Auto-generate files after cl/697017028

pull/19286/head
Protobuf Team Bot 4 months ago
parent 5e1cc249bf
commit 28812a8fae
  1. 17
      csharp/src/Google.Protobuf/Reflection/FeatureSetDescriptor.g.cs
  2. 613
      php/ext/google/protobuf/php-upb.c
  3. 463
      php/ext/google/protobuf/php-upb.h
  4. 613
      ruby/ext/google/protobuf_c/ruby-upb.c
  5. 463
      ruby/ext/google/protobuf_c/ruby-upb.h

@ -0,0 +1,17 @@
#region Copyright notice and license
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#endregion
namespace Google.Protobuf.Reflection;
internal sealed partial class FeatureSetDescriptor
{
// Canonical serialized form of the edition defaults, generated by embed_edition_defaults.
private const string DefaultsBase64 =
"ChMYhAciACoMCAEQAhgCIAMoATACChMY5wciACoMCAIQARgBIAIoATABChMY6AciDAgBEAEYASACKAEwASoAIOYHKOgH";
}

@ -4096,6 +4096,7 @@ void upb_Message_Freeze(upb_Message* msg, const upb_MiniTable* m) {
#include <stddef.h>
#include <stdint.h>
// Must be last.
@ -4255,14 +4256,336 @@ bool upb_Message_IsEqual(const upb_Message* msg1, const upb_Message* msg2,
if (!(options & kUpb_CompareOption_IncludeUnknownFields)) return true;
// Check the unknown fields.
size_t usize1, usize2;
const char* uf1 = upb_Message_GetUnknown(msg1, &usize1);
const char* uf2 = upb_Message_GetUnknown(msg2, &usize2);
// The wire encoder enforces a maximum depth of 100 so we match that here.
return UPB_PRIVATE(_upb_Message_UnknownFieldsAreEqual)(
uf1, usize1, uf2, usize2, 100) == kUpb_UnknownCompareResult_Equal;
return UPB_PRIVATE(_upb_Message_UnknownFieldsAreEqual)(msg1, msg2, 100) ==
kUpb_UnknownCompareResult_Equal;
}
#include <stdint.h>
#include <stdlib.h>
// Must be last.
typedef struct upb_UnknownFields upb_UnknownFields;
typedef struct {
uint32_t tag;
union {
uint64_t varint;
uint64_t uint64;
uint32_t uint32;
upb_StringView delimited;
upb_UnknownFields* group;
} data;
} upb_UnknownField;
struct upb_UnknownFields {
size_t size;
size_t capacity;
upb_UnknownField* fields;
};
typedef struct {
upb_EpsCopyInputStream stream;
upb_Arena* arena;
upb_UnknownField* tmp;
size_t tmp_size;
int depth;
upb_UnknownCompareResult status;
jmp_buf err;
} upb_UnknownField_Context;
typedef struct {
upb_UnknownField* arr_base;
upb_UnknownField* arr_ptr;
upb_UnknownField* arr_end;
uint32_t last_tag;
bool sorted;
} upb_UnknownFields_Builder;
UPB_NORETURN static void upb_UnknownFields_OutOfMemory(
upb_UnknownField_Context* ctx) {
ctx->status = kUpb_UnknownCompareResult_OutOfMemory;
UPB_LONGJMP(ctx->err, 1);
}
static void upb_UnknownFields_Grow(upb_UnknownField_Context* ctx,
upb_UnknownField** base,
upb_UnknownField** ptr,
upb_UnknownField** end) {
size_t old = (*ptr - *base);
size_t new = UPB_MAX(4, old * 2);
*base = upb_Arena_Realloc(ctx->arena, *base, old * sizeof(**base),
new * sizeof(**base));
if (!*base) upb_UnknownFields_OutOfMemory(ctx);
*ptr = *base + old;
*end = *base + new;
}
// We have to implement our own sort here, since qsort() is not an in-order
// sort. Here we use merge sort, the simplest in-order sort.
static void upb_UnknownFields_Merge(upb_UnknownField* arr, size_t start,
size_t mid, size_t end,
upb_UnknownField* tmp) {
memcpy(tmp, &arr[start], (end - start) * sizeof(*tmp));
upb_UnknownField* ptr1 = tmp;
upb_UnknownField* end1 = &tmp[mid - start];
upb_UnknownField* ptr2 = &tmp[mid - start];
upb_UnknownField* end2 = &tmp[end - start];
upb_UnknownField* out = &arr[start];
while (ptr1 < end1 && ptr2 < end2) {
if (ptr1->tag <= ptr2->tag) {
*out++ = *ptr1++;
} else {
*out++ = *ptr2++;
}
}
if (ptr1 < end1) {
memcpy(out, ptr1, (end1 - ptr1) * sizeof(*out));
} else if (ptr2 < end2) {
memcpy(out, ptr1, (end2 - ptr2) * sizeof(*out));
}
}
static void upb_UnknownFields_SortRecursive(upb_UnknownField* arr, size_t start,
size_t end, upb_UnknownField* tmp) {
if (end - start > 1) {
size_t mid = start + ((end - start) / 2);
upb_UnknownFields_SortRecursive(arr, start, mid, tmp);
upb_UnknownFields_SortRecursive(arr, mid, end, tmp);
upb_UnknownFields_Merge(arr, start, mid, end, tmp);
}
}
static void upb_UnknownFields_Sort(upb_UnknownField_Context* ctx,
upb_UnknownFields* fields) {
if (ctx->tmp_size < fields->size) {
const int oldsize = ctx->tmp_size * sizeof(*ctx->tmp);
ctx->tmp_size = UPB_MAX(8, ctx->tmp_size);
while (ctx->tmp_size < fields->size) ctx->tmp_size *= 2;
const int newsize = ctx->tmp_size * sizeof(*ctx->tmp);
ctx->tmp = upb_grealloc(ctx->tmp, oldsize, newsize);
}
upb_UnknownFields_SortRecursive(fields->fields, 0, fields->size, ctx->tmp);
}
static upb_UnknownFields* upb_UnknownFields_BuildFromBuffer(
upb_UnknownField_Context* ctx, const char** buf);
// Combines two unknown fields into one.
static void upb_CombineUnknownFields(upb_UnknownField_Context* ctx,
upb_UnknownFields_Builder* builder,
const char** buf) {
upb_UnknownField* arr_base = builder->arr_base;
upb_UnknownField* arr_ptr = builder->arr_ptr;
upb_UnknownField* arr_end = builder->arr_end;
const char* ptr = *buf;
uint32_t last_tag = builder->last_tag;
bool sorted = builder->sorted;
while (!upb_EpsCopyInputStream_IsDone(&ctx->stream, &ptr)) {
uint32_t tag;
ptr = upb_WireReader_ReadTag(ptr, &tag);
UPB_ASSERT(tag <= UINT32_MAX);
int wire_type = upb_WireReader_GetWireType(tag);
if (wire_type == kUpb_WireType_EndGroup) break;
if (tag < last_tag) sorted = false;
last_tag = tag;
if (arr_ptr == arr_end) {
upb_UnknownFields_Grow(ctx, &arr_base, &arr_ptr, &arr_end);
}
upb_UnknownField* field = arr_ptr;
field->tag = tag;
arr_ptr++;
switch (wire_type) {
case kUpb_WireType_Varint:
ptr = upb_WireReader_ReadVarint(ptr, &field->data.varint);
break;
case kUpb_WireType_64Bit:
ptr = upb_WireReader_ReadFixed64(ptr, &field->data.uint64);
break;
case kUpb_WireType_32Bit:
ptr = upb_WireReader_ReadFixed32(ptr, &field->data.uint32);
break;
case kUpb_WireType_Delimited: {
int size;
ptr = upb_WireReader_ReadSize(ptr, &size);
const char* s_ptr = ptr;
ptr = upb_EpsCopyInputStream_ReadStringAliased(&ctx->stream, &s_ptr,
size);
field->data.delimited.data = s_ptr;
field->data.delimited.size = size;
break;
}
case kUpb_WireType_StartGroup:
if (--ctx->depth == 0) {
ctx->status = kUpb_UnknownCompareResult_MaxDepthExceeded;
UPB_LONGJMP(ctx->err, 1);
}
field->data.group = upb_UnknownFields_BuildFromBuffer(ctx, &ptr);
ctx->depth++;
break;
default:
UPB_UNREACHABLE();
}
}
*buf = ptr;
builder->arr_base = arr_base;
builder->arr_ptr = arr_ptr;
builder->arr_end = arr_end;
builder->sorted = sorted;
builder->last_tag = last_tag;
}
static upb_UnknownFields* upb_UnknownFields_DoBuild(
upb_UnknownField_Context* ctx, upb_UnknownFields_Builder* builder) {
upb_UnknownFields* ret = upb_Arena_Malloc(ctx->arena, sizeof(*ret));
if (!ret) upb_UnknownFields_OutOfMemory(ctx);
ret->fields = builder->arr_base;
ret->size = builder->arr_ptr - builder->arr_base;
ret->capacity = builder->arr_end - builder->arr_base;
if (!builder->sorted) {
upb_UnknownFields_Sort(ctx, ret);
}
return ret;
}
// Builds a upb_UnknownFields data structure from the binary data in buf.
static upb_UnknownFields* upb_UnknownFields_BuildFromBuffer(
upb_UnknownField_Context* ctx, const char** buf) {
upb_UnknownFields_Builder builder = {
.arr_base = NULL,
.arr_ptr = NULL,
.arr_end = NULL,
.sorted = true,
.last_tag = 0,
};
const char* ptr = *buf;
upb_CombineUnknownFields(ctx, &builder, &ptr);
upb_UnknownFields* fields = upb_UnknownFields_DoBuild(ctx, &builder);
*buf = ptr;
return fields;
}
// Builds a upb_UnknownFields data structure from the unknown fields of a
// upb_Message.
