Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1083 lines
38 KiB

// Protocol Buffers - Google's data interchange format
// Copyright 2023 Google LLC. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
//! UPB FFI wrapper code for use by Rust Protobuf.
use crate::__internal::{Enum, Private, PtrAndLen, RawArena, RawMap, RawMessage, RawRepeatedField};
use crate::{
Map, MapIter, MapMut, MapView, Mut, ProtoStr, Proxied, ProxiedInMapValue, ProxiedInRepeated,
Repeated, RepeatedMut, RepeatedView, SettableValue, View, ViewProxy,
};
use core::fmt::Debug;
use std::alloc;
use std::alloc::Layout;
use std::cell::UnsafeCell;
use std::ffi::c_int;
use std::fmt;
use std::marker::PhantomData;
use std::mem::{align_of, size_of, ManuallyDrop, MaybeUninit};
use std::ops::Deref;
use std::ptr::{self, NonNull};
use std::slice;
use std::sync::OnceLock;
/// See `upb/port/def.inc`.
const UPB_MALLOC_ALIGN: usize = 8;
const _CHECK_UPB_MALLOC_ALIGN_AT_LEAST_POINTER_ALIGNED: () =
assert!(UPB_MALLOC_ALIGN >= align_of::<*const ()>());
/// A wrapper over a `upb_Arena`.
///
/// This is not a safe wrapper per se, because the allocation functions still
/// have sharp edges (see their safety docs for more info).
///
/// This is an owning type and will automatically free the arena when
/// dropped.
///
/// Note that this type is neither `Sync` nor `Send`.
#[derive(Debug)]
pub struct Arena {
// Safety invariant: this must always be a valid arena
raw: RawArena,
_not_sync: PhantomData<UnsafeCell<()>>,
}
extern "C" {
// `Option<NonNull<T: Sized>>` is ABI-compatible with `*mut T`
pub fn upb_Arena_New() -> Option<RawArena>;
pub fn upb_Arena_Free(arena: RawArena);
pub fn upb_Arena_Malloc(arena: RawArena, size: usize) -> *mut u8;
pub fn upb_Arena_Realloc(arena: RawArena, ptr: *mut u8, old: usize, new: usize) -> *mut u8;
}
impl Arena {
/// Allocates a fresh arena.
#[inline]
pub fn new() -> Self {
#[inline(never)]
#[cold]
fn arena_new_failed() -> ! {
panic!("Could not create a new UPB arena");
}
// SAFETY:
// - `upb_Arena_New` is assumed to be implemented correctly and always sound to
// call; if it returned a non-null pointer, it is a valid arena.
unsafe {
let Some(raw) = upb_Arena_New() else { arena_new_failed() };
Self { raw, _not_sync: PhantomData }
}
}
/// # Safety
/// - The `raw_arena` must point to a valid arena.
/// - The caller must ensure that the Arena's destructor does not run.
unsafe fn from_raw(raw_arena: RawArena) -> Self {
Arena { raw: raw_arena, _not_sync: PhantomData }
}
/// Returns the raw, UPB-managed pointer to the arena.
#[inline]
pub fn raw(&self) -> RawArena {
self.raw
}
/// Allocates some memory on the arena.
///
/// # Safety
///
/// - `layout`'s alignment must be less than `UPB_MALLOC_ALIGN`.
#[inline]
pub unsafe fn alloc(&self, layout: Layout) -> &mut [MaybeUninit<u8>] {
debug_assert!(layout.align() <= UPB_MALLOC_ALIGN);
// SAFETY: `self.raw` is a valid UPB arena
let ptr = unsafe { upb_Arena_Malloc(self.raw, layout.size()) };
if ptr.is_null() {
alloc::handle_alloc_error(layout);
}
// SAFETY:
// - `upb_Arena_Malloc` promises that if the return pointer is non-null, it is
// dereferencable for `size` bytes and has an alignment of `UPB_MALLOC_ALIGN`
// until the arena is destroyed.
// - `[MaybeUninit<u8>]` has no alignment requirement, and `ptr` is aligned to a
// `UPB_MALLOC_ALIGN` boundary.
unsafe { slice::from_raw_parts_mut(ptr.cast(), layout.size()) }
}
/// Resizes some memory on the arena.
///
/// # Safety
///
/// - `ptr` must be the data pointer returned by a previous call to `alloc`
/// or `resize` on `self`.
/// - After calling this function, `ptr` is no longer dereferencable - it is
/// zapped.
/// - `old` must be the layout `ptr` was allocated with via `alloc` or
/// `realloc`.
/// - `new`'s alignment must be less than `UPB_MALLOC_ALIGN`.
#[inline]
pub unsafe fn resize(&self, ptr: *mut u8, old: Layout, new: Layout) -> &mut [MaybeUninit<u8>] {
debug_assert!(new.align() <= UPB_MALLOC_ALIGN);
// SAFETY:
// - `self.raw` is a valid UPB arena
// - `ptr` was allocated by a previous call to `alloc` or `realloc` as promised
// by the caller.
let ptr = unsafe { upb_Arena_Realloc(self.raw, ptr, old.size(), new.size()) };
if ptr.is_null() {
alloc::handle_alloc_error(new);
}
// SAFETY:
// - `upb_Arena_Realloc` promises that if the return pointer is non-null, it is
// dereferencable for the new `size` in bytes until the arena is destroyed.
