Automated rollback of commit 1492fa9598.

PiperOrigin-RevId: 660537336
pull/17741/head
Evan Brown 6 months ago committed by Copybara-Service
parent 3ce384ade2
commit 2ed410a9ca
  1. 17
      src/google/protobuf/compiler/cpp/unittest.inc
  2. 11
      src/google/protobuf/extension_set_unittest.cc
  3. 567
      src/google/protobuf/repeated_field.h
  4. 53
      src/google/protobuf/repeated_field_unittest.cc

@ -27,8 +27,9 @@
#include <memory>
#include <vector>
#include "google/protobuf/compiler/cpp/unittest.h"
#include "absl/base/attributes.h"
#include "absl/strings/cord.h"
#include "google/protobuf/compiler/cpp/unittest.h"
#include "absl/strings/string_view.h"
#ifndef _MSC_VER
// We exclude this large proto because it's too large for
@ -482,25 +483,11 @@ TEST(GENERATED_MESSAGE_TEST_NAME, ADLSwap) {
UNITTEST::TestAllTypes message1, message2;
TestUtil::SetAllFields(&message1);
// Note the address of one of the repeated fields, to verify it was swapped
// rather than copied.
const int32_t* addr = &message1.repeated_int32().Get(0);
#ifdef PROTOBUF_FORCE_COPY_IN_SWAP
const int32_t value = *addr;
#endif
using std::swap;
swap(message1, message2);
TestUtil::ExpectAllFieldsSet(message2);
TestUtil::ExpectClear(message1);
#ifdef PROTOBUF_FORCE_COPY_IN_SWAP
EXPECT_NE(addr, &message2.repeated_int32().Get(0));
EXPECT_EQ(value, message2.repeated_int32().Get(0));
#else
EXPECT_EQ(addr, &message2.repeated_int32().Get(0));
#endif
}
TEST(GENERATED_MESSAGE_TEST_NAME, CopyConstructor) {

@ -11,6 +11,7 @@
#include "google/protobuf/extension_set.h"
#include <algorithm>
#include <cstdint>
#include <string>
@ -841,10 +842,12 @@ TEST(ExtensionSetTest, SpaceUsedExcludingSelf) {
const size_t old_capacity = \
message->GetRepeatedExtension(unittest::repeated_##type##_extension) \
.Capacity(); \
EXPECT_GE( \
old_capacity, \
(RepeatedFieldLowerClampLimit<cpptype, std::max(sizeof(cpptype), \
sizeof(void*))>())); \
if (sizeof(cpptype) > 1) { \
EXPECT_GE( \
old_capacity, \
(RepeatedFieldLowerClampLimit<cpptype, std::max(sizeof(cpptype), \
sizeof(void*))>())); \
} \
for (int i = 0; i < 16; ++i) { \
message->AddExtension(unittest::repeated_##type##_extension, value); \
} \

@ -23,6 +23,8 @@
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <iterator>
#include <limits>
#include <memory>
@ -113,6 +115,122 @@ struct HeapRep {
};
};
// We use small object optimization (SOO) to store elements inline when possible
// for small repeated fields. We do so in order to avoid memory indirections.
// Note that SOO is disabled on 32-bit platforms due to alignment limitations.
// SOO data is stored in the same space as the size/capacity ints.
enum { kSooCapacityBytes = 2 * sizeof(int) };
// Arena/elements pointers are aligned to at least kSooPtrAlignment bytes so we
// can use the lower bits to encode whether we're in SOO mode and if so, the
// SOO size. NOTE: we also tried using all kSooPtrMask bits to encode SOO size
// and use all ones as a sentinel value for non-SOO mode, but that was slower in
// benchmarks/loadtests.
enum { kSooPtrAlignment = 8 };
// The mask for the size bits in SOO mode, and also a sentinel value indicating
// that the field is not in SOO mode.
enum { kSooPtrMask = ~(kSooPtrAlignment - 1) };
// This bit is 0 when in SOO mode and 1 when in non-SOO mode.
enum { kNotSooBit = kSooPtrAlignment >> 1 };
// These bits are used to encode the size when in SOO mode (sizes are 0-3).
enum { kSooSizeMask = kNotSooBit - 1 };
// The number of elements that can be stored in the SOO rep. On 64-bit
// platforms, this is 1 for int64_t, 2 for int32_t, 3 for bool, and 0 for
// absl::Cord. We return 0 to disable SOO on 32-bit platforms.
constexpr int SooCapacityElements(size_t element_size) {
if (sizeof(void*) < 8) return 0;
return std::min<int>(kSooCapacityBytes / element_size, kSooSizeMask);
}
struct LongSooRep {
// Returns char* rather than void* so callers can do pointer arithmetic.
char* elements() const {
auto ret = reinterpret_cast<char*>(elements_int & kSooPtrMask);
ABSL_DCHECK_NE(ret, nullptr);
return ret;
}
uintptr_t elements_int;
int size;
int capacity;
};
struct ShortSooRep {
constexpr ShortSooRep() = default;
explicit ShortSooRep(Arena* arena)
: arena_and_size(reinterpret_cast<uintptr_t>(arena)) {
ABSL_DCHECK_EQ(size(), 0);
}
int size() const { return arena_and_size & kSooSizeMask; }
bool is_soo() const { return (arena_and_size & kNotSooBit) == 0; }
uintptr_t arena_and_size = 0;
union {
char data[kSooCapacityBytes];
// NOTE: in some language versions, we can't have a constexpr constructor
// if we don't initialize all fields, but `data` doesn't need to be
// initialized so initialize an empty dummy variable instead.