static upb_UnknownFields* upb_UnknownFields_Build(upb_UnknownField_Context* ctx,
const upb_Message* msg) {
upb_UnknownFields_Builder builder = {
.arr_base = NULL,
.arr_ptr = NULL,
.arr_end = NULL,
.sorted = true,
.last_tag = 0,
};
uintptr_t iter = kUpb_Message_UnknownBegin;
upb_StringView view;
while (upb_Message_NextUnknown(msg, &view, &iter)) {
upb_EpsCopyInputStream_Init(&ctx->stream, &view.data, view.size, true);
upb_CombineUnknownFields(ctx, &builder, &view.data);
UPB_ASSERT(upb_EpsCopyInputStream_IsDone(&ctx->stream, &view.data) &&
!upb_EpsCopyInputStream_IsError(&ctx->stream));
}
upb_UnknownFields* fields = upb_UnknownFields_DoBuild(ctx, &builder);
return fields;
}
// Compares two sorted upb_UnknownFields structures for equality.
static bool upb_UnknownFields_IsEqual(const upb_UnknownFields* uf1,
const upb_UnknownFields* uf2) {
if (uf1->size != uf2->size) return false;
for (size_t i = 0, n = uf1->size; i < n; i++) {
upb_UnknownField* f1 = &uf1->fields[i];
upb_UnknownField* f2 = &uf2->fields[i];
if (f1->tag != f2->tag) return false;
int wire_type = f1->tag & 7;
switch (wire_type) {
case kUpb_WireType_Varint:
if (f1->data.varint != f2->data.varint) return false;
break;
case kUpb_WireType_64Bit:
if (f1->data.uint64 != f2->data.uint64) return false;
break;
case kUpb_WireType_32Bit:
if (f1->data.uint32 != f2->data.uint32) return false;
break;
case kUpb_WireType_Delimited:
if (!upb_StringView_IsEqual(f1->data.delimited, f2->data.delimited)) {
return false;
}
break;
case kUpb_WireType_StartGroup:
if (!upb_UnknownFields_IsEqual(f1->data.group, f2->data.group)) {
return false;
}
break;
default:
UPB_UNREACHABLE();
}
}
return true;
}
static upb_UnknownCompareResult upb_UnknownField_DoCompare(
upb_UnknownField_Context* ctx, const upb_Message* msg1,
const upb_Message* msg2) {
upb_UnknownCompareResult ret;
// First build both unknown fields into a sorted data structure (similar
// to the UnknownFieldSet in C++).
upb_UnknownFields* uf1 = upb_UnknownFields_Build(ctx, msg1);
upb_UnknownFields* uf2 = upb_UnknownFields_Build(ctx, msg2);
// Now perform the equality check on the sorted structures.
if (upb_UnknownFields_IsEqual(uf1, uf2)) {
ret = kUpb_UnknownCompareResult_Equal;
} else {
ret = kUpb_UnknownCompareResult_NotEqual;
}
return ret;
}
static upb_UnknownCompareResult upb_UnknownField_Compare(
upb_UnknownField_Context* const ctx, const upb_Message* msg1,
const upb_Message* msg2) {
upb_UnknownCompareResult ret;
if (UPB_SETJMP(ctx->err) == 0) {
ret = upb_UnknownField_DoCompare(ctx, msg1, msg2);
} else {
ret = ctx->status;
UPB_ASSERT(ret != kUpb_UnknownCompareResult_Equal);
}
upb_Arena_Free(ctx->arena);
upb_gfree(ctx->tmp);
return ret;
}
upb_UnknownCompareResult UPB_PRIVATE(_upb_Message_UnknownFieldsAreEqual)(
const upb_Message* msg1, const upb_Message* msg2, int max_depth) {
bool msg1_empty = !upb_Message_HasUnknown(msg1);
bool msg2_empty = !upb_Message_HasUnknown(msg2);
if (msg1_empty && msg2_empty) return kUpb_UnknownCompareResult_Equal;
if (msg1_empty || msg2_empty) return kUpb_UnknownCompareResult_NotEqual;
upb_UnknownField_Context ctx = {
.arena = upb_Arena_New(),
.depth = max_depth,
.tmp = NULL,
.tmp_size = 0,
.status = kUpb_UnknownCompareResult_Equal,
};
if (!ctx.arena) return kUpb_UnknownCompareResult_OutOfMemory;
return upb_UnknownField_Compare(&ctx, msg1, msg2);
}
@ -12032,282 +12355,6 @@ int upb_Unicode_ToUTF8(uint32_t cp, char* out) {
}
#include <stdlib.h>
// Must be last.
typedef struct upb_UnknownFields upb_UnknownFields;
typedef struct {
uint32_t tag;
union {
uint64_t varint;
uint64_t uint64;
uint32_t uint32;
upb_StringView delimited;
upb_UnknownFields* group;
} data;
} upb_UnknownField;
struct upb_UnknownFields {
size_t size;
size_t capacity;
upb_UnknownField* fields;
};
typedef struct {
upb_EpsCopyInputStream stream;
upb_Arena* arena;
upb_UnknownField* tmp;
size_t tmp_size;
int depth;
upb_UnknownCompareResult status;
jmp_buf err;
} upb_UnknownField_Context;
UPB_NORETURN static void upb_UnknownFields_OutOfMemory(
upb_UnknownField_Context* ctx) {
ctx->status = kUpb_UnknownCompareResult_OutOfMemory;
UPB_LONGJMP(ctx->err, 1);
}
static void upb_UnknownFields_Grow(upb_UnknownField_Context* ctx,
upb_UnknownField** base,
upb_UnknownField** ptr,
upb_UnknownField** end) {
size_t old = (*ptr - *base);
size_t new = UPB_MAX(4, old * 2);
*base = upb_Arena_Realloc(ctx->arena, *base, old * sizeof(**base),
new * sizeof(**base));
if (!*base) upb_UnknownFields_OutOfMemory(ctx);
*ptr = *base + old;
*end = *base + new;
}
// We have to implement our own sort here, since qsort() is not an in-order
// sort. Here we use merge sort, the simplest in-order sort.
static void upb_UnknownFields_Merge(upb_UnknownField* arr, size_t start,
size_t mid, size_t end,
upb_UnknownField* tmp) {
memcpy(tmp, &arr[start], (end - start) * sizeof(*tmp));
upb_UnknownField* ptr1 = tmp;
upb_UnknownField* end1 = &tmp[mid - start];
upb_UnknownField* ptr2 = &tmp[mid - start];
upb_UnknownField* end2 = &tmp[end - start];
upb_UnknownField* out = &arr[start];
while (ptr1 < end1 && ptr2 < end2) {
if (ptr1->tag <= ptr2->tag) {
*out++ = *ptr1++;
} else {
*out++ = *ptr2++;
}
}
if (ptr1 < end1) {
memcpy(out, ptr1, (end1 - ptr1) * sizeof(*out));
} else if (ptr2 < end2) {
memcpy(out, ptr1, (end2 - ptr2) * sizeof(*out));
}
}
static void upb_UnknownFields_SortRecursive(upb_UnknownField* arr, size_t start,
size_t end, upb_UnknownField* tmp) {
if (end - start > 1) {
size_t mid = start + ((end - start) / 2);
upb_UnknownFields_SortRecursive(arr, start, mid, tmp);
upb_UnknownFields_SortRecursive(arr, mid, end, tmp);
upb_UnknownFields_Merge(arr, start, mid, end, tmp);
}
}
static void upb_UnknownFields_Sort(upb_UnknownField_Context* ctx,
upb_UnknownFields* fields) {
if (ctx->tmp_size < fields->size) {
const int oldsize = ctx->tmp_size * sizeof(*ctx->tmp);
ctx->tmp_size = UPB_MAX(8, ctx->tmp_size);
while (ctx->tmp_size < fields->size) ctx->tmp_size *= 2;
const int newsize = ctx->tmp_size * sizeof(*ctx->tmp);
ctx->tmp = upb_grealloc(ctx->tmp, oldsize, newsize);
}
upb_UnknownFields_SortRecursive(fields->fields, 0, fields->size, ctx->tmp);
}
static upb_UnknownFields* upb_UnknownFields_DoBuild(
upb_UnknownField_Context* ctx, const char** buf) {
upb_UnknownField* arr_base = NULL;
upb_UnknownField* arr_ptr = NULL;
upb_UnknownField* arr_end = NULL;
const char* ptr = *buf;
uint32_t last_tag = 0;
bool sorted = true;
while (!upb_EpsCopyInputStream_IsDone(&ctx->stream, &ptr)) {
uint32_t tag;
ptr = upb_WireReader_ReadTag(ptr, &tag);
UPB_ASSERT(tag <= UINT32_MAX);
int wire_type = upb_WireReader_GetWireType(tag);
if (wire_type == kUpb_WireType_EndGroup) break;
if (tag < last_tag) sorted = false;
last_tag = tag;
if (arr_ptr == arr_end) {
upb_UnknownFields_Grow(ctx, &arr_base, &arr_ptr, &arr_end);
}
upb_UnknownField* field = arr_ptr;
field->tag = tag;
arr_ptr++;
switch (wire_type) {
case kUpb_WireType_Varint:
ptr = upb_WireReader_ReadVarint(ptr, &field->data.varint);
break;
case kUpb_WireType_64Bit:
ptr = upb_WireReader_ReadFixed64(ptr, &field->data.uint64);
break;
case kUpb_WireType_32Bit:
ptr = upb_WireReader_ReadFixed32(ptr, &field->data.uint32);
break;
case kUpb_WireType_Delimited: {
int size;
ptr = upb_WireReader_ReadSize(ptr, &size);
const char* s_ptr = ptr;
ptr = upb_EpsCopyInputStream_ReadStringAliased(&ctx->stream, &s_ptr,
size);
field->data.delimited.data = s_ptr;
field->data.delimited.size = size;
break;
}
case kUpb_WireType_StartGroup:
if (--ctx->depth == 0) {
ctx->status = kUpb_UnknownCompareResult_MaxDepthExceeded;
UPB_LONGJMP(ctx->err, 1);
}
field->data.group = upb_UnknownFields_DoBuild(ctx, &ptr);
ctx->depth++;
break;
default:
UPB_UNREACHABLE();
}
}
*buf = ptr;
upb_UnknownFields* ret = upb_Arena_Malloc(ctx->arena, sizeof(*ret));
if (!ret) upb_UnknownFields_OutOfMemory(ctx);
ret->fields = arr_base;
ret->size = arr_ptr - arr_base;
ret->capacity = arr_end - arr_base;
if (!sorted) {
upb_UnknownFields_Sort(ctx, ret);
}
return ret;
}
// Builds a upb_UnknownFields data structure from the binary data in buf.
