UPB_ENCODER_BUFSIZE (UPB_MAX_ENCODED_SIZE * 2) |
||||
|
||||
static upb_sink_status _upb_encoder_push_buf(upb_encoder *s, const uint8_t *buf, |
||||
size_t len, upb_status *status) |
||||
{ |
||||
// TODO: conjure a upb_strptr that points to buf.
|
||||
//upb_strptr ptr;
|
||||
(void)s; |
||||
(void)buf; |
||||
(void)status; |
||||
size_t written = 5;// = upb_bytesink_onbytes(s->bytesink, ptr);
|
||||
if(written < len) { |
||||
// TODO: mark to skip "written" bytes next time.
|
||||
return UPB_SINK_STOP; |
||||
} else { |
||||
return UPB_SINK_CONTINUE; |
||||
} |
||||
|
||||
/* public API *****************************************************************/ |
||||
|
||||
const upb_handlers *upb_pb_encoder_newhandlers(const upb_msgdef *m, |
||||
const void *owner) { |
||||
return upb_handlers_newfrozen(m, owner, newhandlers_callback, NULL); |
||||
} |
||||
|
||||
static upb_sink_status _upb_encoder_valuecb(upb_sink *sink, upb_fielddef *f, |
||||
upb_value val, upb_status *status) |
||||
{ |
||||
upb_encoder *s = (upb_encoder*)sink; |
||||
uint8_t buf[UPB_ENCODER_BUFSIZE], *ptr = buf; |
||||
upb_wire_type_t wt = upb_types[f->type].expected_wire_type; |
||||
// TODO: handle packed encoding.
|
||||
ptr = _upb_put_tag(ptr, f->number, wt); |
||||
ptr = upb_encode_value(ptr, f->type, val); |
||||
return _upb_encoder_push_buf(s, buf, ptr - buf, status); |
||||
#define ARRAYSIZE(x) (sizeof(x) / sizeof(x[0])) |
||||
|
||||
void upb_pb_encoder_init(upb_pb_encoder *e, const upb_handlers *h) { |
||||
e->output_ = NULL; |
||||
e->subc = NULL; |
||||
e->buf = e->initbuf; |
||||
e->ptr = e->buf; |
||||
e->limit = e->buf + ARRAYSIZE(e->initbuf); |
||||
e->segbuf = e->seginitbuf; |
||||
e->seglimit = e->segbuf + ARRAYSIZE(e->seginitbuf); |
||||
e->stacklimit = e->stack + ARRAYSIZE(e->stack); |
||||
upb_sink_reset(&e->input_, h, e); |
||||
} |
||||
|
||||
static upb_sink_status _upb_encoder_strcb(upb_sink *sink, upb_fielddef *f, |
||||
upb_strptr str, |
||||
int32_t start, uint32_t end, |
||||
upb_status *status) |
||||
{ |
||||
upb_encoder *s = (upb_encoder*)sink; |
||||
uint8_t buf[UPB_ENCODER_BUFSIZE], *ptr = buf; |
||||
if(start >= 0) { |
||||
ptr = _upb_put_tag(ptr, f->number, UPB_WIRE_TYPE_DELIMITED); |
||||
ptr = upb_put_UINT32(ptr, end - start); |
||||
void upb_pb_encoder_uninit(upb_pb_encoder *e) { |
||||
if (e->buf != e->initbuf) { |
||||
free(e->buf); |
||||
} |
||||
// TODO: properly handle partially consumed strings and partially supplied
|
||||
// strings.
|
||||
_upb_encoder_push_buf(s, buf, ptr - buf, status); |
||||
return _upb_encoder_push_buf(s, (uint8_t*)upb_string_getrobuf(str), end - start, status); |
||||
} |
||||
|
||||
static upb_sink_status _upb_encoder_startcb(upb_sink *sink, upb_fielddef *f, |
||||
upb_status *status) |
||||
{ |
||||
upb_encoder *s = (upb_encoder*)sink; |
||||
uint8_t buf[UPB_ENCODER_BUFSIZE], *ptr = buf; |
||||
if(f->type == UPB_TYPE(GROUP)) { |
||||
ptr = _upb_put_tag(ptr, f->number, UPB_WIRE_TYPE_START_GROUP); |
||||
} else { |
||||
ptr = _upb_put_tag(ptr, f->number, UPB_WIRE_TYPE_DELIMITED); |
||||
ptr = upb_put_UINT32(ptr, s->sizes[--s->size_offset]); |
||||
if (e->segbuf != e->seginitbuf) { |
||||
free(e->segbuf); |
||||
} |
||||
return _upb_encoder_push_buf(s, buf, ptr - buf, status); |
||||
} |
||||
|
||||
static upb_sink_status _upb_encoder_endcb(upb_sink *sink, upb_fielddef *f, |
||||
upb_status *status) |
||||
{ |
||||
upb_encoder *s = (upb_encoder*)sink; |
||||
uint8_t buf[UPB_ENCODER_BUFSIZE], *ptr = buf; |
||||
if(f->type != UPB_TYPE(GROUP)) return UPB_SINK_CONTINUE; |
||||
ptr = _upb_put_tag(ptr, f->number, UPB_WIRE_TYPE_END_GROUP); |
||||
return _upb_encoder_push_buf(s, buf, ptr - buf, status); |
||||
void upb_pb_encoder_resetoutput(upb_pb_encoder *e, upb_bytessink *output) { |
||||
upb_pb_encoder_reset(e); |
||||
e->output_ = output; |
||||
e->subc = output->closure; |
||||
} |
||||
|
||||
upb_sink_callbacks _upb_encoder_sink_vtbl = { |
||||
_upb_encoder_valuecb, |
||||
_upb_encoder_strcb, |
||||
_upb_encoder_startcb, |
||||
_upb_encoder_endcb |
||||
}; |
||||
void upb_pb_encoder_reset(upb_pb_encoder *e) { |
||||
e->segptr = NULL; |
||||
e->top = NULL; |
||||
e->depth = 0; |
||||
} |
||||
|
||||
upb_sink *upb_pb_encoder_input(upb_pb_encoder *e) { return &e->input_; } |
||||
|
Loading…
Reference in new issue