|
|
|
// Protocol Buffers - Google's data interchange format
|
|
|
|
// Copyright 2023 Google LLC. All rights reserved.
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
//
|
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
|
// license that can be found in the LICENSE file or at
|
|
|
|
// https://developers.google.com/open-source/licenses/bsd
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
|
|
|
|
#ifndef UPB_UPB_GENERATOR_PLUGIN_H_
|
|
|
|
#define UPB_UPB_GENERATOR_PLUGIN_H_
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
#include <cstring>
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
#include <string>
|
|
|
|
#include <utility>
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
#ifdef _WIN32
|
|
|
|
#include <fcntl.h>
|
|
|
|
#include <io.h>
|
|
|
|
#endif
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
|
|
|
|
#include "absl/container/flat_hash_set.h"
|
|
|
|
#include "absl/log/absl_log.h"
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
#include "absl/strings/string_view.h"
|
|
|
|
#include "google/protobuf/compiler/code_generator_lite.h"
|
|
|
|
#include "upb/base/status.hpp"
|
|
|
|
#include "upb/base/string_view.h"
|
|
|
|
#include "upb/mem/arena.h"
|
|
|
|
#include "upb/mem/arena.hpp"
|
|
|
|
#include "upb/reflection/def.hpp"
|
Fixed layering check violations once and for all in upb bootstrapping.
Our bootstrapping setup compiles multiple versions of the generated code for `descriptor.proto` and `plugin.proto`, one for each stage of the bootstrap. For source files (`.c`), we can always select the correct version of the file in the BUILD rules, but for header files we need to make sure the correct stage's file is always selected via `#include`.
Previously we used `cc_library(includes=[])` to make it appear as though our bootstrapped headers had the same names as the "real" headers. This allowed a lot of the code to be agnostic to whether a bootstrap header was being used, which simplified things because we did not have to change the code performing the `#include`.
Unfortunately, due to build system limitations, this sometimes led to the incorrect header getting included. This should not have been possible, because we had a clean BUILD graph that should have removed all ambiguity about which header should be available. But in non-sandboxed builds, the compiler was able to find headers that were not actually in `deps=[]`, and worse it preferred those headers over the headers that actually were in `deps=[]`. This led to unintended results and errors about layering check violations.
This CL fixes the problem by removing all use of `includes=[]`. We now spell a full pathname to all bootstrap headers, so this class of errors is no longer possible. Unfortunately this adds some complexity, as we have to hard-code these full paths in several places.
A nice improvement in this CL is that `bootstrap_upb_proto_library()` can now only be used for bootstrapping; it only exposes the `descriptor_bootstrap.h` / `plugin_bootstrap.h` files. Anyone wanting to use the normal `net/proto2/proto/descriptor.upb.h` file should depend on `//net/proto2/proto:descriptor_upb_c_proto` target instead.
PiperOrigin-RevId: 664953196
5 months ago
|
|
|
#include "upb/reflection/descriptor_bootstrap.h"
|
|
|
|
#include "upb_generator/plugin_bootstrap.h"
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
|
|
|
|
// Must be last.
|
|
|
|
#include "upb/port/def.inc"
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
|
|
|
|
namespace upb {
|
|
|
|
namespace generator {
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
|
|
|
|
inline std::vector<std::pair<std::string, std::string>> ParseGeneratorParameter(
|
|
|
|
const absl::string_view text) {
|
|
|
|
std::vector<std::pair<std::string, std::string>> ret;
|
|
|
|
google::protobuf::compiler::ParseGeneratorParameter(text, &ret);
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
class Plugin {
|
|
|
|
public:
|
|
|
|
Plugin() { ReadRequest(); }
|
|
|
|
~Plugin() { WriteResponse(); }
|
|
|
|
|
|
|
|
absl::string_view parameter() const {
|
|
|
|
return ToStringView(
|
|
|
|
UPB_DESC(compiler_CodeGeneratorRequest_parameter)(request_));
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
void GenerateFilesRaw(T&& func) {
|
|
|
|
absl::flat_hash_set<absl::string_view> files_to_generate;
|
|
|
|
size_t size;
|
|
|
|
const upb_StringView* file_to_generate = UPB_DESC(
|
|
|
|
compiler_CodeGeneratorRequest_file_to_generate)(request_, &size);
|
|
|
|
for (size_t i = 0; i < size; i++) {
|
|
|
|
files_to_generate.insert(
|
|
|
|
{file_to_generate[i].data, file_to_generate[i].size});
|
|
|
|
}
|
|
|
|
|
|
|
|