static upb_UnknownFields* upb_UnknownFields_Build(upb_UnknownField_Context* ctx,
const char* ptr,
size_t size) {
upb_EpsCopyInputStream_Init(&ctx->stream, &ptr, size, true);
upb_UnknownFields* fields = upb_UnknownFields_DoBuild(ctx, &ptr);
UPB_ASSERT(upb_EpsCopyInputStream_IsDone(&ctx->stream, &ptr) &&
!upb_EpsCopyInputStream_IsError(&ctx->stream));
return fields;
}
// Compares two sorted upb_UnknownFields structures for equality.
static bool upb_UnknownFields_IsEqual(const upb_UnknownFields* uf1,
const upb_UnknownFields* uf2) {
if (uf1->size != uf2->size) return false;
for (size_t i = 0, n = uf1->size; i < n; i++) {
upb_UnknownField* f1 = &uf1->fields[i];
upb_UnknownField* f2 = &uf2->fields[i];
if (f1->tag != f2->tag) return false;
int wire_type = f1->tag & 7;
switch (wire_type) {
case kUpb_WireType_Varint:
if (f1->data.varint != f2->data.varint) return false;
break;
case kUpb_WireType_64Bit:
if (f1->data.uint64 != f2->data.uint64) return false;
break;
case kUpb_WireType_32Bit:
if (f1->data.uint32 != f2->data.uint32) return false;
break;
case kUpb_WireType_Delimited:
if (!upb_StringView_IsEqual(f1->data.delimited, f2->data.delimited)) {
return false;
}
break;
case kUpb_WireType_StartGroup:
if (!upb_UnknownFields_IsEqual(f1->data.group, f2->data.group)) {
return false;
}
break;
default:
UPB_UNREACHABLE();
}
}
return true;
}
static upb_UnknownCompareResult upb_UnknownField_DoCompare(
upb_UnknownField_Context* ctx, const char* buf1, size_t size1,
const char* buf2, size_t size2) {
upb_UnknownCompareResult ret;
// First build both unknown fields into a sorted data structure (similar
// to the UnknownFieldSet in C++).
upb_UnknownFields* uf1 = upb_UnknownFields_Build(ctx, buf1, size1);
upb_UnknownFields* uf2 = upb_UnknownFields_Build(ctx, buf2, size2);
// Now perform the equality check on the sorted structures.
if (upb_UnknownFields_IsEqual(uf1, uf2)) {
ret = kUpb_UnknownCompareResult_Equal;
} else {
ret = kUpb_UnknownCompareResult_NotEqual;
}
return ret;
}
static upb_UnknownCompareResult upb_UnknownField_Compare(
upb_UnknownField_Context* const ctx, const char* const buf1,
const size_t size1, const char* const buf2, const size_t size2) {
upb_UnknownCompareResult ret;
if (UPB_SETJMP(ctx->err) == 0) {
ret = upb_UnknownField_DoCompare(ctx, buf1, size1, buf2, size2);
} else {
ret = ctx->status;
UPB_ASSERT(ret != kUpb_UnknownCompareResult_Equal);
}
upb_Arena_Free(ctx->arena);
upb_gfree(ctx->tmp);
return ret;
}
upb_UnknownCompareResult UPB_PRIVATE(_upb_Message_UnknownFieldsAreEqual)(
const char* buf1, size_t size1, const char* buf2, size_t size2,
int max_depth) {
if (size1 == 0 && size2 == 0) return kUpb_UnknownCompareResult_Equal;
if (size1 == 0 || size2 == 0) return kUpb_UnknownCompareResult_NotEqual;
if (memcmp(buf1, buf2, size1) == 0) return kUpb_UnknownCompareResult_Equal;
upb_UnknownField_Context ctx = {
.arena = upb_Arena_New(),
.depth = max_depth,
.tmp = NULL,
.tmp_size = 0,
.status = kUpb_UnknownCompareResult_Equal,
};
if (!ctx.arena) return kUpb_UnknownCompareResult_OutOfMemory;
return upb_UnknownField_Compare(&ctx, buf1, size1, buf2, size2);
}
#include <string.h>

@ -13847,8 +13847,7 @@ typedef enum {
} upb_UnknownCompareResult;
upb_UnknownCompareResult UPB_PRIVATE(_upb_Message_UnknownFieldsAreEqual)(
const char* buf1, size_t size1, const char* buf2, size_t size2,
int max_depth);
const upb_Message* msg1, const upb_Message* msg2, int max_depth);
#ifdef __cplusplus
} /* extern "C" */
@ -13880,6 +13879,236 @@ bool UPB_PRIVATE(_upb_Message_NextExtension)(
size_t* iter);
#endif // THIRD_PARTY_UPB_UPB_MESSAGE_INTERNAL_ITERATOR_H_
#ifndef UPB_WIRE_READER_H_
#define UPB_WIRE_READER_H_
#ifndef UPB_WIRE_INTERNAL_READER_H_
#define UPB_WIRE_INTERNAL_READER_H_
// Must be last.
#define kUpb_WireReader_WireTypeBits 3
#define kUpb_WireReader_WireTypeMask 7
typedef struct {
const char* ptr;
uint64_t val;
} UPB_PRIVATE(_upb_WireReader_LongVarint);
#ifdef __cplusplus
extern "C" {
#endif
UPB_PRIVATE(_upb_WireReader_LongVarint)
UPB_PRIVATE(_upb_WireReader_ReadLongVarint)(const char* ptr, uint64_t val);
UPB_FORCEINLINE const char* UPB_PRIVATE(_upb_WireReader_ReadVarint)(
const char* ptr, uint64_t* val, int maxlen, uint64_t maxval) {
uint64_t byte = (uint8_t)*ptr;
if (UPB_LIKELY((byte & 0x80) == 0)) {
*val = (uint32_t)byte;
return ptr + 1;
}
const char* start = ptr;
UPB_PRIVATE(_upb_WireReader_LongVarint)
res = UPB_PRIVATE(_upb_WireReader_ReadLongVarint)(ptr, byte);
if (!res.ptr || (maxlen < 10 && res.ptr - start > maxlen) ||
res.val > maxval) {
return NULL; // Malformed.
}
*val = res.val;
return res.ptr;
}
UPB_API_INLINE uint32_t upb_WireReader_GetFieldNumber(uint32_t tag) {
return tag >> kUpb_WireReader_WireTypeBits;
}
UPB_API_INLINE uint8_t upb_WireReader_GetWireType(uint32_t tag) {
return tag & kUpb_WireReader_WireTypeMask;
}
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif // UPB_WIRE_INTERNAL_READER_H_
#ifndef UPB_WIRE_TYPES_H_
#define UPB_WIRE_TYPES_H_
// A list of types as they are encoded on the wire.
typedef enum {
kUpb_WireType_Varint = 0,
kUpb_WireType_64Bit = 1,
kUpb_WireType_Delimited = 2,
kUpb_WireType_StartGroup = 3,
kUpb_WireType_EndGroup = 4,
kUpb_WireType_32Bit = 5
} upb_WireType;
#endif /* UPB_WIRE_TYPES_H_ */
// Must be last.
// The upb_WireReader interface is suitable for general-purpose parsing of
// protobuf binary wire format. It is designed to be used along with
// upb_EpsCopyInputStream for buffering, and all parsing routines in this file
// assume that at least kUpb_EpsCopyInputStream_SlopBytes worth of data is
// available to read without any bounds checks.
#ifdef __cplusplus
extern "C" {
#endif
// Parses a tag into `tag`, and returns a pointer past the end of the tag, or
// NULL if there was an error in the tag data.
//
// REQUIRES: there must be at least 10 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
UPB_FORCEINLINE const char* upb_WireReader_ReadTag(const char* ptr,
uint32_t* tag) {
uint64_t val;
ptr = UPB_PRIVATE(_upb_WireReader_ReadVarint)(ptr, &val, 5, UINT32_MAX);
if (!ptr) return NULL;
*tag = val;
return ptr;
}
// Given a tag, returns the field number.
UPB_API_INLINE uint32_t upb_WireReader_GetFieldNumber(uint32_t tag);
// Given a tag, returns the wire type.
UPB_API_INLINE uint8_t upb_WireReader_GetWireType(uint32_t tag);
UPB_INLINE const char* upb_WireReader_ReadVarint(const char* ptr,
uint64_t* val) {
return UPB_PRIVATE(_upb_WireReader_ReadVarint)(ptr, val, 10, UINT64_MAX);
}
// Skips data for a varint, returning a pointer past the end of the varint, or
// NULL if there was an error in the varint data.
//
// REQUIRES: there must be at least 10 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
UPB_INLINE const char* upb_WireReader_SkipVarint(const char* ptr) {
uint64_t val;
return upb_WireReader_ReadVarint(ptr, &val);
}
// Reads a varint indicating the size of a delimited field into `size`, or
// NULL if there was an error in the varint data.
//
// REQUIRES: there must be at least 10 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
UPB_INLINE const char* upb_WireReader_ReadSize(const char* ptr, int* size) {
uint64_t size64;
ptr = upb_WireReader_ReadVarint(ptr, &size64);
if (!ptr || size64 >= INT32_MAX) return NULL;
*size = size64;
return ptr;
}
// Reads a fixed32 field, performing byte swapping if necessary.
//
// REQUIRES: there must be at least 4 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
UPB_INLINE const char* upb_WireReader_ReadFixed32(const char* ptr, void* val) {
uint32_t uval;
memcpy(&uval, ptr, 4);
uval = upb_BigEndian32(uval);
memcpy(val, &uval, 4);
return ptr + 4;
}
// Reads a fixed64 field, performing byte swapping if necessary.