std::true_type dummy = {};
};
};
struct SooRep {
constexpr SooRep() : short_rep() {}
explicit SooRep(Arena* arena) : short_rep(arena) {}
bool is_soo() const {
static_assert(sizeof(LongSooRep) == sizeof(ShortSooRep), "");
static_assert(offsetof(SooRep, long_rep) == offsetof(SooRep, short_rep),
"");
static_assert(offsetof(LongSooRep, elements_int) ==
offsetof(ShortSooRep, arena_and_size),
"");
return short_rep.is_soo();
}
Arena* soo_arena() const {
ABSL_DCHECK(is_soo());
return reinterpret_cast<Arena*>(short_rep.arena_and_size & kSooPtrMask);
}
int size(bool is_soo) const {
ABSL_DCHECK_EQ(is_soo, this->is_soo());
#if !defined(__clang__) && defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
#endif
return is_soo ? short_rep.size() : long_rep.size;
#if !defined(__clang__) && defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
}
void set_size(bool is_soo, int size) {
ABSL_DCHECK_EQ(is_soo, this->is_soo());
if (is_soo) {
ABSL_DCHECK_LE(size, kSooSizeMask);
short_rep.arena_and_size &= kSooPtrMask;
short_rep.arena_and_size |= size;
} else {
long_rep.size = size;
}
}
// Initializes the SooRep in non-SOO mode with the given capacity and heap
// allocation.
void set_non_soo(bool was_soo, int capacity, void* elements) {
ABSL_DCHECK_EQ(was_soo, is_soo());
ABSL_DCHECK_NE(elements, nullptr);
ABSL_DCHECK_EQ(reinterpret_cast<uintptr_t>(elements) % kSooPtrAlignment,
uintptr_t{0});
if (was_soo) long_rep.size = short_rep.size();
long_rep.capacity = capacity;
long_rep.elements_int = reinterpret_cast<uintptr_t>(elements) | kNotSooBit;
}
union {
LongSooRep long_rep;
ShortSooRep short_rep;
};
};
} // namespace internal
// RepeatedField is used to represent repeated fields of a primitive type (in
@ -318,10 +436,7 @@ class RepeatedField final
// Gets the Arena on which this RepeatedField stores its elements.
// Note: this can be inaccurate for split default fields so we make this
// function non-const.
inline Arena* GetArena() {
return Capacity() == 0 ? static_cast<Arena*>(arena_or_elements_)
: heap_rep()->arena;
}
inline Arena* GetArena() { return GetArena(is_soo()); }
// For internal use only.
//
@ -339,15 +454,35 @@ class RepeatedField final
friend class Arena;
static constexpr int kSooCapacityElements =
internal::SooCapacityElements(sizeof(Element));
static constexpr int kInitialSize = 0;
static PROTOBUF_CONSTEXPR const size_t kHeapRepHeaderSize = sizeof(HeapRep);
RepeatedField(Arena* arena, const RepeatedField& rhs);
RepeatedField(Arena* arena, RepeatedField&& rhs);
inline Arena* GetArena(bool is_soo) const {
return is_soo ? soo_rep_.soo_arena() : heap_rep()->arena;
}
void set_size(int s) { size_ = s; }
void set_capacity(int c) { capacity_ = c; }
bool is_soo() const { return soo_rep_.is_soo(); }
int size(bool is_soo) const { return soo_rep_.size(is_soo); }
int Capacity(bool is_soo) const {
#if !defined(__clang__) && defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
#endif
return is_soo ? kSooCapacityElements : soo_rep_.long_rep.capacity;
#if !defined(__clang__) && defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
}
void set_size(bool is_soo, int size) {
ABSL_DCHECK_LE(size, Capacity(is_soo));
soo_rep_.set_size(is_soo, size);
}
// Swaps entire contents with "other". Should be called only if the caller can
// guarantee that both repeated fields are on the same arena or are on the
@ -392,63 +527,83 @@ class RepeatedField final
// the old container from `old_size` to `Capacity()` (unpoison memory)
// directly before it is being released, and annotate the new container from
// `Capacity()` to `old_size` (poison unused memory).
void Grow(int old_size, int new_size);
void GrowNoAnnotate(int old_size, int new_size);
void Grow(bool was_soo, int old_size, int new_size);
void GrowNoAnnotate(bool was_soo, int old_size, int new_size);
// Annotates a change in size of this instance. This function should be called
// with (capacity, old_size) after new memory has been allocated and
// filled from previous memory), and called with (old_size, capacity)
// right before (previously annotated) memory is released.
// with (capacity, old_size) after new memory has been allocated and filled
// from previous memory, and UnpoisonBuffer() should be called right before
// (previously annotated) memory is released.
void AnnotateSize(int old_size, int new_size) const {
if (old_size != new_size) {
ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(
unsafe_elements(), unsafe_elements() + Capacity(),
unsafe_elements() + old_size, unsafe_elements() + new_size);
ABSL_ATTRIBUTE_UNUSED const bool is_soo = this->is_soo();
ABSL_ATTRIBUTE_UNUSED const Element* elem = unsafe_elements(is_soo);
ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(elem, elem + Capacity(is_soo),
elem + old_size, elem + new_size);
if (new_size < old_size) {
ABSL_ANNOTATE_MEMORY_IS_UNINITIALIZED(
unsafe_elements() + new_size,
(old_size - new_size) * sizeof(Element));
elem + new_size, (old_size - new_size) * sizeof(Element));
}
}
}
// Replaces size with new_size and returns the previous value of size. This
// function is intended to be the only place where size is modified, with the
// exception of `AddInputIterator()` where the size of added items is not
// known in advance.
inline int ExchangeCurrentSize(int new_size) {
const int prev_size = size();
// Unpoisons the memory buffer.
void UnpoisonBuffer() const {
AnnotateSize(size(), Capacity());
if (is_soo()) {
// We need to manually unpoison the SOO buffer because in reflection for
// split repeated fields, we poison the whole SOO buffer even when we
// don't actually use the whole SOO buffer (e.g. for RepeatedField<bool>).