// - `[MaybeUninit<u8>]` has no alignment requirement, and `ptr` is aligned to a
// `UPB_MALLOC_ALIGN` boundary.
unsafe { slice::from_raw_parts_mut(ptr.cast(), new.size()) }
}
}
impl Drop for Arena {
#[inline]
fn drop(&mut self) {
unsafe {
upb_Arena_Free(self.raw);
}
}
}
/// The scratch size of 64 KiB matches the maximum supported size that a
/// upb_Message can possibly be.
const UPB_SCRATCH_SPACE_BYTES: usize = 65_536;
/// Holds a zero-initialized block of memory for use by upb.
///
/// By default, if a message is not set in cpp, a default message is created.
/// upb departs from this and returns a null ptr. However, since contiguous
/// chunks of memory filled with zeroes are legit messages from upb's point of
/// view, we can allocate a large block and refer to that when dealing
/// with readonly access.
#[repr(C, align(8))] // align to UPB_MALLOC_ALIGN = 8
pub struct ScratchSpace([u8; UPB_SCRATCH_SPACE_BYTES]);
impl ScratchSpace {
pub fn zeroed_block(_private: Private) -> RawMessage {
static ZEROED_BLOCK: ScratchSpace = ScratchSpace([0; UPB_SCRATCH_SPACE_BYTES]);
NonNull::from(&ZEROED_BLOCK).cast()
}
}
/// Serialized Protobuf wire format data.
///
/// It's typically produced by `<Message>::serialize()`.
pub struct SerializedData {
data: NonNull<u8>,
len: usize,
// The arena that owns `data`.
_arena: Arena,
}
impl SerializedData {
/// Construct `SerializedData` from raw pointers and its owning arena.
///
/// # Safety
/// - `arena` must be have allocated `data`
/// - `data` must be readable for `len` bytes and not mutate while this
/// struct exists
pub unsafe fn from_raw_parts(arena: Arena, data: NonNull<u8>, len: usize) -> Self {
SerializedData { _arena: arena, data, len }
}
/// Gets a raw slice pointer.
pub fn as_ptr(&self) -> *const [u8] {
ptr::slice_from_raw_parts(self.data.as_ptr(), self.len)
}
}
impl Deref for SerializedData {
type Target = [u8];
fn deref(&self) -> &Self::Target {
// SAFETY: `data` is valid for `len` bytes as promised by
// the caller of `SerializedData::from_raw_parts`.
unsafe { slice::from_raw_parts(self.data.as_ptr(), self.len) }
}
}
impl fmt::Debug for SerializedData {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(self.deref(), f)
}
}
impl SettableValue<[u8]> for SerializedData {
fn set_on<'msg>(self, _private: Private, mut mutator: Mut<'msg, [u8]>)
where
[u8]: 'msg,
{
mutator.set(self.as_ref())
}
}
// TODO: Investigate replacing this with direct access to UPB bits.
pub type MessagePresentMutData<'msg, T> = crate::vtable::RawVTableOptionalMutatorData<'msg, T>;
pub type MessageAbsentMutData<'msg, T> = crate::vtable::RawVTableOptionalMutatorData<'msg, T>;
pub type BytesPresentMutData<'msg> = crate::vtable::RawVTableOptionalMutatorData<'msg, [u8]>;
pub type BytesAbsentMutData<'msg> = crate::vtable::RawVTableOptionalMutatorData<'msg, [u8]>;
pub type InnerBytesMut<'msg> = crate::vtable::RawVTableMutator<'msg, [u8]>;
pub type InnerPrimitiveMut<'msg, T> = crate::vtable::RawVTableMutator<'msg, T>;
#[derive(Debug)]
pub struct MessageVTable {
pub getter: unsafe extern "C" fn(msg: RawMessage) -> Option<RawMessage>,
pub mut_getter: unsafe extern "C" fn(msg: RawMessage, arena: RawArena) -> RawMessage,
pub clearer: unsafe extern "C" fn(msg: RawMessage),
}
impl MessageVTable {
pub const fn new(
_private: Private,
getter: unsafe extern "C" fn(msg: RawMessage) -> Option<RawMessage>,
mut_getter: unsafe extern "C" fn(msg: RawMessage, arena: RawArena) -> RawMessage,
clearer: unsafe extern "C" fn(msg: RawMessage),
) -> Self {
MessageVTable { getter, mut_getter, clearer }
}
}
/// The raw contents of every generated message.
#[derive(Debug)]
pub struct MessageInner {
pub msg: RawMessage,
pub arena: Arena,
}
/// Mutators that point to their original message use this to do so.
///
/// Since UPB expects runtimes to manage their own arenas, this needs to have
/// access to an `Arena`.