//
// REQUIRES: there must be at least 4 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
UPB_INLINE const char* upb_WireReader_ReadFixed64(const char* ptr, void* val) {
uint64_t uval;
memcpy(&uval, ptr, 8);
uval = upb_BigEndian64(uval);
memcpy(val, &uval, 8);
return ptr + 8;
}
const char* UPB_PRIVATE(_upb_WireReader_SkipGroup)(
const char* ptr, uint32_t tag, int depth_limit,
upb_EpsCopyInputStream* stream);
// Skips data for a group, returning a pointer past the end of the group, or
// NULL if there was an error parsing the group. The `tag` argument should be
// the start group tag that begins the group. The `depth_limit` argument
// indicates how many levels of recursion the group is allowed to have before
// reporting a parse error (this limit exists to protect against stack
// overflow).
//
// TODO: evaluate how the depth_limit should be specified. Do users need
// control over this?
UPB_INLINE const char* upb_WireReader_SkipGroup(
const char* ptr, uint32_t tag, upb_EpsCopyInputStream* stream) {
return UPB_PRIVATE(_upb_WireReader_SkipGroup)(ptr, tag, 100, stream);
}
UPB_INLINE const char* _upb_WireReader_SkipValue(
const char* ptr, uint32_t tag, int depth_limit,
upb_EpsCopyInputStream* stream) {
switch (upb_WireReader_GetWireType(tag)) {
case kUpb_WireType_Varint:
return upb_WireReader_SkipVarint(ptr);
case kUpb_WireType_32Bit:
return ptr + 4;
case kUpb_WireType_64Bit:
return ptr + 8;
case kUpb_WireType_Delimited: {
int size;
ptr = upb_WireReader_ReadSize(ptr, &size);
if (!ptr) return NULL;
ptr += size;
return ptr;
}
case kUpb_WireType_StartGroup:
return UPB_PRIVATE(_upb_WireReader_SkipGroup)(ptr, tag, depth_limit,
stream);
case kUpb_WireType_EndGroup:
return NULL; // Should be handled before now.
default:
return NULL; // Unknown wire type.
}
}
// Skips data for a wire value of any type, returning a pointer past the end of
// the data, or NULL if there was an error parsing the group. The `tag` argument
// should be the tag that was just parsed. The `depth_limit` argument indicates
// how many levels of recursion a group is allowed to have before reporting a
// parse error (this limit exists to protect against stack overflow).
//
// REQUIRES: there must be at least 10 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
//
// TODO: evaluate how the depth_limit should be specified. Do users need
// control over this?
UPB_INLINE const char* upb_WireReader_SkipValue(
const char* ptr, uint32_t tag, upb_EpsCopyInputStream* stream) {
return _upb_WireReader_SkipValue(ptr, tag, 100, stream);
}
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif // UPB_WIRE_READER_H_
#ifndef UPB_MESSAGE_COPY_H_
#define UPB_MESSAGE_COPY_H_
@ -14364,236 +14593,6 @@ UPB_INLINE uint32_t _upb_FastDecoder_LoadTag(const char* ptr) {
#endif /* UPB_WIRE_INTERNAL_DECODER_H_ */
#ifndef UPB_WIRE_READER_H_
#define UPB_WIRE_READER_H_
#ifndef UPB_WIRE_INTERNAL_READER_H_
#define UPB_WIRE_INTERNAL_READER_H_
// Must be last.
#define kUpb_WireReader_WireTypeBits 3
#define kUpb_WireReader_WireTypeMask 7
typedef struct {
const char* ptr;
uint64_t val;
} UPB_PRIVATE(_upb_WireReader_LongVarint);
#ifdef __cplusplus
extern "C" {
#endif
UPB_PRIVATE(_upb_WireReader_LongVarint)
UPB_PRIVATE(_upb_WireReader_ReadLongVarint)(const char* ptr, uint64_t val);
UPB_FORCEINLINE const char* UPB_PRIVATE(_upb_WireReader_ReadVarint)(
const char* ptr, uint64_t* val, int maxlen, uint64_t maxval) {
uint64_t byte = (uint8_t)*ptr;
if (UPB_LIKELY((byte & 0x80) == 0)) {
*val = (uint32_t)byte;
return ptr + 1;
}
const char* start = ptr;
UPB_PRIVATE(_upb_WireReader_LongVarint)
res = UPB_PRIVATE(_upb_WireReader_ReadLongVarint)(ptr, byte);
if (!res.ptr || (maxlen < 10 && res.ptr - start > maxlen) ||
res.val > maxval) {
return NULL; // Malformed.
}
*val = res.val;
return res.ptr;
}
UPB_API_INLINE uint32_t upb_WireReader_GetFieldNumber(uint32_t tag) {
return tag >> kUpb_WireReader_WireTypeBits;
}
UPB_API_INLINE uint8_t upb_WireReader_GetWireType(uint32_t tag) {
return tag & kUpb_WireReader_WireTypeMask;
}
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif // UPB_WIRE_INTERNAL_READER_H_
#ifndef UPB_WIRE_TYPES_H_
#define UPB_WIRE_TYPES_H_
// A list of types as they are encoded on the wire.
typedef enum {
kUpb_WireType_Varint = 0,
kUpb_WireType_64Bit = 1,
kUpb_WireType_Delimited = 2,
kUpb_WireType_StartGroup = 3,
kUpb_WireType_EndGroup = 4,
kUpb_WireType_32Bit = 5
} upb_WireType;
#endif /* UPB_WIRE_TYPES_H_ */
// Must be last.
// The upb_WireReader interface is suitable for general-purpose parsing of
// protobuf binary wire format. It is designed to be used along with
// upb_EpsCopyInputStream for buffering, and all parsing routines in this file
// assume that at least kUpb_EpsCopyInputStream_SlopBytes worth of data is
// available to read without any bounds checks.
#ifdef __cplusplus
extern "C" {
#endif
// Parses a tag into `tag`, and returns a pointer past the end of the tag, or
// NULL if there was an error in the tag data.
//
// REQUIRES: there must be at least 10 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
UPB_FORCEINLINE const char* upb_WireReader_ReadTag(const char* ptr,
uint32_t* tag) {
uint64_t val;
ptr = UPB_PRIVATE(_upb_WireReader_ReadVarint)(ptr, &val, 5, UINT32_MAX);
if (!ptr) return NULL;
*tag = val;
return ptr;
}
// Given a tag, returns the field number.
UPB_API_INLINE uint32_t upb_WireReader_GetFieldNumber(uint32_t tag);
// Given a tag, returns the wire type.
UPB_API_INLINE uint8_t upb_WireReader_GetWireType(uint32_t tag);
UPB_INLINE const char* upb_WireReader_ReadVarint(const char* ptr,
uint64_t* val) {
return UPB_PRIVATE(_upb_WireReader_ReadVarint)(ptr, val, 10, UINT64_MAX);
}
// Skips data for a varint, returning a pointer past the end of the varint, or
// NULL if there was an error in the varint data.
//
// REQUIRES: there must be at least 10 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
UPB_INLINE const char* upb_WireReader_SkipVarint(const char* ptr) {
uint64_t val;
return upb_WireReader_ReadVarint(ptr, &val);
}
// Reads a varint indicating the size of a delimited field into `size`, or
// NULL if there was an error in the varint data.
//
// REQUIRES: there must be at least 10 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
UPB_INLINE const char* upb_WireReader_ReadSize(const char* ptr, int* size) {
uint64_t size64;
ptr = upb_WireReader_ReadVarint(ptr, &size64);
if (!ptr || size64 >= INT32_MAX) return NULL;
*size = size64;
return ptr;
}
// Reads a fixed32 field, performing byte swapping if necessary.
//
// REQUIRES: there must be at least 4 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
UPB_INLINE const char* upb_WireReader_ReadFixed32(const char* ptr, void* val) {
uint32_t uval;
memcpy(&uval, ptr, 4);
uval = upb_BigEndian32(uval);
memcpy(val, &uval, 4);
return ptr + 4;
}
// Reads a fixed64 field, performing byte swapping if necessary.
//
// REQUIRES: there must be at least 4 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
UPB_INLINE const char* upb_WireReader_ReadFixed64(const char* ptr, void* val) {
uint64_t uval;
memcpy(&uval, ptr, 8);
uval = upb_BigEndian64(uval);
memcpy(val, &uval, 8);
return ptr + 8;
}
const char* UPB_PRIVATE(_upb_WireReader_SkipGroup)(
const char* ptr, uint32_t tag, int depth_limit,
upb_EpsCopyInputStream* stream);
// Skips data for a group, returning a pointer past the end of the group, or
// NULL if there was an error parsing the group. The `tag` argument should be
// the start group tag that begins the group. The `depth_limit` argument
// indicates how many levels of recursion the group is allowed to have before
// reporting a parse error (this limit exists to protect against stack
// overflow).
//
// TODO: evaluate how the depth_limit should be specified. Do users need
// control over this?
UPB_INLINE const char* upb_WireReader_SkipGroup(
const char* ptr, uint32_t tag, upb_EpsCopyInputStream* stream) {
return UPB_PRIVATE(_upb_WireReader_SkipGroup)(ptr, tag, 100, stream);
}
UPB_INLINE const char* _upb_WireReader_SkipValue(
const char* ptr, uint32_t tag, int depth_limit,
upb_EpsCopyInputStream* stream) {
switch (upb_WireReader_GetWireType(tag)) {
case kUpb_WireType_Varint:
return upb_WireReader_SkipVarint(ptr);
case kUpb_WireType_32Bit:
return ptr + 4;
case kUpb_WireType_64Bit:
return ptr + 8;
case kUpb_WireType_Delimited: {
int size;
ptr = upb_WireReader_ReadSize(ptr, &size);
if (!ptr) return NULL;
ptr += size;
return ptr;
}
case kUpb_WireType_StartGroup:
return UPB_PRIVATE(_upb_WireReader_SkipGroup)(ptr, tag, depth_limit,
stream);
case kUpb_WireType_EndGroup:
return NULL; // Should be handled before now.
default:
return NULL; // Unknown wire type.
}
}
// Skips data for a wire value of any type, returning a pointer past the end of
// the data, or NULL if there was an error parsing the group. The `tag` argument
// should be the tag that was just parsed. The `depth_limit` argument indicates
// how many levels of recursion a group is allowed to have before reporting a
// parse error (this limit exists to protect against stack overflow).