PROTOBUF_UNPOISON_MEMORY_REGION(soo_rep_.short_rep.data,
sizeof(soo_rep_.short_rep.data));
}
}
// Replaces size with new_size and returns the previous value of
// size. This function is intended to be the only place where
// size is modified, with the exception of `AddInputIterator()`
// where the size of added items is not known in advance.
inline int ExchangeCurrentSize(bool is_soo, int new_size) {
const int prev_size = size(is_soo);
AnnotateSize(prev_size, new_size);
set_size(new_size);
set_size(is_soo, new_size);
return prev_size;
}
// Returns a pointer to elements array.
// pre-condition: Capacity() > 0.
Element* elements() const {
ABSL_DCHECK_GT(Capacity(), 0);
// Because of above pre-condition this cast is safe.
return unsafe_elements();
Element* elements(bool is_soo) {
ABSL_DCHECK_GT(Capacity(is_soo), 0);
return unsafe_elements(is_soo);
}
const Element* elements(bool is_soo) const {
return const_cast<RepeatedField*>(this)->elements(is_soo);
}
// Returns a pointer to elements array if it exists; otherwise either null or
// an invalid pointer is returned. This only happens for empty repeated
// fields, where you can't dereference this pointer anyway (it's empty).
Element* unsafe_elements() const {
return static_cast<Element*>(arena_or_elements_);
// Returns a pointer to elements array if it exists; otherwise an invalid
// pointer is returned. This only happens for empty repeated fields, where you
// can't dereference this pointer anyway (it's empty).
Element* unsafe_elements(bool is_soo) {
return is_soo ? reinterpret_cast<Element*>(soo_rep_.short_rep.data)
: reinterpret_cast<Element*>(soo_rep_.long_rep.elements());
}
const Element* unsafe_elements(bool is_soo) const {
return const_cast<RepeatedField*>(this)->unsafe_elements(is_soo);
}
// Returns a pointer to the HeapRep struct.
// pre-condition: the HeapRep must have been allocated, ie elements() is safe.
// pre-condition: the HeapRep must have been allocated, ie !is_soo().
HeapRep* heap_rep() const {
return reinterpret_cast<HeapRep*>(reinterpret_cast<char*>(elements()) -
ABSL_DCHECK(!is_soo());
return reinterpret_cast<HeapRep*>(soo_rep_.long_rep.elements() -
kHeapRepHeaderSize);
}
// Internal helper to delete all elements and deallocate the storage.
template <bool in_destructor = false>
void InternalDeallocate() {
const size_t bytes = Capacity() * sizeof(Element) + kHeapRepHeaderSize;
ABSL_DCHECK(!is_soo());
const size_t bytes = Capacity(false) * sizeof(Element) + kHeapRepHeaderSize;
if (heap_rep()->arena == nullptr) {
internal::SizedDelete(heap_rep(), bytes);
} else if (!in_destructor) {
@ -468,62 +623,70 @@ class RepeatedField final
// empty (common case), and add only an 8-byte header to the elements array
// when non-empty. We make sure to place the size fields directly in the
// RepeatedField class to avoid costly cache misses due to the indirection.
int size_;
int capacity_;
// If capacity_ == 0 this points to an Arena otherwise it points to the
// elements member of a HeapRep struct. Using this invariant allows the
// storage of the arena pointer without an extra allocation in the
// constructor.
void* arena_or_elements_;
internal::SooRep soo_rep_{};
};
// implementation ====================================================
template <typename Element>
constexpr RepeatedField<Element>::RepeatedField()
: size_(0), capacity_(0), arena_or_elements_(nullptr) {
constexpr RepeatedField<Element>::RepeatedField() {
StaticValidityCheck();
#ifdef __cpp_lib_is_constant_evaluated
if (!std::is_constant_evaluated()) {
AnnotateSize(kSooCapacityElements, 0);
}
#endif // __cpp_lib_is_constant_evaluated
}
template <typename Element>
inline RepeatedField<Element>::RepeatedField(Arena* arena)
: size_(0), capacity_(0), arena_or_elements_(arena) {
inline RepeatedField<Element>::RepeatedField(Arena* arena) : soo_rep_(arena) {
StaticValidityCheck();
AnnotateSize(kSooCapacityElements, 0);
}
template <typename Element>
inline RepeatedField<Element>::RepeatedField(Arena* arena,
const RepeatedField& rhs)
: size_(0), capacity_(0), arena_or_elements_(arena) {
: soo_rep_(arena) {
StaticValidityCheck();
if (auto size = rhs.size()) {
Grow(0, size);
ExchangeCurrentSize(size);
UninitializedCopyN(rhs.elements(), size, unsafe_elements());
AnnotateSize(kSooCapacityElements, 0);
const bool rhs_is_soo = rhs.is_soo();
if (auto size = rhs.size(rhs_is_soo)) {
bool is_soo = true;
if (size > kSooCapacityElements) {
Grow(is_soo, 0, size);
is_soo = false;
}
ExchangeCurrentSize(is_soo, size);
UninitializedCopyN(rhs.elements(rhs_is_soo), size, unsafe_elements(is_soo));
}
}
template <typename Element>
template <typename Iter, typename>
RepeatedField<Element>::RepeatedField(Iter begin, Iter end)
: size_(0), capacity_(0), arena_or_elements_(nullptr) {
RepeatedField<Element>::RepeatedField(Iter begin, Iter end) {
StaticValidityCheck();
AnnotateSize(kSooCapacityElements, 0);
Add(begin, end);
}
template <typename Element>
RepeatedField<Element>::~RepeatedField() {
StaticValidityCheck();
const bool is_soo = this->is_soo();
#ifndef NDEBUG
// Try to trigger segfault / asan failure in non-opt builds if arena_
// lifetime has ended before the destructor.