///
/// This has two possible designs:
/// - Store two pointers here, `RawMessage` and `&'msg Arena`. This doesn't
/// place any restriction on the layout of generated messages and their
/// mutators. This makes a vtable-based mutator three pointers, which can no
/// longer be returned in registers on most platforms.
/// - Store one pointer here, `&'msg MessageInner`, where `MessageInner` stores
/// a `RawMessage` and an `Arena`. This would require all generated messages
/// to store `MessageInner`, and since their mutators need to be able to
/// generate `BytesMut`, would also require `BytesMut` to store a `&'msg
/// MessageInner` since they can't store an owned `Arena`.
///
/// Note: even though this type is `Copy`, it should only be copied by
/// protobuf internals that can maintain mutation invariants:
///
/// - No concurrent mutation for any two fields in a message: this means
/// mutators cannot be `Send` but are `Sync`.
/// - If there are multiple accessible `Mut` to a single message at a time, they
/// must be different fields, and not be in the same oneof. As such, a `Mut`
/// cannot be `Clone` but *can* reborrow itself with `.as_mut()`, which
/// converts `&'b mut Mut<'a, T>` to `Mut<'b, T>`.
#[derive(Clone, Copy, Debug)]
pub struct MutatorMessageRef<'msg> {
msg: RawMessage,
arena: &'msg Arena,
}
impl<'msg> MutatorMessageRef<'msg> {
#[doc(hidden)]
#[allow(clippy::needless_pass_by_ref_mut)] // Sound construction requires mutable access.
pub fn new(_private: Private, msg: &'msg mut MessageInner) -> Self {
MutatorMessageRef { msg: msg.msg, arena: &msg.arena }
}
pub fn from_parent(
_private: Private,
parent_msg: MutatorMessageRef<'msg>,
message_field_ptr: RawMessage,
) -> Self {
MutatorMessageRef { msg: message_field_ptr, arena: parent_msg.arena }
}
pub fn msg(&self) -> RawMessage {
self.msg
}
pub fn arena(&self, _private: Private) -> &Arena {
self.arena
}
}
pub fn copy_bytes_in_arena_if_needed_by_runtime<'msg>(
msg_ref: MutatorMessageRef<'msg>,
val: &'msg [u8],
) -> &'msg [u8] {
copy_bytes_in_arena(msg_ref.arena, val)
}
fn copy_bytes_in_arena<'msg>(arena: &'msg Arena, val: &'msg [u8]) -> &'msg [u8] {
// SAFETY: the alignment of `[u8]` is less than `UPB_MALLOC_ALIGN`.
let new_alloc = unsafe { arena.alloc(Layout::for_value(val)) };
debug_assert_eq!(new_alloc.len(), val.len());
let start: *mut u8 = new_alloc.as_mut_ptr().cast();
// SAFETY:
// - `new_alloc` is writeable for `val.len()` bytes.
// - After the copy, `new_alloc` is initialized for `val.len()` bytes.
unsafe {
val.as_ptr().copy_to_nonoverlapping(start, val.len());
&*(new_alloc as *mut _ as *mut [u8])
}
}
/// Opaque struct containing a upb_MiniTable.
///
/// This wrapper is a workaround until stabilization of [`extern type`].
/// TODO: convert to extern type once stabilized.
/// [`extern type`]: https://github.com/rust-lang/rust/issues/43467
#[repr(C)]
pub struct OpaqueMiniTable {
// TODO: consider importing a minitable struct declared in
// google3/third_party/upb/bits.
_data: [u8; 0],
_marker: std::marker::PhantomData<(*mut u8, ::std::marker::PhantomPinned)>,
}
extern "C" {
pub fn upb_Message_DeepCopy(
dst: RawMessage,
src: RawMessage,
mini_table: *const OpaqueMiniTable,
arena: RawArena,
);
pub fn upb_Message_DeepClone(
m: RawMessage,
mini_table: *const OpaqueMiniTable,
arena: RawArena,
) -> Option<RawMessage>;
}
/// The raw type-erased version of an owned `Repeated`.
#[derive(Debug)]
pub struct InnerRepeated {
raw: RawRepeatedField,
arena: Arena,
}
impl InnerRepeated {
pub fn as_mut(&mut self) -> InnerRepeatedMut<'_> {
InnerRepeatedMut::new(Private, self.raw, &self.arena)
}
}
/// The raw type-erased pointer version of `RepeatedMut`.
