Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

569 lines
20 KiB

// Protocol Buffers - Google's data interchange format
// Copyright 2023 Google LLC. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
//! Operating on borrowed data owned by a message is a central concept in
//! Protobuf (and Rust in general). The way this is normally accomplished in
//! Rust is to pass around references and operate on those. Unfortunately,
//! references come with two major drawbacks:
//!
//! * We must store the value somewhere in the memory to create a reference to
//! it. The value must be readable by a single load. However for Protobuf
//! fields it happens that the actual memory representation of a value differs
//! from what users expect and it is an implementation detail that can change
//! as more optimizations are implemented. For example, rarely accessed
//! `int64` fields can be represented in a packed format with 32 bits for the
//! value in the common case. Or, a single logical value can be spread across
//! multiple memory locations. For example, presence information for all the
//! fields in a protobuf message is centralized in a bitset.
//! * We cannot store extra data on the reference that might be necessary for
//! correctly manipulating it (and custom-metadata DSTs do not exist yet in
//! Rust). Concretely, messages, string, bytes, and repeated fields in UPB
//! need to carry around an arena parameter separate from the data pointer to
//! enable mutation (for example adding an element to a repeated field) or
//! potentially to enable optimizations (for example referencing a string
//! value using a Cord-like type instead of copying it if the source and
//! target messages are on the same arena already). Mutable references to
//! messages have one additional drawback: Rust allows users to
//! indiscriminately run a bytewise swap() on mutable references, which could
//! result in pointers to the wrong arena winding up on a message. For
//! example, imagine swapping a submessage across two root messages allocated
//! on distinct arenas A and B; after the swap, the message allocated in A may
//! contain pointers from B by way of the submessage, because the swap does
//! not know to fix up those pointers as needed. The C++ API uses
//! message-owned arenas, and this ends up resembling self-referential types,
//! which need `Pin` in order to be sound. However, `Pin` has much stronger
//! guarantees than we need to uphold.
//!
//! These drawbacks put the "idiomatic Rust" goal in conflict with the
//! "performance", "evolvability", and "safety" goals. Given the project design
//! priorities we decided to not use plain Rust references. Instead, we
//! implemented the concept of "proxy" types. Proxy types are a reference-like
//! indirection between the user and the internal memory representation.
use crate::RepeatedMut;
use crate::__internal::Private;
use crate::repeated::ProxiedInRepeated;
use std::fmt::Debug;
/// A type that can be accessed through a reference-like proxy.
///
/// An instance of a `Proxied` can be accessed
/// immutably via `Proxied::View` and mutably via `Proxied::Mut`.
///
/// All Protobuf field types implement `Proxied`.
pub trait Proxied {
/// The proxy type that provides shared access to a `T`, like a `&'msg T`.
///
/// Most code should use the type alias [`View`].
type View<'msg>: ViewProxy<'msg, Proxied = Self> + Copy + Send + SettableValue<Self>
where
Self: 'msg;
/// The proxy type that provides exclusive mutable access to a `T`, like a
/// `&'msg mut T`.
///
/// Most code should use the type alias [`Mut`].
type Mut<'msg>: MutProxy<'msg, Proxied = Self>
where
Self: 'msg;
}
/// A proxy type that provides shared access to a `T`, like a `&'msg T`.
///
/// This is more concise than fully spelling the associated type.
#[allow(dead_code)]
pub type View<'msg, T> = <T as Proxied>::View<'msg>;
/// A proxy type that provides exclusive mutable access to a `T`, like a
/// `&'msg mut T`.
///
/// This is more concise than fully spelling the associated type.
#[allow(dead_code)]
pub type Mut<'msg, T> = <T as Proxied>::Mut<'msg>;
/// Declares conversion operations common to all views.
///
/// This trait is intentionally made non-object-safe to prevent a potential
/// future incompatible change.
pub trait ViewProxy<'msg>: 'msg + Sync + Unpin + Sized + Debug {
type Proxied: 'msg + Proxied + ?Sized;
/// Converts a borrow into a `View` with the lifetime of that borrow.
///
/// In non-generic code we don't need to use `as_view` because the proxy
/// types are covariant over `'msg`. However, generic code conservatively
/// treats `'msg` as [invariant], therefore we need to call
/// `as_view` to explicitly perform the operation that in concrete code
/// coercion would perform implicitly.
///
/// For example, the call to `.as_view()` in the following snippet
/// wouldn't be necessary in concrete code:
/// ```
/// fn reborrow<'a, 'b, T>(x: &'b View<'a, T>) -> View<'b, T>
/// where 'a: 'b, T: Proxied
/// {
/// x.as_view()
/// }
/// ```
///
/// [invariant]: https://doc.rust-lang.org/nomicon/subtyping.html#variance
fn as_view(&self) -> View<'_, Self::Proxied>;
/// Converts into a `View` with a potentially shorter lifetime.