auto arena = GetArena();
auto arena = GetArena(is_soo);
if (arena) (void)arena->SpaceAllocated();
#endif
if (Capacity() > 0) {
Destroy(unsafe_elements(), unsafe_elements() + size());
InternalDeallocate<true>();
const int size = this->size(is_soo);
if (size > 0) {
Element* elem = unsafe_elements(is_soo);
Destroy(elem, elem + size);
}
UnpoisonBuffer();
if (!is_soo) InternalDeallocate<true>();
}
template <typename Element>
@ -555,9 +718,10 @@ inline RepeatedField<Element>& RepeatedField<Element>::operator=(
// We don't just call Swap(&other) here because it would perform 3 copies if
// the two fields are on different arenas.
if (this != &other) {
if (GetArena() != other.GetArena()
const Arena* arena = GetArena();
if (arena != other.GetArena()
#ifdef PROTOBUF_FORCE_COPY_IN_MOVE
|| GetArena() == nullptr
|| arena == nullptr
#endif // !PROTOBUF_FORCE_COPY_IN_MOVE
) {
CopyFrom(other);
@ -575,36 +739,44 @@ inline bool RepeatedField<Element>::empty() const {
template <typename Element>
inline int RepeatedField<Element>::size() const {
return size_;
return size(is_soo());
}
template <typename Element>
inline int RepeatedField<Element>::Capacity() const {
return capacity_;
return Capacity(is_soo());
}
template <typename Element>
inline void RepeatedField<Element>::AddAlreadyReserved(Element value) {
ABSL_DCHECK_LT(size(), Capacity());
void* p = elements() + ExchangeCurrentSize(size() + 1);
const bool is_soo = this->is_soo();
const int old_size = size(is_soo);
ABSL_DCHECK_LT(old_size, Capacity(is_soo));
void* p = elements(is_soo) + ExchangeCurrentSize(is_soo, old_size + 1);
::new (p) Element(std::move(value));
}
template <typename Element>
inline Element* RepeatedField<Element>::AddAlreadyReserved()
ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_DCHECK_LT(size(), Capacity());
const bool is_soo = this->is_soo();
const int old_size = size(is_soo);
ABSL_DCHECK_LT(old_size, Capacity(is_soo));
// new (p) <TrivialType> compiles into nothing: this is intentional as this
// function is documented to return uninitialized data for trivial types.
void* p = elements() + ExchangeCurrentSize(size() + 1);
void* p = elements(is_soo) + ExchangeCurrentSize(is_soo, old_size + 1);
return ::new (p) Element;
}
template <typename Element>
inline Element* RepeatedField<Element>::AddNAlreadyReserved(int n)
ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_DCHECK_GE(Capacity() - size(), n) << Capacity() << ", " << size();
Element* p = unsafe_elements() + ExchangeCurrentSize(size() + n);
const bool is_soo = this->is_soo();
const int old_size = size(is_soo);
ABSL_ATTRIBUTE_UNUSED const int capacity = Capacity(is_soo);
ABSL_DCHECK_GE(capacity - old_size, n) << capacity << ", " << old_size;
Element* p =
unsafe_elements(is_soo) + ExchangeCurrentSize(is_soo, old_size + n);
for (Element *begin = p, *end = p + n; begin != end; ++begin) {
new (static_cast<void*>(begin)) Element;
}
@ -614,15 +786,20 @@ inline Element* RepeatedField<Element>::AddNAlreadyReserved(int n)
template <typename Element>
inline void RepeatedField<Element>::Resize(int new_size, const Element& value) {
ABSL_DCHECK_GE(new_size, 0);
const int old_size = size();
bool is_soo = this->is_soo();
const int old_size = size(is_soo);
if (new_size > old_size) {
if (new_size > Capacity()) Grow(old_size, new_size);
Element* first = elements() + ExchangeCurrentSize(new_size);
std::uninitialized_fill(first, elements() + new_size, value);
if (new_size > Capacity(is_soo)) {
Grow(is_soo, old_size, new_size);
is_soo = false;
}
Element* elem = elements(is_soo);
Element* first = elem + ExchangeCurrentSize(is_soo, new_size);
std::uninitialized_fill(first, elem + new_size, value);
} else if (new_size < old_size) {
Element* elem = unsafe_elements();
Element* elem = unsafe_elements(is_soo);
Destroy(elem + new_size, elem + old_size);
ExchangeCurrentSize(new_size);
ExchangeCurrentSize(is_soo, new_size);
}
}
@ -631,7 +808,7 @@ inline const Element& RepeatedField<Element>::Get(int index) const
ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_DCHECK_GE(index, 0);
ABSL_DCHECK_LT(index, size());
return elements()[index];
return elements(is_soo())[index];
}
template <typename Element>
@ -639,7 +816,7 @@ inline const Element& RepeatedField<Element>::at(int index) const
ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_CHECK_GE(index, 0);
ABSL_CHECK_LT(index, size());
return elements()[index];
return elements(is_soo())[index];
}
template <typename Element>
@ -647,7 +824,7 @@ inline Element& RepeatedField<Element>::at(int index)
ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_CHECK_GE(index, 0);
ABSL_CHECK_LT(index, size());
return elements()[index];
return elements(is_soo())[index];
}
template <typename Element>
@ -655,7 +832,7 @@ inline Element* RepeatedField<Element>::Mutable(int index)
ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_DCHECK_GE(index, 0);
ABSL_DCHECK_LT(index, size());
return &elements()[index];
return &elements(is_soo())[index];
}
template <typename Element>
@ -665,69 +842,92 @@ inline void RepeatedField<Element>::Set(int index, const Element& value) {
template <typename Element>
inline void RepeatedField<Element>::Add(Element value) {
const int old_size = size();
int capacity = Capacity();
Element* elem = unsafe_elements();
bool is_soo = this->is_soo();
const int old_size = size(is_soo);
int capacity = Capacity(is_soo);
Element* elem = unsafe_elements(is_soo);
if (ABSL_PREDICT_FALSE(old_size == capacity)) {
Grow(old_size, old_size + 1);
capacity = Capacity();
elem = unsafe_elements();
Grow(is_soo, old_size, old_size + 1);
is_soo = false;
capacity = Capacity(is_soo);
elem = unsafe_elements(is_soo);
}
int new_size = old_size + 1;
void* p = elem + ExchangeCurrentSize(new_size);
void* p = elem + ExchangeCurrentSize(is_soo, new_size);
::new (p) Element(std::move(value));
// The below helps the compiler optimize dense loops.