//
// REQUIRES: there must be at least 10 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
//
// TODO: evaluate how the depth_limit should be specified. Do users need
// control over this?
UPB_INLINE const char* upb_WireReader_SkipValue(
const char* ptr, uint32_t tag, upb_EpsCopyInputStream* stream) {
return _upb_WireReader_SkipValue(ptr, tag, 100, stream);
}
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif // UPB_WIRE_READER_H_
/* This file was generated by upb_generator from the input file:
*
* google/protobuf/descriptor.proto

@ -4096,6 +4096,7 @@ void upb_Message_Freeze(upb_Message* msg, const upb_MiniTable* m) {
#include <stddef.h>
#include <stdint.h>
// Must be last.
@ -4255,14 +4256,336 @@ bool upb_Message_IsEqual(const upb_Message* msg1, const upb_Message* msg2,
if (!(options & kUpb_CompareOption_IncludeUnknownFields)) return true;
// Check the unknown fields.
size_t usize1, usize2;
const char* uf1 = upb_Message_GetUnknown(msg1, &usize1);
const char* uf2 = upb_Message_GetUnknown(msg2, &usize2);
// The wire encoder enforces a maximum depth of 100 so we match that here.
return UPB_PRIVATE(_upb_Message_UnknownFieldsAreEqual)(
uf1, usize1, uf2, usize2, 100) == kUpb_UnknownCompareResult_Equal;
return UPB_PRIVATE(_upb_Message_UnknownFieldsAreEqual)(msg1, msg2, 100) ==
kUpb_UnknownCompareResult_Equal;
}
#include <stdint.h>
#include <stdlib.h>
// Must be last.
typedef struct upb_UnknownFields upb_UnknownFields;
typedef struct {
uint32_t tag;
union {
uint64_t varint;
uint64_t uint64;
uint32_t uint32;
upb_StringView delimited;
upb_UnknownFields* group;
} data;
} upb_UnknownField;
struct upb_UnknownFields {
size_t size;
size_t capacity;
upb_UnknownField* fields;
};
typedef struct {
upb_EpsCopyInputStream stream;
upb_Arena* arena;
upb_UnknownField* tmp;
size_t tmp_size;
int depth;
upb_UnknownCompareResult status;
jmp_buf err;
} upb_UnknownField_Context;
typedef struct {
upb_UnknownField* arr_base;
upb_UnknownField* arr_ptr;
upb_UnknownField* arr_end;
uint32_t last_tag;
bool sorted;
} upb_UnknownFields_Builder;
UPB_NORETURN static void upb_UnknownFields_OutOfMemory(
upb_UnknownField_Context* ctx) {
ctx->status = kUpb_UnknownCompareResult_OutOfMemory;
UPB_LONGJMP(ctx->err, 1);
}
static void upb_UnknownFields_Grow(upb_UnknownField_Context* ctx,
upb_UnknownField** base,
upb_UnknownField** ptr,
upb_UnknownField** end) {
size_t old = (*ptr - *base);
size_t new = UPB_MAX(4, old * 2);
*base = upb_Arena_Realloc(ctx->arena, *base, old * sizeof(**base),
new * sizeof(**base));
if (!*base) upb_UnknownFields_OutOfMemory(ctx);
*ptr = *base + old;
*end = *base + new;
}
// We have to implement our own sort here, since qsort() is not an in-order
// sort. Here we use merge sort, the simplest in-order sort.
static void upb_UnknownFields_Merge(upb_UnknownField* arr, size_t start,
size_t mid, size_t end,
upb_UnknownField* tmp) {
memcpy(tmp, &arr[start], (end - start) * sizeof(*tmp));
upb_UnknownField* ptr1 = tmp;
upb_UnknownField* end1 = &tmp[mid - start];
upb_UnknownField* ptr2 = &tmp[mid - start];
upb_UnknownField* end2 = &tmp[end - start];
upb_UnknownField* out = &arr[start];
while (ptr1 < end1 && ptr2 < end2) {
if (ptr1->tag <= ptr2->tag) {
*out++ = *ptr1++;
} else {
*out++ = *ptr2++;
}
}
if (ptr1 < end1) {
memcpy(out, ptr1, (end1 - ptr1) * sizeof(*out));
} else if (ptr2 < end2) {
memcpy(out, ptr1, (end2 - ptr2) * sizeof(*out));
}
}
static void upb_UnknownFields_SortRecursive(upb_UnknownField* arr, size_t start,
size_t end, upb_UnknownField* tmp) {
if (end - start > 1) {
size_t mid = start + ((end - start) / 2);
upb_UnknownFields_SortRecursive(arr, start, mid, tmp);
upb_UnknownFields_SortRecursive(arr, mid, end, tmp);
upb_UnknownFields_Merge(arr, start, mid, end, tmp);
}
}
static void upb_UnknownFields_Sort(upb_UnknownField_Context* ctx,
upb_UnknownFields* fields) {
if (ctx->tmp_size < fields->size) {
const int oldsize = ctx->tmp_size * sizeof(*ctx->tmp);
ctx->tmp_size = UPB_MAX(8, ctx->tmp_size);
while (ctx->tmp_size < fields->size) ctx->tmp_size *= 2;
const int newsize = ctx->tmp_size * sizeof(*ctx->tmp);
ctx->tmp = upb_grealloc(ctx->tmp, oldsize, newsize);
}
upb_UnknownFields_SortRecursive(fields->fields, 0, fields->size, ctx->tmp);
}
static upb_UnknownFields* upb_UnknownFields_BuildFromBuffer(
upb_UnknownField_Context* ctx, const char** buf);
// Combines two unknown fields into one.
static void upb_CombineUnknownFields(upb_UnknownField_Context* ctx,
upb_UnknownFields_Builder* builder,
const char** buf) {
upb_UnknownField* arr_base = builder->arr_base;
upb_UnknownField* arr_ptr = builder->arr_ptr;
upb_UnknownField* arr_end = builder->arr_end;
const char* ptr = *buf;
uint32_t last_tag = builder->last_tag;
bool sorted = builder->sorted;
while (!upb_EpsCopyInputStream_IsDone(&ctx->stream, &ptr)) {
uint32_t tag;
ptr = upb_WireReader_ReadTag(ptr, &tag);
UPB_ASSERT(tag <= UINT32_MAX);
int wire_type = upb_WireReader_GetWireType(tag);
if (wire_type == kUpb_WireType_EndGroup) break;
if (tag < last_tag) sorted = false;
last_tag = tag;
if (arr_ptr == arr_end) {
upb_UnknownFields_Grow(ctx, &arr_base, &arr_ptr, &arr_end);
}
upb_UnknownField* field = arr_ptr;
field->tag = tag;
arr_ptr++;
switch (wire_type) {
case kUpb_WireType_Varint:
ptr = upb_WireReader_ReadVarint(ptr, &field->data.varint);
break;
case kUpb_WireType_64Bit:
ptr = upb_WireReader_ReadFixed64(ptr, &field->data.uint64);
break;
case kUpb_WireType_32Bit:
ptr = upb_WireReader_ReadFixed32(ptr, &field->data.uint32);
break;
case kUpb_WireType_Delimited: {
int size;
ptr = upb_WireReader_ReadSize(ptr, &size);
const char* s_ptr = ptr;
ptr = upb_EpsCopyInputStream_ReadStringAliased(&ctx->stream, &s_ptr,
size);
field->data.delimited.data = s_ptr;
field->data.delimited.size = size;
break;
}
case kUpb_WireType_StartGroup:
if (--ctx->depth == 0) {
ctx->status = kUpb_UnknownCompareResult_MaxDepthExceeded;
UPB_LONGJMP(ctx->err, 1);
}
field->data.group = upb_UnknownFields_BuildFromBuffer(ctx, &ptr);
ctx->depth++;
break;
default:
UPB_UNREACHABLE();
}
}
*buf = ptr;
builder->arr_base = arr_base;
builder->arr_ptr = arr_ptr;
builder->arr_end = arr_end;
builder->sorted = sorted;
builder->last_tag = last_tag;
}
static upb_UnknownFields* upb_UnknownFields_DoBuild(
upb_UnknownField_Context* ctx, upb_UnknownFields_Builder* builder) {
upb_UnknownFields* ret = upb_Arena_Malloc(ctx->arena, sizeof(*ret));
if (!ret) upb_UnknownFields_OutOfMemory(ctx);
ret->fields = builder->arr_base;
ret->size = builder->arr_ptr - builder->arr_base;
ret->capacity = builder->arr_end - builder->arr_base;
if (!builder->sorted) {
upb_UnknownFields_Sort(ctx, ret);
}
return ret;
}
// Builds a upb_UnknownFields data structure from the binary data in buf.
static upb_UnknownFields* upb_UnknownFields_BuildFromBuffer(
upb_UnknownField_Context* ctx, const char** buf) {
upb_UnknownFields_Builder builder = {
.arr_base = NULL,
.arr_ptr = NULL,
.arr_end = NULL,
.sorted = true,
.last_tag = 0,
};
const char* ptr = *buf;
upb_CombineUnknownFields(ctx, &builder, &ptr);
upb_UnknownFields* fields = upb_UnknownFields_DoBuild(ctx, &builder);
*buf = ptr;
return fields;
}
// Builds a upb_UnknownFields data structure from the unknown fields of a
// upb_Message.
static upb_UnknownFields* upb_UnknownFields_Build(upb_UnknownField_Context* ctx,
const upb_Message* msg) {
upb_UnknownFields_Builder builder = {
.arr_base = NULL,
.arr_ptr = NULL,
.arr_end = NULL,
.sorted = true,
.last_tag = 0,
};
uintptr_t iter = kUpb_Message_UnknownBegin;
upb_StringView view;
while (upb_Message_NextUnknown(msg, &view, &iter)) {
upb_EpsCopyInputStream_Init(&ctx->stream, &view.data, view.size, true);
upb_CombineUnknownFields(ctx, &builder, &view.data);
UPB_ASSERT(upb_EpsCopyInputStream_IsDone(&ctx->stream, &view.data) &&
!upb_EpsCopyInputStream_IsError(&ctx->stream));
}
upb_UnknownFields* fields = upb_UnknownFields_DoBuild(ctx, &builder);
return fields;
}
// Compares two sorted upb_UnknownFields structures for equality.