const UPB_DESC(FileDescriptorProto)* const* files =
|
|
|
|
UPB_DESC(compiler_CodeGeneratorRequest_proto_file)(request_, &size);
|
|
|
|
for (size_t i = 0; i < size; i++) {
|
|
|
|
upb::Status status;
|
|
|
|
absl::string_view name =
|
|
|
|
ToStringView(UPB_DESC(FileDescriptorProto_name)(files[i]));
|
|
|
|
func(files[i], files_to_generate.contains(name));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
void GenerateFiles(T&& func) {
|
|
|
|
GenerateFilesRaw(
|
|
|
|
[this, &func](const UPB_DESC(FileDescriptorProto) * file_proto,
|
|
|
|
bool generate) {
|
|
|
|
upb::Status status;
|
|
|
|
upb::FileDefPtr file = pool_.AddFile(file_proto, &status);
|
|
|
|
if (!file) {
|
|
|
|
absl::string_view name =
|
|
|
|
ToStringView(UPB_DESC(FileDescriptorProto_name)(file_proto));
|
|
|
|
ABSL_LOG(FATAL) << "Couldn't add file " << name
|
|
|
|
<< " to DefPool: " << status.error_message();
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
}
|
|
|
|
if (generate) func(file);
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
void SetError(absl::string_view error) {
|
|
|
|
char* data =
|
|
|
|
static_cast<char*>(upb_Arena_Malloc(arena_.ptr(), error.size()));
|
|
|
|
memcpy(data, error.data(), error.size());
|
|
|
|
UPB_DESC(compiler_CodeGeneratorResponse_set_error)
|
|
|
|
(response_, upb_StringView_FromDataAndSize(data, error.size()));
|
|
|
|
}
|
|
|
|
|
|
|
|
void AddOutputFile(absl::string_view filename, absl::string_view content) {
|
|
|
|
UPB_DESC(compiler_CodeGeneratorResponse_File)* file = UPB_DESC(
|
|
|
|
compiler_CodeGeneratorResponse_add_file)(response_, arena_.ptr());
|
|
|
|
UPB_DESC(compiler_CodeGeneratorResponse_File_set_name)
|
|
|
|
(file, StringDup(filename));
|
|
|
|
UPB_DESC(compiler_CodeGeneratorResponse_File_set_content)
|
|
|
|
(file, StringDup(content));
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
upb::Arena arena_;
|
|
|
|
upb::DefPool pool_;
|
|
|
|
UPB_DESC(compiler_CodeGeneratorRequest) * request_;
|
|
|
|
UPB_DESC(compiler_CodeGeneratorResponse) * response_;
|
|
|
|
|
|
|
|
static absl::string_view ToStringView(upb_StringView sv) {
|
|
|
|
return absl::string_view(sv.data, sv.size);
|
|
|
|
}
|
|
|
|
|
|
|
|
upb_StringView StringDup(absl::string_view s) {
|
|
|
|
char* data =
|
|
|
|
reinterpret_cast<char*>(upb_Arena_Malloc(arena_.ptr(), s.size()));
|
|
|
|
memcpy(data, s.data(), s.size());
|
|
|
|
return upb_StringView_FromDataAndSize(data, s.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string ReadAllStdinBinary() {
|
|
|
|
std::string data;
|
|
|
|
#ifdef _WIN32
|
|
|
|
_setmode(_fileno(stdin), _O_BINARY);
|
|
|
|
_setmode(_fileno(stdout), _O_BINARY);
|
|
|
|
#endif
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
char buf[4096];
|
|
|
|
while (size_t len = fread(buf, 1, sizeof(buf), stdin)) {
|
|
|
|
data.append(buf, len);
|
|
|
|
}
|
|
|
|
return data;
|
|
|
|
}
|
|
|
|
|
|
|
|
void ReadRequest() {
|
|
|
|
std::string data = ReadAllStdinBinary();
|
|
|
|
request_ = UPB_DESC(compiler_CodeGeneratorRequest_parse)(
|
|
|
|
data.data(), data.size(), arena_.ptr());
|
|
|
|
if (!request_) {
|
|
|
|
ABSL_LOG(FATAL) << "Failed to parse CodeGeneratorRequest";
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
}
|
|
|
|
response_ = UPB_DESC(compiler_CodeGeneratorResponse_new)(arena_.ptr());
|
|
|
|
|
|
|
|
int features =
|
|
|
|
UPB_DESC(compiler_CodeGeneratorResponse_FEATURE_PROTO3_OPTIONAL) |
|
|
|
|
UPB_DESC(compiler_CodeGeneratorResponse_FEATURE_SUPPORTS_EDITIONS);
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
UPB_DESC(compiler_CodeGeneratorResponse_set_supported_features)
|
|
|
|
(response_, features);
|
|
|
|
UPB_DESC(compiler_CodeGeneratorResponse_set_minimum_edition)
|
|
|
|
(response_, UPB_DESC(EDITION_PROTO2));
|
|
|
|
UPB_DESC(compiler_CodeGeneratorResponse_set_maximum_edition)
|
|
|
|
(response_, UPB_DESC(EDITION_2023));
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
}
|
|
|
|
|
|
|
|
void WriteResponse() {
|
|
|
|
size_t size;
|
|
|
|
char* serialized = UPB_DESC(compiler_CodeGeneratorResponse_serialize)(
|
|
|
|
response_, arena_.ptr(), &size);
|
|
|
|
if (!serialized) {
|
|
|
|
ABSL_LOG(FATAL) << "Failed to serialize CodeGeneratorResponse";
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
}
|
|
|
|
|
|
|
|
if (fwrite(serialized, 1, size, stdout) != size) {
|
|
|
|
ABSL_LOG(FATAL) << "Failed to write response to stdout";
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace generator
|
|
|
|
} // namespace upb
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
|
|
|
|
#include "upb/port/undef.inc"
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
|
|
|
|
#endif // UPB_UPB_GENERATOR_PLUGIN_H_
|