#[derive(Clone, Copy, Debug)]
pub struct InnerRepeatedMut<'msg> {
pub(crate) raw: RawRepeatedField,
arena: &'msg Arena,
}
impl<'msg> InnerRepeatedMut<'msg> {
#[doc(hidden)]
pub fn new(_private: Private, raw: RawRepeatedField, arena: &'msg Arena) -> Self {
InnerRepeatedMut { raw, arena }
}
}
// Transcribed from google3/third_party/upb/upb/message/value.h
#[repr(C)]
#[derive(Clone, Copy)]
pub union upb_MessageValue {
pub bool_val: bool,
pub float_val: std::ffi::c_float,
pub double_val: std::ffi::c_double,
pub uint32_val: u32,
pub int32_val: i32,
pub uint64_val: u64,
pub int64_val: i64,
pub array_val: Option<RawRepeatedField>,
pub map_val: Option<RawMap>,
// TODO: Replace this `RawMessage` with the const type.
pub msg_val: Option<RawMessage>,
pub str_val: PtrAndLen,
tagged_msg_val: *const std::ffi::c_void,
}
#[repr(C)]
#[derive(Clone, Copy)]
pub union upb_MutableMessageValue {
pub array: Option<RawRepeatedField>,
pub map: Option<RawMap>,
pub msg: Option<RawMessage>,
}
// Transcribed from google3/third_party/upb/upb/base/descriptor_constants.h
#[repr(C)]
#[allow(dead_code)]
pub enum UpbCType {
Bool = 1,
Float = 2,
Int32 = 3,
UInt32 = 4,
Enum = 5,
Message = 6,
Double = 7,
Int64 = 8,
UInt64 = 9,
String = 10,
Bytes = 11,
}
extern "C" {
fn upb_Array_New(a: RawArena, r#type: std::ffi::c_int) -> RawRepeatedField;
pub fn upb_Array_Size(arr: RawRepeatedField) -> usize;
pub fn upb_Array_Set(arr: RawRepeatedField, i: usize, val: upb_MessageValue);
pub fn upb_Array_Get(arr: RawRepeatedField, i: usize) -> upb_MessageValue;
pub fn upb_Array_Append(arr: RawRepeatedField, val: upb_MessageValue, arena: RawArena);
pub fn upb_Array_Resize(arr: RawRepeatedField, size: usize, arena: RawArena) -> bool;
fn upb_Array_MutableDataPtr(arr: RawRepeatedField) -> *mut std::ffi::c_void;
fn upb_Array_DataPtr(arr: RawRepeatedField) -> *const std::ffi::c_void;
pub fn upb_Array_GetMutable(arr: RawRepeatedField, i: usize) -> upb_MutableMessageValue;
}
macro_rules! impl_repeated_base {
($t:ty, $elem_t:ty, $ufield:ident, $upb_tag:expr) => {
#[allow(dead_code)]
fn repeated_new(_: Private) -> Repeated<$t> {
let arena = Arena::new();
Repeated::from_inner(InnerRepeated {
raw: unsafe { upb_Array_New(arena.raw(), $upb_tag as c_int) },
arena,
})
}
#[allow(dead_code)]
unsafe fn repeated_free(_: Private, _f: &mut Repeated<$t>) {
// No-op: the memory will be dropped by the arena.
}
fn repeated_len(f: View<Repeated<$t>>) -> usize {
unsafe { upb_Array_Size(f.as_raw(Private)) }
}
fn repeated_push(mut f: Mut<Repeated<$t>>, v: View<$t>) {
let arena = f.raw_arena(Private);
unsafe {
upb_Array_Append(
f.as_raw(Private),
<$t as UpbTypeConversions>::to_message_value_copy_if_required(arena, v),
arena,
)
}
}
fn repeated_clear(mut f: Mut<Repeated<$t>>) {
unsafe {
upb_Array_Resize(f.as_raw(Private), 0, f.raw_arena(Private));
}
}
unsafe fn repeated_get_unchecked(f: View<Repeated<$t>>, i: usize) -> View<$t> {
unsafe {
<$t as UpbTypeConversions>::from_message_value(upb_Array_Get(f.as_raw(Private), i))
}
}
unsafe fn repeated_set_unchecked(mut f: Mut<Repeated<$t>>, i: usize, v: View<$t>) {
let arena = f.raw_arena(Private);
unsafe {
upb_Array_Set(
f.as_raw(Private),
i,
<$t as UpbTypeConversions>::to_message_value_copy_if_required(arena, v.into()),
)
}
}
};
}
macro_rules! impl_repeated_primitives {
($(($t:ty, $elem_t:ty, $ufield:ident, $upb_tag:expr)),* $(,)?) => {
$(
unsafe impl ProxiedInRepeated for $t {
impl_repeated_base!($t, $elem_t, $ufield, $upb_tag);
fn repeated_copy_from(src: View<Repeated<$t>>, mut dest: Mut<Repeated<$t>>) {
let arena = dest.raw_arena(Private);
// SAFETY:
// - `upb_Array_Resize` is unsafe but assumed to be always sound to call.
// - `copy_nonoverlapping` is unsafe but here we guarantee that both pointers
// are valid, the pointers are `#[repr(u8)]`, and the size is correct.
unsafe {
if (!upb_Array_Resize(dest.as_raw(Private), src.len(), arena)) {
panic!("upb_Array_Resize failed.");
}
ptr::copy_nonoverlapping(
upb_Array_DataPtr(src.as_raw(Private)).cast::<u8>(),
upb_Array_MutableDataPtr(dest.as_raw(Private)).cast::<u8>(),
size_of::<$elem_t>() * src.len());
}
}
}
)*
}
}
macro_rules! impl_repeated_bytes {
($(($t:ty, $upb_tag:expr)),* $(,)?) => {
$(
unsafe impl ProxiedInRepeated for $t {
impl_repeated_base!($t, PtrAndLen, str_val, $upb_tag);
fn repeated_copy_from(src: View<Repeated<$t>>, mut dest: Mut<Repeated<$t>>) {
let len = src.len();
// SAFETY:
// - `upb_Array_Resize` is unsafe but assumed to be always sound to call.