static bool upb_UnknownFields_IsEqual(const upb_UnknownFields* uf1,
const upb_UnknownFields* uf2) {
if (uf1->size != uf2->size) return false;
for (size_t i = 0, n = uf1->size; i < n; i++) {
upb_UnknownField* f1 = &uf1->fields[i];
upb_UnknownField* f2 = &uf2->fields[i];
if (f1->tag != f2->tag) return false;
int wire_type = f1->tag & 7;
switch (wire_type) {
case kUpb_WireType_Varint:
if (f1->data.varint != f2->data.varint) return false;
break;
case kUpb_WireType_64Bit:
if (f1->data.uint64 != f2->data.uint64) return false;
break;
case kUpb_WireType_32Bit:
if (f1->data.uint32 != f2->data.uint32) return false;
break;
case kUpb_WireType_Delimited:
if (!upb_StringView_IsEqual(f1->data.delimited, f2->data.delimited)) {
return false;
}
break;
case kUpb_WireType_StartGroup:
if (!upb_UnknownFields_IsEqual(f1->data.group, f2->data.group)) {
return false;
}
break;
default:
UPB_UNREACHABLE();
}
}
return true;
}
static upb_UnknownCompareResult upb_UnknownField_DoCompare(
upb_UnknownField_Context* ctx, const upb_Message* msg1,
const upb_Message* msg2) {
upb_UnknownCompareResult ret;
// First build both unknown fields into a sorted data structure (similar
// to the UnknownFieldSet in C++).
upb_UnknownFields* uf1 = upb_UnknownFields_Build(ctx, msg1);
upb_UnknownFields* uf2 = upb_UnknownFields_Build(ctx, msg2);
// Now perform the equality check on the sorted structures.
if (upb_UnknownFields_IsEqual(uf1, uf2)) {
ret = kUpb_UnknownCompareResult_Equal;
} else {
ret = kUpb_UnknownCompareResult_NotEqual;
}
return ret;
}
static upb_UnknownCompareResult upb_UnknownField_Compare(
upb_UnknownField_Context* const ctx, const upb_Message* msg1,
const upb_Message* msg2) {
upb_UnknownCompareResult ret;
if (UPB_SETJMP(ctx->err) == 0) {
ret = upb_UnknownField_DoCompare(ctx, msg1, msg2);
} else {
ret = ctx->status;
UPB_ASSERT(ret != kUpb_UnknownCompareResult_Equal);
}
upb_Arena_Free(ctx->arena);
upb_gfree(ctx->tmp);
return ret;
}
upb_UnknownCompareResult UPB_PRIVATE(_upb_Message_UnknownFieldsAreEqual)(
const upb_Message* msg1, const upb_Message* msg2, int max_depth) {
bool msg1_empty = !upb_Message_HasUnknown(msg1);
bool msg2_empty = !upb_Message_HasUnknown(msg2);
if (msg1_empty && msg2_empty) return kUpb_UnknownCompareResult_Equal;
if (msg1_empty || msg2_empty) return kUpb_UnknownCompareResult_NotEqual;
upb_UnknownField_Context ctx = {
.arena = upb_Arena_New(),
.depth = max_depth,
.tmp = NULL,
.tmp_size = 0,
.status = kUpb_UnknownCompareResult_Equal,
};
if (!ctx.arena) return kUpb_UnknownCompareResult_OutOfMemory;
return upb_UnknownField_Compare(&ctx, msg1, msg2);
}
@ -11519,282 +11842,6 @@ int upb_Unicode_ToUTF8(uint32_t cp, char* out) {
}
#include <stdlib.h>
// Must be last.
typedef struct upb_UnknownFields upb_UnknownFields;
typedef struct {
uint32_t tag;
union {
uint64_t varint;
uint64_t uint64;
uint32_t uint32;
upb_StringView delimited;
upb_UnknownFields* group;
} data;
} upb_UnknownField;
struct upb_UnknownFields {
size_t size;
size_t capacity;
upb_UnknownField* fields;
};
typedef struct {
upb_EpsCopyInputStream stream;
upb_Arena* arena;
upb_UnknownField* tmp;
size_t tmp_size;
int depth;
upb_UnknownCompareResult status;
jmp_buf err;
} upb_UnknownField_Context;
UPB_NORETURN static void upb_UnknownFields_OutOfMemory(
upb_UnknownField_Context* ctx) {
ctx->status = kUpb_UnknownCompareResult_OutOfMemory;
UPB_LONGJMP(ctx->err, 1);
}
static void upb_UnknownFields_Grow(upb_UnknownField_Context* ctx,
upb_UnknownField** base,
upb_UnknownField** ptr,
upb_UnknownField** end) {
size_t old = (*ptr - *base);
size_t new = UPB_MAX(4, old * 2);
*base = upb_Arena_Realloc(ctx->arena, *base, old * sizeof(**base),
new * sizeof(**base));
if (!*base) upb_UnknownFields_OutOfMemory(ctx);
*ptr = *base + old;
*end = *base + new;
}
// We have to implement our own sort here, since qsort() is not an in-order
// sort. Here we use merge sort, the simplest in-order sort.
static void upb_UnknownFields_Merge(upb_UnknownField* arr, size_t start,
size_t mid, size_t end,
upb_UnknownField* tmp) {
memcpy(tmp, &arr[start], (end - start) * sizeof(*tmp));
upb_UnknownField* ptr1 = tmp;
upb_UnknownField* end1 = &tmp[mid - start];
upb_UnknownField* ptr2 = &tmp[mid - start];
upb_UnknownField* end2 = &tmp[end - start];
upb_UnknownField* out = &arr[start];
while (ptr1 < end1 && ptr2 < end2) {
if (ptr1->tag <= ptr2->tag) {
*out++ = *ptr1++;
} else {
*out++ = *ptr2++;
}
}
if (ptr1 < end1) {
memcpy(out, ptr1, (end1 - ptr1) * sizeof(*out));
} else if (ptr2 < end2) {
memcpy(out, ptr1, (end2 - ptr2) * sizeof(*out));
}
}
static void upb_UnknownFields_SortRecursive(upb_UnknownField* arr, size_t start,
size_t end, upb_UnknownField* tmp) {
if (end - start > 1) {
size_t mid = start + ((end - start) / 2);
upb_UnknownFields_SortRecursive(arr, start, mid, tmp);
upb_UnknownFields_SortRecursive(arr, mid, end, tmp);
upb_UnknownFields_Merge(arr, start, mid, end, tmp);
}
}
static void upb_UnknownFields_Sort(upb_UnknownField_Context* ctx,
upb_UnknownFields* fields) {
if (ctx->tmp_size < fields->size) {
const int oldsize = ctx->tmp_size * sizeof(*ctx->tmp);
ctx->tmp_size = UPB_MAX(8, ctx->tmp_size);
while (ctx->tmp_size < fields->size) ctx->tmp_size *= 2;
const int newsize = ctx->tmp_size * sizeof(*ctx->tmp);
ctx->tmp = upb_grealloc(ctx->tmp, oldsize, newsize);
}
upb_UnknownFields_SortRecursive(fields->fields, 0, fields->size, ctx->tmp);
}
static upb_UnknownFields* upb_UnknownFields_DoBuild(
upb_UnknownField_Context* ctx, const char** buf) {
upb_UnknownField* arr_base = NULL;
upb_UnknownField* arr_ptr = NULL;
upb_UnknownField* arr_end = NULL;
const char* ptr = *buf;
uint32_t last_tag = 0;
bool sorted = true;
while (!upb_EpsCopyInputStream_IsDone(&ctx->stream, &ptr)) {
uint32_t tag;
ptr = upb_WireReader_ReadTag(ptr, &tag);
UPB_ASSERT(tag <= UINT32_MAX);
int wire_type = upb_WireReader_GetWireType(tag);
if (wire_type == kUpb_WireType_EndGroup) break;
if (tag < last_tag) sorted = false;
last_tag = tag;
if (arr_ptr == arr_end) {
upb_UnknownFields_Grow(ctx, &arr_base, &arr_ptr, &arr_end);
}
upb_UnknownField* field = arr_ptr;
field->tag = tag;
arr_ptr++;
switch (wire_type) {
case kUpb_WireType_Varint:
ptr = upb_WireReader_ReadVarint(ptr, &field->data.varint);
break;
case kUpb_WireType_64Bit:
ptr = upb_WireReader_ReadFixed64(ptr, &field->data.uint64);
break;
case kUpb_WireType_32Bit:
ptr = upb_WireReader_ReadFixed32(ptr, &field->data.uint32);
break;
case kUpb_WireType_Delimited: {
int size;
ptr = upb_WireReader_ReadSize(ptr, &size);
const char* s_ptr = ptr;
ptr = upb_EpsCopyInputStream_ReadStringAliased(&ctx->stream, &s_ptr,
size);
field->data.delimited.data = s_ptr;
field->data.delimited.size = size;
break;
}
case kUpb_WireType_StartGroup:
if (--ctx->depth == 0) {
ctx->status = kUpb_UnknownCompareResult_MaxDepthExceeded;
UPB_LONGJMP(ctx->err, 1);
}
field->data.group = upb_UnknownFields_DoBuild(ctx, &ptr);
ctx->depth++;
break;
default:
UPB_UNREACHABLE();
}
}
*buf = ptr;
upb_UnknownFields* ret = upb_Arena_Malloc(ctx->arena, sizeof(*ret));
if (!ret) upb_UnknownFields_OutOfMemory(ctx);
ret->fields = arr_base;
ret->size = arr_ptr - arr_base;
ret->capacity = arr_end - arr_base;
if (!sorted) {
upb_UnknownFields_Sort(ctx, ret);
}
return ret;
}
// Builds a upb_UnknownFields data structure from the binary data in buf.
static upb_UnknownFields* upb_UnknownFields_Build(upb_UnknownField_Context* ctx,
const char* ptr,
size_t size) {
upb_EpsCopyInputStream_Init(&ctx->stream, &ptr, size, true);
upb_UnknownFields* fields = upb_UnknownFields_DoBuild(ctx, &ptr);
UPB_ASSERT(upb_EpsCopyInputStream_IsDone(&ctx->stream, &ptr) &&
!upb_EpsCopyInputStream_IsError(&ctx->stream));
return fields;
}
// Compares two sorted upb_UnknownFields structures for equality.