ABSL_ASSUME(new_size == size_);
ABSL_ASSUME(elem == arena_or_elements_);
ABSL_ASSUME(capacity == capacity_);
// Note: we can't call functions in PROTOBUF_ASSUME so use local variables.
ABSL_ATTRIBUTE_UNUSED const int final_is_soo = this->is_soo();
PROTOBUF_ASSUME(is_soo == final_is_soo);
ABSL_ATTRIBUTE_UNUSED const int final_size = size(is_soo);
PROTOBUF_ASSUME(new_size == final_size);
ABSL_ATTRIBUTE_UNUSED Element* const final_elements = unsafe_elements(is_soo);
PROTOBUF_ASSUME(elem == final_elements);
ABSL_ATTRIBUTE_UNUSED const int final_capacity = Capacity(is_soo);
PROTOBUF_ASSUME(capacity == final_capacity);
}
template <typename Element>
inline Element* RepeatedField<Element>::Add() ABSL_ATTRIBUTE_LIFETIME_BOUND {
const int old_size = size();
bool is_soo = this->is_soo();
const int old_size = size(is_soo);
if (ABSL_PREDICT_FALSE(old_size == Capacity())) {
Grow(old_size, old_size + 1);
Grow(is_soo, old_size, old_size + 1);
is_soo = false;
}
void* p = unsafe_elements() + ExchangeCurrentSize(old_size + 1);
void* p = unsafe_elements(is_soo) + ExchangeCurrentSize(is_soo, old_size + 1);
return ::new (p) Element;
}
template <typename Element>
template <typename Iter>
inline void RepeatedField<Element>::AddForwardIterator(Iter begin, Iter end) {
const int old_size = size();
int capacity = Capacity();
Element* elem = unsafe_elements();
bool is_soo = this->is_soo();
const int old_size = size(is_soo);
int capacity = Capacity(is_soo);
Element* elem = unsafe_elements(is_soo);
int new_size = old_size + static_cast<int>(std::distance(begin, end));
if (ABSL_PREDICT_FALSE(new_size > capacity)) {
Grow(old_size, new_size);
elem = unsafe_elements();
capacity = Capacity();
Grow(is_soo, old_size, new_size);
is_soo = false;
elem = unsafe_elements(is_soo);
capacity = Capacity(is_soo);
}
UninitializedCopy(begin, end, elem + ExchangeCurrentSize(new_size));
UninitializedCopy(begin, end, elem + ExchangeCurrentSize(is_soo, new_size));
// The below helps the compiler optimize dense loops.
ABSL_ASSUME(new_size == size_);
ABSL_ASSUME(elem == arena_or_elements_);
ABSL_ASSUME(capacity == capacity_);
// Note: we can't call functions in PROTOBUF_ASSUME so use local variables.
ABSL_ATTRIBUTE_UNUSED const int final_is_soo = this->is_soo();
PROTOBUF_ASSUME(is_soo == final_is_soo);
ABSL_ATTRIBUTE_UNUSED const int final_size = size(is_soo);
PROTOBUF_ASSUME(new_size == final_size);
ABSL_ATTRIBUTE_UNUSED Element* const final_elements = unsafe_elements(is_soo);
PROTOBUF_ASSUME(elem == final_elements);
ABSL_ATTRIBUTE_UNUSED const int final_capacity = Capacity(is_soo);
PROTOBUF_ASSUME(capacity == final_capacity);
}
template <typename Element>
template <typename Iter>
inline void RepeatedField<Element>::AddInputIterator(Iter begin, Iter end) {
Element* elem = unsafe_elements();
Element* first = elem + size();
Element* last = elem + Capacity();
AnnotateSize(size(), Capacity());
bool is_soo = this->is_soo();
int size = this->size(is_soo);
int capacity = Capacity(is_soo);
Element* elem = unsafe_elements(is_soo);
Element* first = elem + size;
Element* last = elem + capacity;
UnpoisonBuffer();
while (begin != end) {
if (ABSL_PREDICT_FALSE(first == last)) {
int size = first - elem;
GrowNoAnnotate(size, size + 1);
elem = unsafe_elements();
size = first - elem;
GrowNoAnnotate(is_soo, size, size + 1);
is_soo = false;
elem = unsafe_elements(is_soo);
capacity = Capacity(is_soo);
first = elem + size;
last = elem + Capacity();
last = elem + capacity;
}
::new (static_cast<void*>(first)) Element(*begin);
++begin;
@ -735,8 +935,8 @@ inline void RepeatedField<Element>::AddInputIterator(Iter begin, Iter end) {
}
const int new_size = first - elem;
set_size(new_size);
AnnotateSize(Capacity(), new_size);
set_size(is_soo, new_size);
AnnotateSize(capacity, new_size);
}
template <typename Element>
@ -753,10 +953,11 @@ inline void RepeatedField<Element>::Add(Iter begin, Iter end) {
template <typename Element>
inline void RepeatedField<Element>::RemoveLast() {
const int old_size = size();
const bool is_soo = this->is_soo();
const int old_size = size(is_soo);
ABSL_DCHECK_GT(old_size, 0);
elements()[old_size - 1].~Element();
ExchangeCurrentSize(old_size - 1);
elements(is_soo)[old_size - 1].~Element();
ExchangeCurrentSize(is_soo, old_size - 1);
}
template <typename Element>
@ -764,9 +965,10 @@ void RepeatedField<Element>::ExtractSubrange(int start, int num,
Element* elements) {
ABSL_DCHECK_GE(start, 0);
ABSL_DCHECK_GE(num, 0);
const int old_size = size();
const bool is_soo = this->is_soo();
const int old_size = size(is_soo);
ABSL_DCHECK_LE(start + num, old_size);
Element* elem = unsafe_elements();
Element* elem = unsafe_elements(is_soo);
// Save the values of the removed elements if requested.