// - `upb_Array` ensures its elements are never uninitialized memory.
// - The `DataPtr` and `MutableDataPtr` functions return pointers to spans
// of memory that are valid for at least `len` elements of PtrAndLen.
// - `copy_nonoverlapping` is unsafe but here we guarantee that both pointers
// are valid, the pointers are `#[repr(u8)]`, and the size is correct.
// - The bytes held within a valid array are valid.
unsafe {
let arena = ManuallyDrop::new(Arena::from_raw(dest.raw_arena(Private)));
if (!upb_Array_Resize(dest.as_raw(Private), src.len(), arena.raw())) {
panic!("upb_Array_Resize failed.");
}
let src_ptrs: &[PtrAndLen] = slice::from_raw_parts(
upb_Array_DataPtr(src.as_raw(Private)).cast(),
len
);
let dest_ptrs: &mut [PtrAndLen] = slice::from_raw_parts_mut(
upb_Array_MutableDataPtr(dest.as_raw(Private)).cast(),
len
);
for (src_ptr, dest_ptr) in src_ptrs.iter().zip(dest_ptrs) {
*dest_ptr = copy_bytes_in_arena(&arena, src_ptr.as_ref()).into();
}
}
}
}
)*
}
}
impl<'msg, T: ?Sized> RepeatedMut<'msg, T> {
// Returns a `RawArena` which is live for at least `'msg`
#[doc(hidden)]
pub fn raw_arena(&mut self, _private: Private) -> RawArena {
self.inner.arena.raw()
}
}
impl_repeated_primitives!(
// proxied type, element type, upb_MessageValue field name, UpbCType variant
(bool, bool, bool_val, UpbCType::Bool),
(f32, f32, float_val, UpbCType::Float),
(f64, f64, double_val, UpbCType::Double),
(i32, i32, int32_val, UpbCType::Int32),
(u32, u32, uint32_val, UpbCType::UInt32),
(i64, i64, int64_val, UpbCType::Int64),
(u64, u64, uint64_val, UpbCType::UInt64),
);
impl_repeated_bytes!((ProtoStr, UpbCType::String), ([u8], UpbCType::Bytes),);
/// Copy the contents of `src` into `dest`.
///
/// # Safety
/// - `minitable` must be a pointer to the minitable for message `T`.
pub unsafe fn repeated_message_copy_from<T: ProxiedInRepeated>(
src: View<Repeated<T>>,
mut dest: Mut<Repeated<T>>,
minitable: *const OpaqueMiniTable,
) {
// SAFETY:
// - `src.as_raw()` is a valid `const upb_Array*`.
// - `dest.as_raw()` is a valid `upb_Array*`.
// - Elements of `src` and have message minitable `$minitable$`.
unsafe {
let size = upb_Array_Size(src.as_raw(Private));
if !upb_Array_Resize(dest.as_raw(Private), size, dest.raw_arena(Private)) {
panic!("upb_Array_Resize failed.");
}
for i in 0..size {
let src_msg = upb_Array_Get(src.as_raw(Private), i)
.msg_val
.expect("upb_Array* element should not be NULL");
// Avoid the use of `upb_Array_DeepClone` as it creates an
// entirely new `upb_Array*` at a new memory address.
let cloned_msg = upb_Message_DeepClone(src_msg, minitable, dest.raw_arena(Private))
.expect("upb_Message_DeepClone failed.");
upb_Array_Set(dest.as_raw(Private), i, upb_MessageValue { msg_val: Some(cloned_msg) });
}
}
}
/// Cast a `RepeatedView<SomeEnum>` to `RepeatedView<i32>`.
pub fn cast_enum_repeated_view<E: Enum + ProxiedInRepeated>(
private: Private,
repeated: RepeatedView<E>,
) -> RepeatedView<i32> {
// SAFETY: Reading an enum array as an i32 array is sound.
unsafe { RepeatedView::from_raw(private, repeated.as_raw(Private)) }
}
/// Cast a `RepeatedMut<SomeEnum>` to `RepeatedMut<i32>`.
///
/// Writing an unknown value is sound because all enums
/// are representationally open.
pub fn cast_enum_repeated_mut<E: Enum + ProxiedInRepeated>(
private: Private,
repeated: RepeatedMut<E>,
) -> RepeatedMut<i32> {
// SAFETY:
// - Reading an enum array as an i32 array is sound.