static bool upb_UnknownFields_IsEqual(const upb_UnknownFields* uf1,
const upb_UnknownFields* uf2) {
if (uf1->size != uf2->size) return false;
for (size_t i = 0, n = uf1->size; i < n; i++) {
upb_UnknownField* f1 = &uf1->fields[i];
upb_UnknownField* f2 = &uf2->fields[i];
if (f1->tag != f2->tag) return false;
int wire_type = f1->tag & 7;
switch (wire_type) {
case kUpb_WireType_Varint:
if (f1->data.varint != f2->data.varint) return false;
break;
case kUpb_WireType_64Bit:
if (f1->data.uint64 != f2->data.uint64) return false;
break;
case kUpb_WireType_32Bit:
if (f1->data.uint32 != f2->data.uint32) return false;
break;
case kUpb_WireType_Delimited:
if (!upb_StringView_IsEqual(f1->data.delimited, f2->data.delimited)) {
return false;
}
break;
case kUpb_WireType_StartGroup:
if (!upb_UnknownFields_IsEqual(f1->data.group, f2->data.group)) {
return false;
}
break;
default:
UPB_UNREACHABLE();
}
}
return true;
}
static upb_UnknownCompareResult upb_UnknownField_DoCompare(
upb_UnknownField_Context* ctx, const char* buf1, size_t size1,
const char* buf2, size_t size2) {
upb_UnknownCompareResult ret;
// First build both unknown fields into a sorted data structure (similar
// to the UnknownFieldSet in C++).
upb_UnknownFields* uf1 = upb_UnknownFields_Build(ctx, buf1, size1);
upb_UnknownFields* uf2 = upb_UnknownFields_Build(ctx, buf2, size2);
// Now perform the equality check on the sorted structures.
if (upb_UnknownFields_IsEqual(uf1, uf2)) {
ret = kUpb_UnknownCompareResult_Equal;
} else {
ret = kUpb_UnknownCompareResult_NotEqual;
}
return ret;
}
static upb_UnknownCompareResult upb_UnknownField_Compare(
upb_UnknownField_Context* const ctx, const char* const buf1,
const size_t size1, const char* const buf2, const size_t size2) {
upb_UnknownCompareResult ret;
if (UPB_SETJMP(ctx->err) == 0) {
ret = upb_UnknownField_DoCompare(ctx, buf1, size1, buf2, size2);
} else {
ret = ctx->status;
UPB_ASSERT(ret != kUpb_UnknownCompareResult_Equal);
}
upb_Arena_Free(ctx->arena);
upb_gfree(ctx->tmp);
return ret;
}
upb_UnknownCompareResult UPB_PRIVATE(_upb_Message_UnknownFieldsAreEqual)(
const char* buf1, size_t size1, const char* buf2, size_t size2,
int max_depth) {
if (size1 == 0 && size2 == 0) return kUpb_UnknownCompareResult_Equal;
if (size1 == 0 || size2 == 0) return kUpb_UnknownCompareResult_NotEqual;
if (memcmp(buf1, buf2, size1) == 0) return kUpb_UnknownCompareResult_Equal;
upb_UnknownField_Context ctx = {
.arena = upb_Arena_New(),
.depth = max_depth,
.tmp = NULL,
.tmp_size = 0,
.status = kUpb_UnknownCompareResult_Equal,
};
if (!ctx.arena) return kUpb_UnknownCompareResult_OutOfMemory;
return upb_UnknownField_Compare(&ctx, buf1, size1, buf2, size2);
}
#include <string.h>

@ -13849,8 +13849,7 @@ typedef enum {
} upb_UnknownCompareResult;
upb_UnknownCompareResult UPB_PRIVATE(_upb_Message_UnknownFieldsAreEqual)(
const char* buf1, size_t size1, const char* buf2, size_t size2,
int max_depth);
const upb_Message* msg1, const upb_Message* msg2, int max_depth);
#ifdef __cplusplus
} /* extern "C" */
@ -13882,6 +13881,236 @@ bool UPB_PRIVATE(_upb_Message_NextExtension)(
size_t* iter);
#endif // THIRD_PARTY_UPB_UPB_MESSAGE_INTERNAL_ITERATOR_H_
#ifndef UPB_WIRE_READER_H_
#define UPB_WIRE_READER_H_
#ifndef UPB_WIRE_INTERNAL_READER_H_
#define UPB_WIRE_INTERNAL_READER_H_
// Must be last.
#define kUpb_WireReader_WireTypeBits 3
#define kUpb_WireReader_WireTypeMask 7
typedef struct {
const char* ptr;
uint64_t val;
} UPB_PRIVATE(_upb_WireReader_LongVarint);
#ifdef __cplusplus
extern "C" {
#endif
UPB_PRIVATE(_upb_WireReader_LongVarint)
UPB_PRIVATE(_upb_WireReader_ReadLongVarint)(const char* ptr, uint64_t val);
UPB_FORCEINLINE const char* UPB_PRIVATE(_upb_WireReader_ReadVarint)(
const char* ptr, uint64_t* val, int maxlen, uint64_t maxval) {
uint64_t byte = (uint8_t)*ptr;
if (UPB_LIKELY((byte & 0x80) == 0)) {
*val = (uint32_t)byte;
return ptr + 1;
}
const char* start = ptr;
UPB_PRIVATE(_upb_WireReader_LongVarint)
res = UPB_PRIVATE(_upb_WireReader_ReadLongVarint)(ptr, byte);
if (!res.ptr || (maxlen < 10 && res.ptr - start > maxlen) ||
res.val > maxval) {
return NULL; // Malformed.
}
*val = res.val;
return res.ptr;
}
UPB_API_INLINE uint32_t upb_WireReader_GetFieldNumber(uint32_t tag) {
return tag >> kUpb_WireReader_WireTypeBits;
}
UPB_API_INLINE uint8_t upb_WireReader_GetWireType(uint32_t tag) {
return tag & kUpb_WireReader_WireTypeMask;
}
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif // UPB_WIRE_INTERNAL_READER_H_
#ifndef UPB_WIRE_TYPES_H_
#define UPB_WIRE_TYPES_H_
// A list of types as they are encoded on the wire.
typedef enum {
kUpb_WireType_Varint = 0,
kUpb_WireType_64Bit = 1,
kUpb_WireType_Delimited = 2,
kUpb_WireType_StartGroup = 3,
kUpb_WireType_EndGroup = 4,
kUpb_WireType_32Bit = 5
} upb_WireType;
#endif /* UPB_WIRE_TYPES_H_ */
// Must be last.
// The upb_WireReader interface is suitable for general-purpose parsing of
// protobuf binary wire format. It is designed to be used along with
// upb_EpsCopyInputStream for buffering, and all parsing routines in this file
// assume that at least kUpb_EpsCopyInputStream_SlopBytes worth of data is
// available to read without any bounds checks.
#ifdef __cplusplus
extern "C" {
#endif
// Parses a tag into `tag`, and returns a pointer past the end of the tag, or
// NULL if there was an error in the tag data.
//
// REQUIRES: there must be at least 10 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
UPB_FORCEINLINE const char* upb_WireReader_ReadTag(const char* ptr,
uint32_t* tag) {
uint64_t val;
ptr = UPB_PRIVATE(_upb_WireReader_ReadVarint)(ptr, &val, 5, UINT32_MAX);
if (!ptr) return NULL;
*tag = val;
return ptr;
}
// Given a tag, returns the field number.
UPB_API_INLINE uint32_t upb_WireReader_GetFieldNumber(uint32_t tag);
// Given a tag, returns the wire type.
UPB_API_INLINE uint8_t upb_WireReader_GetWireType(uint32_t tag);
UPB_INLINE const char* upb_WireReader_ReadVarint(const char* ptr,
uint64_t* val) {
return UPB_PRIVATE(_upb_WireReader_ReadVarint)(ptr, val, 10, UINT64_MAX);
}
// Skips data for a varint, returning a pointer past the end of the varint, or
// NULL if there was an error in the varint data.
//
// REQUIRES: there must be at least 10 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
UPB_INLINE const char* upb_WireReader_SkipVarint(const char* ptr) {
uint64_t val;
return upb_WireReader_ReadVarint(ptr, &val);
}
// Reads a varint indicating the size of a delimited field into `size`, or
// NULL if there was an error in the varint data.
//
// REQUIRES: there must be at least 10 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
UPB_INLINE const char* upb_WireReader_ReadSize(const char* ptr, int* size) {
uint64_t size64;
ptr = upb_WireReader_ReadVarint(ptr, &size64);
if (!ptr || size64 >= INT32_MAX) return NULL;
*size = size64;
return ptr;
}
// Reads a fixed32 field, performing byte swapping if necessary.
//
// REQUIRES: there must be at least 4 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
UPB_INLINE const char* upb_WireReader_ReadFixed32(const char* ptr, void* val) {
uint32_t uval;
memcpy(&uval, ptr, 4);
uval = upb_BigEndian32(uval);
memcpy(val, &uval, 4);
return ptr + 4;
}
// Reads a fixed64 field, performing byte swapping if necessary.
//
// REQUIRES: there must be at least 4 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
UPB_INLINE const char* upb_WireReader_ReadFixed64(const char* ptr, void* val) {
uint64_t uval;
memcpy(&uval, ptr, 8);
uval = upb_BigEndian64(uval);
memcpy(val, &uval, 8);
return ptr + 8;
}
const char* UPB_PRIVATE(_upb_WireReader_SkipGroup)(
const char* ptr, uint32_t tag, int depth_limit,
upb_EpsCopyInputStream* stream);
// Skips data for a group, returning a pointer past the end of the group, or
// NULL if there was an error parsing the group. The `tag` argument should be
// the start group tag that begins the group. The `depth_limit` argument
// indicates how many levels of recursion the group is allowed to have before
// reporting a parse error (this limit exists to protect against stack
// overflow).
//
// TODO: evaluate how the depth_limit should be specified. Do users need
// control over this?