if (elements != nullptr) {
@ -783,19 +985,23 @@ void RepeatedField<Element>::ExtractSubrange(int start, int num,
template <typename Element>
inline void RepeatedField<Element>::Clear() {
Element* elem = unsafe_elements();
Destroy(elem, elem + size());
ExchangeCurrentSize(0);
const bool is_soo = this->is_soo();
Element* elem = unsafe_elements(is_soo);
Destroy(elem, elem + size(is_soo));
ExchangeCurrentSize(is_soo, 0);
}
template <typename Element>
inline void RepeatedField<Element>::MergeFrom(const RepeatedField& other) {
ABSL_DCHECK_NE(&other, this);
if (auto other_size = other.size()) {
const bool other_is_soo = other.is_soo();
if (auto other_size = other.size(other_is_soo)) {
const int old_size = size();
Reserve(old_size + other_size);
Element* dst = elements() + ExchangeCurrentSize(old_size + other_size);
UninitializedCopyN(other.elements(), other_size, dst);
const bool is_soo = this->is_soo();
Element* dst =
elements(is_soo) + ExchangeCurrentSize(is_soo, old_size + other_size);
UninitializedCopyN(other.elements(other_is_soo), other_size, dst);
}
}
@ -832,13 +1038,13 @@ inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
template <typename Element>
inline Element* RepeatedField<Element>::mutable_data()
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return unsafe_elements();
return unsafe_elements(is_soo());
}
template <typename Element>
inline const Element* RepeatedField<Element>::data() const
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return unsafe_elements();
return unsafe_elements(is_soo());
}
template <typename Element>
@ -846,27 +1052,31 @@ inline void RepeatedField<Element>::InternalSwap(
RepeatedField* PROTOBUF_RESTRICT other) {
ABSL_DCHECK(this != other);
// Swap all fields at once.
static_assert(std::is_standard_layout<RepeatedField<Element>>::value,
"offsetof() requires standard layout before c++17");
static constexpr size_t kOffset = offsetof(RepeatedField, size_);
internal::memswap<offsetof(RepeatedField, arena_or_elements_) +
sizeof(this->arena_or_elements_) - kOffset>(
reinterpret_cast<char*>(this) + kOffset,
reinterpret_cast<char*>(other) + kOffset);
// We need to unpoison during the swap in case we're in SOO mode.
UnpoisonBuffer();
other->UnpoisonBuffer();
internal::memswap<sizeof(internal::SooRep)>(
reinterpret_cast<char*>(&this->soo_rep_),
reinterpret_cast<char*>(&other->soo_rep_));
AnnotateSize(Capacity(), size());
other->AnnotateSize(other->Capacity(), other->size());
}
template <typename Element>
void RepeatedField<Element>::Swap(RepeatedField* other) {
if (this == other) return;
Arena* arena = GetArena();
Arena* other_arena = other->GetArena();
#ifdef PROTOBUF_FORCE_COPY_IN_SWAP
if (GetArena() != nullptr && GetArena() == other->GetArena()) {
if (arena != nullptr && arena == other_arena) {
#else // PROTOBUF_FORCE_COPY_IN_SWAP
if (GetArena() == other->GetArena()) {
if (arena == other_arena) {
#endif // !PROTOBUF_FORCE_COPY_IN_SWAP
InternalSwap(other);
} else {
RepeatedField<Element> temp(other->GetArena());
RepeatedField<Element> temp(other_arena);
temp.MergeFrom(*this);
CopyFrom(*other);
other->UnsafeArenaSwap(&temp);
@ -882,45 +1092,51 @@ void RepeatedField<Element>::UnsafeArenaSwap(RepeatedField* other) {
template <typename Element>
void RepeatedField<Element>::SwapElements(int index1, int index2) {
Element* elem = elements(is_soo());
using std::swap; // enable ADL with fallback
swap(elements()[index1], elements()[index2]);
swap(elem[index1], elem[index2]);
}
template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::begin()
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return iterator(unsafe_elements());
return iterator(unsafe_elements(is_soo()));
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_iterator(unsafe_elements());
return const_iterator(unsafe_elements(is_soo()));
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_iterator(unsafe_elements());
return const_iterator(unsafe_elements(is_soo()));
}
template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::end()
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return iterator(unsafe_elements() + size());
const bool is_soo = this->is_soo();
return iterator(unsafe_elements(is_soo) + size(is_soo));
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::end() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_iterator(unsafe_elements() + size());
const bool is_soo = this->is_soo();