// - No shared mutation is possible through the output.
unsafe {
let InnerRepeatedMut { arena, raw, .. } = repeated.inner;
RepeatedMut::from_inner(private, InnerRepeatedMut { arena, raw })
}
}
/// Returns a static empty RepeatedView.
pub fn empty_array<T: ?Sized + ProxiedInRepeated>() -> RepeatedView<'static, T> {
// TODO: Consider creating a static empty array in C.
// Use `i32` for a shared empty repeated for all repeated types in the program.
static EMPTY_REPEATED_VIEW: OnceLock<RepeatedView<'static, i32>> = OnceLock::new();
// SAFETY:
// - Because the repeated is never mutated, the repeated type is unused and
// therefore valid for `T`.
// - The view is leaked for `'static`.
unsafe {
RepeatedView::from_raw(
Private,
EMPTY_REPEATED_VIEW
.get_or_init(|| Box::leak(Box::new(Repeated::new())).as_mut().into_view())
.as_raw(Private),
)
}
}
/// Returns a static empty MapView.
pub fn empty_map<K, V>() -> MapView<'static, K, V>
where
K: Proxied + ?Sized,
V: ProxiedInMapValue<K> + ?Sized,
{
// TODO: Consider creating a static empty map in C.
// Use `<bool, bool>` for a shared empty map for all map types.
//
// This relies on an implicit contract with UPB that it is OK to use an empty
// Map<bool, bool> as an empty map of all other types. The only const
// function on `upb_Map` that will care about the size of key or value is
// `get()` where it will hash the appropriate number of bytes of the
// provided `upb_MessageValue`, and that bool being the smallest type in the
// union means it will happen to work for all possible key types.
//
// If we used a larger key, then UPB would hash more bytes of the key than Rust
// initialized.
static EMPTY_MAP_VIEW: OnceLock<MapView<'static, bool, bool>> = OnceLock::new();
// SAFETY:
// - The map is empty and never mutated.
// - The value type is never used.
// - The size of the key type is used when `get()` computes the hash of the key.
// The map is empty, therefore it doesn't matter what hash is computed, but we
// have to use `bool` type as the smallest key possible (otherwise UPB would
// read more bytes than Rust allocated).
// - The view is leaked for `'static`.
unsafe {
MapView::from_raw(
Private,
EMPTY_MAP_VIEW
.get_or_init(|| Box::leak(Box::new(Map::new())).as_mut().into_view())
.as_raw(Private),
)
}
}
impl<'msg, K: ?Sized, V: ?Sized> MapMut<'msg, K, V> {
// Returns a `RawArena` which is live for at least `'msg`
#[doc(hidden)]
pub fn raw_arena(&mut self, _private: Private) -> RawArena {
self.inner.arena.raw()
}
}
#[derive(Debug)]
pub struct InnerMap {
pub(crate) raw: RawMap,
arena: Arena,
}
impl InnerMap {
pub fn new(_private: Private, raw: RawMap, arena: Arena) -> Self {
Self { raw, arena }
}
pub fn as_mut(&mut self) -> InnerMapMut<'_> {
InnerMapMut { raw: self.raw, arena: &self.arena }
}
}
#[derive(Clone, Copy, Debug)]
pub struct InnerMapMut<'msg> {
pub(crate) raw: RawMap,
arena: &'msg Arena,
}
#[doc(hidden)]
impl<'msg> InnerMapMut<'msg> {
pub fn new(_private: Private, raw: RawMap, arena: &'msg Arena) -> Self {
InnerMapMut { raw, arena }
}
#[doc(hidden)]
pub fn as_raw(&self, _private: Private) -> RawMap {
self.raw
}
#[doc(hidden)]
pub fn raw_arena(&self, _private: Private) -> RawArena {
self.arena.raw()
}
}
pub trait UpbTypeConversions: Proxied {
fn upb_type() -> UpbCType;
fn to_message_value(val: View<'_, Self>) -> upb_MessageValue;
/// # Safety
/// - `raw_arena` must point to a valid upb arena.
unsafe fn to_message_value_copy_if_required(
raw_arena: RawArena,
val: View<'_, Self>,
) -> upb_MessageValue;
/// # Safety
/// - `msg` must be the correct variant for `Self`.
/// - `msg` pointers must point to memory valid for `'msg` lifetime.