UPB_INLINE const char* upb_WireReader_SkipGroup(
const char* ptr, uint32_t tag, upb_EpsCopyInputStream* stream) {
return UPB_PRIVATE(_upb_WireReader_SkipGroup)(ptr, tag, 100, stream);
}
UPB_INLINE const char* _upb_WireReader_SkipValue(
const char* ptr, uint32_t tag, int depth_limit,
upb_EpsCopyInputStream* stream) {
switch (upb_WireReader_GetWireType(tag)) {
case kUpb_WireType_Varint:
return upb_WireReader_SkipVarint(ptr);
case kUpb_WireType_32Bit:
return ptr + 4;
case kUpb_WireType_64Bit:
return ptr + 8;
case kUpb_WireType_Delimited: {
int size;
ptr = upb_WireReader_ReadSize(ptr, &size);
if (!ptr) return NULL;
ptr += size;
return ptr;
}
case kUpb_WireType_StartGroup:
return UPB_PRIVATE(_upb_WireReader_SkipGroup)(ptr, tag, depth_limit,
stream);
case kUpb_WireType_EndGroup:
return NULL; // Should be handled before now.
default:
return NULL; // Unknown wire type.
}
}
// Skips data for a wire value of any type, returning a pointer past the end of
// the data, or NULL if there was an error parsing the group. The `tag` argument
// should be the tag that was just parsed. The `depth_limit` argument indicates
// how many levels of recursion a group is allowed to have before reporting a
// parse error (this limit exists to protect against stack overflow).
//
// REQUIRES: there must be at least 10 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
//
// TODO: evaluate how the depth_limit should be specified. Do users need
// control over this?
UPB_INLINE const char* upb_WireReader_SkipValue(
const char* ptr, uint32_t tag, upb_EpsCopyInputStream* stream) {
return _upb_WireReader_SkipValue(ptr, tag, 100, stream);
}
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif // UPB_WIRE_READER_H_
#ifndef UPB_MESSAGE_COPY_H_
#define UPB_MESSAGE_COPY_H_
@ -14367,236 +14596,6 @@ UPB_INLINE uint32_t _upb_FastDecoder_LoadTag(const char* ptr) {
#endif /* UPB_WIRE_INTERNAL_DECODER_H_ */
#ifndef UPB_WIRE_READER_H_
#define UPB_WIRE_READER_H_
#ifndef UPB_WIRE_INTERNAL_READER_H_
#define UPB_WIRE_INTERNAL_READER_H_
// Must be last.
#define kUpb_WireReader_WireTypeBits 3
#define kUpb_WireReader_WireTypeMask 7
typedef struct {
const char* ptr;
uint64_t val;
} UPB_PRIVATE(_upb_WireReader_LongVarint);
#ifdef __cplusplus
extern "C" {
#endif
UPB_PRIVATE(_upb_WireReader_LongVarint)
UPB_PRIVATE(_upb_WireReader_ReadLongVarint)(const char* ptr, uint64_t val);
UPB_FORCEINLINE const char* UPB_PRIVATE(_upb_WireReader_ReadVarint)(
const char* ptr, uint64_t* val, int maxlen, uint64_t maxval) {
uint64_t byte = (uint8_t)*ptr;
if (UPB_LIKELY((byte & 0x80) == 0)) {
*val = (uint32_t)byte;
return ptr + 1;
}
const char* start = ptr;
UPB_PRIVATE(_upb_WireReader_LongVarint)
res = UPB_PRIVATE(_upb_WireReader_ReadLongVarint)(ptr, byte);
if (!res.ptr || (maxlen < 10 && res.ptr - start > maxlen) ||
res.val > maxval) {
return NULL; // Malformed.
}
*val = res.val;
return res.ptr;
}
UPB_API_INLINE uint32_t upb_WireReader_GetFieldNumber(uint32_t tag) {
return tag >> kUpb_WireReader_WireTypeBits;
}
UPB_API_INLINE uint8_t upb_WireReader_GetWireType(uint32_t tag) {
return tag & kUpb_WireReader_WireTypeMask;
}
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif // UPB_WIRE_INTERNAL_READER_H_
#ifndef UPB_WIRE_TYPES_H_
#define UPB_WIRE_TYPES_H_
// A list of types as they are encoded on the wire.
typedef enum {
kUpb_WireType_Varint = 0,
kUpb_WireType_64Bit = 1,
kUpb_WireType_Delimited = 2,
kUpb_WireType_StartGroup = 3,
kUpb_WireType_EndGroup = 4,
kUpb_WireType_32Bit = 5
} upb_WireType;
#endif /* UPB_WIRE_TYPES_H_ */
// Must be last.
// The upb_WireReader interface is suitable for general-purpose parsing of
// protobuf binary wire format. It is designed to be used along with
// upb_EpsCopyInputStream for buffering, and all parsing routines in this file
// assume that at least kUpb_EpsCopyInputStream_SlopBytes worth of data is
// available to read without any bounds checks.
#ifdef __cplusplus
extern "C" {
#endif
// Parses a tag into `tag`, and returns a pointer past the end of the tag, or
// NULL if there was an error in the tag data.
//
// REQUIRES: there must be at least 10 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
UPB_FORCEINLINE const char* upb_WireReader_ReadTag(const char* ptr,
uint32_t* tag) {
uint64_t val;
ptr = UPB_PRIVATE(_upb_WireReader_ReadVarint)(ptr, &val, 5, UINT32_MAX);
if (!ptr) return NULL;
*tag = val;
return ptr;
}
// Given a tag, returns the field number.
UPB_API_INLINE uint32_t upb_WireReader_GetFieldNumber(uint32_t tag);
// Given a tag, returns the wire type.
UPB_API_INLINE uint8_t upb_WireReader_GetWireType(uint32_t tag);
UPB_INLINE const char* upb_WireReader_ReadVarint(const char* ptr,
uint64_t* val) {
return UPB_PRIVATE(_upb_WireReader_ReadVarint)(ptr, val, 10, UINT64_MAX);
}
// Skips data for a varint, returning a pointer past the end of the varint, or
// NULL if there was an error in the varint data.
//
// REQUIRES: there must be at least 10 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
UPB_INLINE const char* upb_WireReader_SkipVarint(const char* ptr) {
uint64_t val;
return upb_WireReader_ReadVarint(ptr, &val);
}
// Reads a varint indicating the size of a delimited field into `size`, or
// NULL if there was an error in the varint data.
//
// REQUIRES: there must be at least 10 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
UPB_INLINE const char* upb_WireReader_ReadSize(const char* ptr, int* size) {
uint64_t size64;
ptr = upb_WireReader_ReadVarint(ptr, &size64);
if (!ptr || size64 >= INT32_MAX) return NULL;
*size = size64;
return ptr;
}
// Reads a fixed32 field, performing byte swapping if necessary.
//
// REQUIRES: there must be at least 4 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
UPB_INLINE const char* upb_WireReader_ReadFixed32(const char* ptr, void* val) {
uint32_t uval;
memcpy(&uval, ptr, 4);
uval = upb_BigEndian32(uval);
memcpy(val, &uval, 4);
return ptr + 4;
}
// Reads a fixed64 field, performing byte swapping if necessary.
//
// REQUIRES: there must be at least 4 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
UPB_INLINE const char* upb_WireReader_ReadFixed64(const char* ptr, void* val) {
uint64_t uval;
memcpy(&uval, ptr, 8);
uval = upb_BigEndian64(uval);
memcpy(val, &uval, 8);
return ptr + 8;
}
const char* UPB_PRIVATE(_upb_WireReader_SkipGroup)(
const char* ptr, uint32_t tag, int depth_limit,
upb_EpsCopyInputStream* stream);
// Skips data for a group, returning a pointer past the end of the group, or
// NULL if there was an error parsing the group. The `tag` argument should be
// the start group tag that begins the group. The `depth_limit` argument
// indicates how many levels of recursion the group is allowed to have before
// reporting a parse error (this limit exists to protect against stack
// overflow).
//
// TODO: evaluate how the depth_limit should be specified. Do users need
// control over this?
UPB_INLINE const char* upb_WireReader_SkipGroup(
const char* ptr, uint32_t tag, upb_EpsCopyInputStream* stream) {
return UPB_PRIVATE(_upb_WireReader_SkipGroup)(ptr, tag, 100, stream);
}
UPB_INLINE const char* _upb_WireReader_SkipValue(
const char* ptr, uint32_t tag, int depth_limit,
upb_EpsCopyInputStream* stream) {
switch (upb_WireReader_GetWireType(tag)) {
case kUpb_WireType_Varint:
return upb_WireReader_SkipVarint(ptr);
case kUpb_WireType_32Bit:
return ptr + 4;
case kUpb_WireType_64Bit:
return ptr + 8;
case kUpb_WireType_Delimited: {
int size;
ptr = upb_WireReader_ReadSize(ptr, &size);
if (!ptr) return NULL;
ptr += size;
return ptr;
}
case kUpb_WireType_StartGroup:
return UPB_PRIVATE(_upb_WireReader_SkipGroup)(ptr, tag, depth_limit,
stream);
case kUpb_WireType_EndGroup:
return NULL; // Should be handled before now.
default:
return NULL; // Unknown wire type.
}
}
// Skips data for a wire value of any type, returning a pointer past the end of
// the data, or NULL if there was an error parsing the group. The `tag` argument
// should be the tag that was just parsed. The `depth_limit` argument indicates
// how many levels of recursion a group is allowed to have before reporting a
// parse error (this limit exists to protect against stack overflow).
//
// REQUIRES: there must be at least 10 bytes of data available at `ptr`.
// Bounds checks must be performed before calling this function, preferably
// by calling upb_EpsCopyInputStream_IsDone().
//
// TODO: evaluate how the depth_limit should be specified. Do users need
// control over this?
UPB_INLINE const char* upb_WireReader_SkipValue(
const char* ptr, uint32_t tag, upb_EpsCopyInputStream* stream) {
return _upb_WireReader_SkipValue(ptr, tag, 100, stream);
}
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif // UPB_WIRE_READER_H_
#ifndef UPB_LEX_STRTOD_H_
#define UPB_LEX_STRTOD_H_

Loading…
Cancel
Save