return const_iterator(unsafe_elements(is_soo) + size(is_soo));
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_iterator(unsafe_elements() + size());
const bool is_soo = this->is_soo();
return const_iterator(unsafe_elements(is_soo) + size(is_soo));
}
template <typename Element>
inline size_t RepeatedField<Element>::SpaceUsedExcludingSelfLong() const {
const int capacity = Capacity();
return capacity > 0 ? capacity * sizeof(Element) + kHeapRepHeaderSize : 0;
return capacity > kSooCapacityElements
? capacity * sizeof(Element) + kHeapRepHeaderSize
: 0;
}
namespace internal {
@ -928,10 +1144,7 @@ namespace internal {
// requested 'new_size'. The result is clamped to the closed interval:
// [internal::kMinRepeatedFieldAllocationSize,
// std::numeric_limits<int>::max()]
// Requires:
// new_size > capacity &&
// (capacity == 0 ||
// capacity >= kRepeatedFieldLowerClampLimit)
// Requires: new_size > capacity
template <typename T, int kHeapRepHeaderSize>
inline int CalculateReserveSize(int capacity, int new_size) {
constexpr int lower_limit =
@ -945,6 +1158,15 @@ inline int CalculateReserveSize(int capacity, int new_size) {
if (PROTOBUF_PREDICT_FALSE(capacity > kMaxSizeBeforeClamp)) {
return std::numeric_limits<int>::max();
}
constexpr int kSooCapacityElements = SooCapacityElements(sizeof(T));
if (kSooCapacityElements > 0 && kSooCapacityElements < lower_limit) {
// In this case, we need to set capacity to 0 here to ensure power-of-two
// sized allocations.
if (capacity < lower_limit) capacity = 0;
} else {
ABSL_DCHECK(capacity == 0 || capacity >= lower_limit)
<< capacity << " " << lower_limit;
}
// We want to double the number of bytes, not the number of elements, to try
// to stay within power-of-two allocations.
// The allocation has kHeapRepHeaderSize + sizeof(T) * capacity.
@ -955,22 +1177,25 @@ inline int CalculateReserveSize(int capacity, int new_size) {
template <typename Element>
void RepeatedField<Element>::Reserve(int new_size) {
if (ABSL_PREDICT_FALSE(new_size > Capacity())) {
Grow(size(), new_size);
const bool was_soo = is_soo();
if (ABSL_PREDICT_FALSE(new_size > Capacity(was_soo))) {
Grow(was_soo, size(was_soo), new_size);
}
}
// Avoid inlining of Reserve(): new, copy, and delete[] lead to a significant
// amount of code bloat.
template <typename Element>
PROTOBUF_NOINLINE void RepeatedField<Element>::GrowNoAnnotate(int old_size,
PROTOBUF_NOINLINE void RepeatedField<Element>::GrowNoAnnotate(bool was_soo,
int old_size,
int new_size) {
ABSL_DCHECK_GT(new_size, Capacity());
const int old_capacity = Capacity(was_soo);
ABSL_DCHECK_GT(new_size, old_capacity);
HeapRep* new_rep;
Arena* arena = GetArena();
new_size = internal::CalculateReserveSize<Element, kHeapRepHeaderSize>(
Capacity(), new_size);
old_capacity, new_size);
ABSL_DCHECK_LE(static_cast<size_t>(new_size),
(std::numeric_limits<size_t>::max() - kHeapRepHeaderSize) /
@ -994,25 +1219,22 @@ PROTOBUF_NOINLINE void RepeatedField<Element>::GrowNoAnnotate(int old_size,
}
new_rep->arena = arena;
if (Capacity() > 0) {
if (old_size > 0) {
Element* pnew = static_cast<Element*>(new_rep->elements());
Element* pold = elements();
// TODO: add absl::is_trivially_relocatable<Element>
if (std::is_trivial<Element>::value) {
memcpy(static_cast<void*>(pnew), pold, old_size * sizeof(Element));
} else {
for (Element* end = pnew + old_size; pnew != end; ++pnew, ++pold) {
::new (static_cast<void*>(pnew)) Element(std::move(*pold));
pold->~Element();
}
if (old_size > 0) {
Element* pnew = static_cast<Element*>(new_rep->elements());
Element* pold = elements(was_soo);
// TODO: add absl::is_trivially_relocatable<Element>
if (std::is_trivial<Element>::value) {
memcpy(static_cast<void*>(pnew), pold, old_size * sizeof(Element));
} else {
for (Element* end = pnew + old_size; pnew != end; ++pnew, ++pold) {
::new (static_cast<void*>(pnew)) Element(std::move(*pold));
pold->~Element();
}
}
InternalDeallocate();
}
if (!was_soo) InternalDeallocate();
set_capacity(new_size);
arena_or_elements_ = static_cast<Element*>(new_rep->elements());
soo_rep_.set_non_soo(was_soo, new_size, new_rep->elements());
}
// Ideally we would be able to use:
@ -1021,21 +1243,22 @@ PROTOBUF_NOINLINE void RepeatedField<Element>::GrowNoAnnotate(int old_size,
// However, as explained in b/266411038#comment9, this causes issues
// in shared libraries for Youtube (and possibly elsewhere).