unsafe fn from_message_value<'msg>(msg: upb_MessageValue) -> View<'msg, Self>;
}
macro_rules! impl_upb_type_conversions_for_scalars {
($($t:ty, $ufield:ident, $upb_tag:expr, $zero_val:literal;)*) => {
$(
impl UpbTypeConversions for $t {
#[inline(always)]
fn upb_type() -> UpbCType {
$upb_tag
}
#[inline(always)]
fn to_message_value(val: View<'_, $t>) -> upb_MessageValue {
upb_MessageValue { $ufield: val }
}
#[inline(always)]
unsafe fn to_message_value_copy_if_required(_: RawArena, val: View<'_, $t>) -> upb_MessageValue {
Self::to_message_value(val)
}
#[inline(always)]
unsafe fn from_message_value<'msg>(msg: upb_MessageValue) -> View<'msg, $t> {
unsafe { msg.$ufield }
}
}
)*
};
}
impl_upb_type_conversions_for_scalars!(
f32, float_val, UpbCType::Float, 0f32;
f64, double_val, UpbCType::Double, 0f64;
i32, int32_val, UpbCType::Int32, 0i32;
u32, uint32_val, UpbCType::UInt32, 0u32;
i64, int64_val, UpbCType::Int64, 0i64;
u64, uint64_val, UpbCType::UInt64, 0u64;
bool, bool_val, UpbCType::Bool, false;
);
impl UpbTypeConversions for [u8] {
fn upb_type() -> UpbCType {
UpbCType::Bytes
}
fn to_message_value(val: View<'_, [u8]>) -> upb_MessageValue {
upb_MessageValue { str_val: val.into() }
}
unsafe fn to_message_value_copy_if_required(
raw_arena: RawArena,
val: View<'_, [u8]>,
) -> upb_MessageValue {
// SAFETY: The arena memory is not freed due to `ManuallyDrop`.
let arena = ManuallyDrop::new(unsafe { Arena::from_raw(raw_arena) });
let copied = copy_bytes_in_arena(&arena, val);
let msg_val = Self::to_message_value(copied);
msg_val
}
unsafe fn from_message_value<'msg>(msg: upb_MessageValue) -> View<'msg, [u8]> {
unsafe { msg.str_val.as_ref() }
}
}
impl UpbTypeConversions for ProtoStr {
fn upb_type() -> UpbCType {
UpbCType::String
}
fn to_message_value(val: View<'_, ProtoStr>) -> upb_MessageValue {
upb_MessageValue { str_val: val.as_bytes().into() }
}
unsafe fn to_message_value_copy_if_required(
raw_arena: RawArena,
val: View<'_, ProtoStr>,
) -> upb_MessageValue {
// SAFETY: `raw_arena` is valid as promised by the caller
unsafe {
<[u8] as UpbTypeConversions>::to_message_value_copy_if_required(
raw_arena,
val.as_bytes(),
)
}
}
unsafe fn from_message_value<'msg>(msg: upb_MessageValue) -> View<'msg, ProtoStr> {
unsafe { ProtoStr::from_utf8_unchecked(msg.str_val.as_ref()) }
}
}
pub struct RawMapIter {
// TODO: Replace this `RawMap` with the const type.
map: RawMap,
iter: usize,
}
impl RawMapIter {
pub fn new(_private: Private, map: RawMap) -> Self {
// SAFETY: __rust_proto_kUpb_Map_Begin is never modified
RawMapIter { map, iter: unsafe { __rust_proto_kUpb_Map_Begin } }
}
/// # Safety
/// - `self.map` must be valid, and remain valid while the return value is
/// in use.
pub unsafe fn next_unchecked(
&mut self,
_private: Private,
) -> Option<(upb_MessageValue, upb_MessageValue)> {
let mut key = MaybeUninit::uninit();
let mut value = MaybeUninit::uninit();
// SAFETY: the `map` is valid as promised by the caller
unsafe { upb_Map_Next(self.map, key.as_mut_ptr(), value.as_mut_ptr(), &mut self.iter) }
// SAFETY: if upb_Map_Next returns true, then key and value have been populated.
.then(|| unsafe { (key.assume_init(), value.assume_init()) })
}
}
macro_rules! impl_ProxiedInMapValue_for_non_generated_value_types {
($key_t:ty ; $($t:ty),*) => {
$(
impl ProxiedInMapValue<$key_t> for $t {
fn map_new(_private: Private) -> Map<$key_t, Self> {
let arena = Arena::new();
let raw = unsafe {
upb_Map_New(arena.raw(),
<$key_t as UpbTypeConversions>::upb_type(),
<$t as UpbTypeConversions>::upb_type())
};
Map::from_inner(Private, InnerMap { raw, arena })
}
unsafe fn map_free(_private: Private, _map: &mut Map<$key_t, Self>) {
// No-op: the memory will be dropped by the arena.
}
fn map_clear(mut map: Mut<'_, Map<$key_t, Self>>) {
unsafe {
upb_Map_Clear(map.as_raw(Private));
}
}
fn map_len(map: View<'_, Map<$key_t, Self>>) -> usize {
unsafe {
upb_Map_Size(map.as_raw(Private))
}
}
fn map_insert(mut map: Mut<'_, Map<$key_t, Self>>, key: View<'_, $key_t>, value: View<'_, Self>) -> bool {
let arena = map.raw_arena(Private);
unsafe {
upb_Map_InsertAndReturnIfInserted(
map.as_raw(Private),
<$key_t as UpbTypeConversions>::to_message_value(key),
<$t as UpbTypeConversions>::to_message_value_copy_if_required(arena, value),
arena
)
}
}
fn map_get<'a>(map: View<'a, Map<$key_t, Self>>, key: View<'_, $key_t>) -> Option<View<'a, Self>> {
let mut val = MaybeUninit::uninit();
let found = unsafe {
upb_Map_Get(map.as_raw(Private), <$key_t as UpbTypeConversions>::to_message_value(key),
val.as_mut_ptr())
};
if !found {
return None;
}
Some(unsafe { <$t as UpbTypeConversions>::from_message_value(val.assume_init()) })
}
fn map_remove(mut map: Mut<'_, Map<$key_t, Self>>, key: View<'_, $key_t>) -> bool {
unsafe {
upb_Map_Delete(map.as_raw(Private),
<$key_t as UpbTypeConversions>::to_message_value(key),
ptr::null_mut())
}
}
fn map_iter(map: View<'_, Map<$key_t, Self>>) -> MapIter<'_, $key_t, Self> {
// SAFETY: View<Map<'_,..>> guarantees its RawMap outlives '_.
unsafe {
MapIter::from_raw(Private, RawMapIter::new(Private, map.as_raw(Private)))
}
}
fn map_iter_next<'a>(
iter: &mut MapIter<'a, $key_t, Self>
) -> Option<(View<'a, $key_t>, View<'a, Self>)> {
// SAFETY: MapIter<'a, ..> guarantees its RawMapIter outlives 'a.
unsafe { iter.as_raw_mut(Private).next_unchecked(Private) }
// SAFETY: MapIter<K, V> returns key and values message values
// with the variants for K and V active.
.map(|(k, v)| unsafe {(
<$key_t as UpbTypeConversions>::from_message_value(k),
<$t as UpbTypeConversions>::from_message_value(v),
)})
}
}
)*
}
}
macro_rules! impl_ProxiedInMapValue_for_key_types {
($($t:ty),*) => {
$(
impl_ProxiedInMapValue_for_non_generated_value_types!(
$t ; f32, f64, i32, u32, i64, u64, bool, ProtoStr, [u8]
);
)*
}
}
impl_ProxiedInMapValue_for_key_types!(i32, u32, i64, u64, bool, ProtoStr);
#[repr(C)]
#[allow(dead_code)]
pub enum upb_MapInsertStatus {
Inserted = 0,
Replaced = 1,
OutOfMemory = 2,
}
/// `upb_Map_Insert`, but returns a `bool` for whether insert occurred.
///
/// Returns `true` if the entry was newly inserted.
///
/// # Panics
/// Panics if the arena is out of memory.
///
/// # Safety
/// The same as `upb_Map_Insert`:
/// - `map` must be a valid map.
/// - The `arena` must be valid and outlive the map.
/// - The inserted value must outlive the map.
#[allow(non_snake_case)]
pub unsafe fn upb_Map_InsertAndReturnIfInserted(
map: RawMap,
key: upb_MessageValue,
value: upb_MessageValue,
arena: RawArena,
) -> bool {
match unsafe { upb_Map_Insert(map, key, value, arena) } {
upb_MapInsertStatus::Inserted => true,
upb_MapInsertStatus::Replaced => false,
upb_MapInsertStatus::OutOfMemory => panic!("map arena is out of memory"),
}
}
extern "C" {
pub fn upb_Map_New(arena: RawArena, key_type: UpbCType, value_type: UpbCType) -> RawMap;
pub fn upb_Map_Size(map: RawMap) -> usize;
pub fn upb_Map_Insert(
map: RawMap,
key: upb_MessageValue,
value: upb_MessageValue,
arena: RawArena,
) -> upb_MapInsertStatus;
pub fn upb_Map_Get(map: RawMap, key: upb_MessageValue, value: *mut upb_MessageValue) -> bool;
pub fn upb_Map_Delete(
map: RawMap,
key: upb_MessageValue,
removed_value: *mut upb_MessageValue,
) -> bool;
pub fn upb_Map_Clear(map: RawMap);
static __rust_proto_kUpb_Map_Begin: usize;
pub fn upb_Map_Next(
map: RawMap,
key: *mut upb_MessageValue,
value: *mut upb_MessageValue,
iter: &mut usize,
) -> bool;
}
#[cfg(test)]
mod tests {
use super::*;
use googletest::prelude::*;
#[test]
fn test_arena_new_and_free() {
let arena = Arena::new();
drop(arena);
}
#[test]
fn test_serialized_data_roundtrip() {
let arena = Arena::new();
let original_data = b"Hello world";
let len = original_data.len();
let serialized_data = unsafe {
SerializedData::from_raw_parts(
arena,
NonNull::new(original_data as *const _ as *mut _).unwrap(),
len,
)
};
assert_that!(&*serialized_data, eq(b"Hello world"));
}
#[test]
fn assert_c_type_sizes() {
// TODO: add these same asserts in C++.
use std::ffi::c_void;
use std::mem::{align_of, size_of};
assert_that!(
size_of::<upb_MessageValue>(),
eq(size_of::<*const c_void>() + size_of::<usize>())
);
assert_that!(align_of::<upb_MessageValue>(), eq(align_of::<*const c_void>()));
assert_that!(size_of::<upb_MutableMessageValue>(), eq(size_of::<*const c_void>()));
assert_that!(align_of::<upb_MutableMessageValue>(), eq(align_of::<*const c_void>()));
}
}