template <typename Element>
PROTOBUF_NOINLINE void RepeatedField<Element>::Grow(int old_size,
PROTOBUF_NOINLINE void RepeatedField<Element>::Grow(bool was_soo, int old_size,
int new_size) {
AnnotateSize(old_size, Capacity());
GrowNoAnnotate(old_size, new_size);
UnpoisonBuffer();
GrowNoAnnotate(was_soo, old_size, new_size);
AnnotateSize(Capacity(), old_size);
}
template <typename Element>
inline void RepeatedField<Element>::Truncate(int new_size) {
const int old_size = size();
const bool is_soo = this->is_soo();
const int old_size = size(is_soo);
ABSL_DCHECK_LE(new_size, old_size);
if (new_size < old_size) {
Element* elem = unsafe_elements();
Element* elem = unsafe_elements(is_soo);
Destroy(elem + new_size, elem + old_size);
ExchangeCurrentSize(new_size);
ExchangeCurrentSize(is_soo, new_size);
}
}

@ -201,12 +201,10 @@ TEST(RepeatedField, Small) {
EXPECT_TRUE(field.empty());
EXPECT_EQ(field.size(), 0);
// Additional bytes are for 'struct Rep' header.
int expected_usage =
(sizeof(Arena*) > sizeof(int) ? sizeof(Arena*) / sizeof(int) : 3) *
sizeof(int) +
sizeof(Arena*);
EXPECT_GE(field.SpaceUsedExcludingSelf(), expected_usage);
if (sizeof(void*) == 8) {
// Usage should be 0 because this should fit in SOO space.
EXPECT_EQ(field.SpaceUsedExcludingSelf(), 0);
}
}
@ -258,8 +256,11 @@ void CheckAllocationSizes(bool is_ptr) {
ASSERT_EQ((1 << log2), last_alloc);
}
// The byte size must be a multiple of 8.
ASSERT_EQ(rep->Capacity() * sizeof(T) % 8, 0);
// The byte size must be a multiple of 8 when not SOO.
const int capacity_bytes = rep->Capacity() * sizeof(T);
if (capacity_bytes > internal::kSooCapacityBytes) {
ASSERT_EQ(capacity_bytes % 8, 0);
}
}
}
}
@ -481,14 +482,6 @@ TEST(RepeatedField, Resize) {
EXPECT_TRUE(field.empty());
}
TEST(RepeatedField, ReserveNothing) {
RepeatedField<int> field;
EXPECT_EQ(0, field.Capacity());
field.Reserve(-1);
EXPECT_EQ(0, field.Capacity());
}
TEST(RepeatedField, ReserveLowerClamp) {
int clamped_value = internal::CalculateReserveSize<bool, sizeof(void*)>(0, 1);
EXPECT_GE(clamped_value, sizeof(void*) / sizeof(bool));
@ -899,9 +892,7 @@ TEST(RepeatedField, MoveConstruct) {
RepeatedField<int> source;
source.Add(1);
source.Add(2);
const int* data = source.data();
RepeatedField<int> destination = std::move(source);
EXPECT_EQ(data, destination.data());
EXPECT_THAT(destination, ElementsAre(1, 2));
// This property isn't guaranteed but it's useful to have a test that would
// catch changes in this area.
@ -928,14 +919,8 @@ TEST(RepeatedField, MoveAssign) {
source.Add(2);
RepeatedField<int> destination;
destination.Add(3);
const int* source_data = source.data();
const int* destination_data = destination.data();
destination = std::move(source);
EXPECT_EQ(source_data, destination.data());
EXPECT_THAT(destination, ElementsAre(1, 2));
// This property isn't guaranteed but it's useful to have a test that would
// catch changes in this area.
EXPECT_EQ(destination_data, source.data());
EXPECT_THAT(source, ElementsAre(3));
}
{
@ -945,9 +930,7 @@ TEST(RepeatedField, MoveAssign) {
source->Add(2);
RepeatedField<int>* destination = Arena::Create<RepeatedField<int>>(&arena);
destination->Add(3);
const int* source_data = source->data();
*destination = std::move(*source);
EXPECT_EQ(source_data, destination->data());
EXPECT_THAT(*destination, ElementsAre(1, 2));
EXPECT_THAT(*source, ElementsAre(3));
}
@ -999,9 +982,7 @@ TEST(RepeatedField, MoveAssign) {
RepeatedField<int>& alias = field;
field.Add(1);
field.Add(2);
const int* data = field.data();
field = std::move(alias);
EXPECT_EQ(data, field.data());
EXPECT_THAT(field, ElementsAre(1, 2));
}
{
@ -1009,9 +990,7 @@ TEST(RepeatedField, MoveAssign) {
RepeatedField<int>* field = Arena::Create<RepeatedField<int>>(&arena);
field->Add(1);
field->Add(2);
const int* data = field->data();
*field = std::move(*field);
EXPECT_EQ(data, field->data());
EXPECT_THAT(*field, ElementsAre(1, 2));
}
}
@ -1346,6 +1325,20 @@ TEST(RepeatedField, Cleanups) {
EXPECT_THAT(growth.cleanups, testing::UnorderedElementsAre(ptr));
}
TEST(RepeatedField, InitialSooCapacity) {
if (sizeof(void*) == 8) {
EXPECT_EQ(RepeatedField<bool>().Capacity(), 3);
EXPECT_EQ(RepeatedField<int32_t>().Capacity(), 2);
EXPECT_EQ(RepeatedField<int64_t>().Capacity(), 1);
EXPECT_EQ(RepeatedField<absl::Cord>().Capacity(), 0);
} else {
EXPECT_EQ(RepeatedField<bool>().Capacity(), 0);
EXPECT_EQ(RepeatedField<int32_t>().Capacity(), 0);
EXPECT_EQ(RepeatedField<int64_t>().Capacity(), 0);
EXPECT_EQ(RepeatedField<absl::Cord>().Capacity(), 0);
}
}
// ===================================================================
// RepeatedPtrField tests. These pretty much just mirror the RepeatedField
// tests above.

Loading…
Cancel
Save