///
/// In non-generic code we don't need to use `into_view` because the proxy
/// types are covariant over `'msg`. However, generic code conservatively
/// treats `'msg` as [invariant], therefore we need to call
/// `into_view` to explicitly perform the operation that in concrete
/// code coercion would perform implicitly.
///
/// ```
/// fn reborrow_generic_view_into_view<'a, 'b, T>(
/// x: View<'a, T>,
/// y: View<'b, T>,
/// ) -> [View<'b, T>; 2]
/// where
/// T: Proxied,
/// 'a: 'b,
/// {
/// // `[x, y]` fails to compile because `'a` is not the same as `'b` and the `View`
/// // lifetime parameter is (conservatively) invariant.
/// // `[x.as_view(), y]` fails because that borrow cannot outlive `'b`.
/// [x.into_view(), y]
/// }
/// ```
///
/// [invariant]: https://doc.rust-lang.org/nomicon/subtyping.html#variance
fn into_view<'shorter>(self) -> View<'shorter, Self::Proxied>
where
'msg: 'shorter;
}
/// Declares operations common to all mutators.
///
/// This trait is intentionally made non-object-safe to prevent a potential
/// future incompatible change.
pub trait MutProxy<'msg>: ViewProxy<'msg> {
/// Gets an immutable view of this field. This is shorthand for `as_view`.
///
/// This provides a shorter lifetime than `into_view` but can also be called
/// multiple times - if the result of `get` is not living long enough
/// for your use, use that instead.
fn get(&self) -> View<'_, Self::Proxied> {
self.as_view()
}
/// Sets this field to the given `val`.
///
/// Any borrowed data from `val` will be cloned.
fn set(&mut self, val: impl SettableValue<Self::Proxied>) {
val.set_on(Private, self.as_mut())
}
/// Converts a borrow into a `Mut` with the lifetime of that borrow.
///
/// This function enables calling multiple methods consuming `self`, for
/// example:
///
/// ```ignore
/// let mut sub: Mut<SubMsg> = msg.submsg_mut().or_default();
/// sub.as_mut().field_x_mut().set(10); // field_x_mut is fn(self)
/// sub.field_y_mut().set(20); // `sub` is now consumed
/// ```
///
/// `as_mut` is also useful in generic code to explicitly perform the
/// operation that in concrete code coercion would perform implicitly.
fn as_mut(&mut self) -> Mut<'_, Self::Proxied>;
/// Converts into a `Mut` with a potentially shorter lifetime.
///
/// In non-generic code we don't need to use `into_mut` because the proxy
/// types are covariant over `'msg`. However, generic code conservatively
/// treats `'msg` as [invariant], therefore we need to call
/// `into_mut` to explicitly perform the operation that in concrete code
/// coercion would perform implicitly.
///
/// ```
/// fn reborrow_generic_mut_into_mut<'a, 'b, T>(x: Mut<'a, T>, y: Mut<'b, T>) -> [Mut<'b, T>; 2]
/// where
/// T: Proxied,
/// 'a: 'b,
/// {
/// // `[x, y]` fails to compile because `'a` is not the same as `'b` and the `Mut`
/// // lifetime parameter is (conservatively) invariant.
/// // `[x.as_mut(), y]` fails because that borrow cannot outlive `'b`.
/// [x.into_mut(), y]
/// }
/// ```
///
/// [invariant]: https://doc.rust-lang.org/nomicon/subtyping.html#variance
fn into_mut<'shorter>(self) -> Mut<'shorter, Self::Proxied>
where
'msg: 'shorter;
}
// TODO: move this to `optional.rs` as it's only used for optionals
/// `Proxied` types that can be optionally set or unset.
///
/// All scalar and message types implement `ProxiedWithPresence`, while repeated
/// types don't.
pub trait ProxiedWithPresence: Proxied {
/// The data necessary to store a present field mutator proxying `Self`.
/// This is the contents of `PresentField<'msg, Self>`.
type PresentMutData<'msg>: MutProxy<'msg, Proxied = Self>;
/// The data necessary to store an absent field mutator proxying `Self`.
/// This is the contents of `AbsentField<'msg, Self>`.
type AbsentMutData<'msg>: ViewProxy<'msg, Proxied = Self>;
/// Clears a present field.
fn clear_present_field(present_mutator: Self::PresentMutData<'_>) -> Self::AbsentMutData<'_>;
/// Sets an absent field to its default value.
///
/// This can be more efficient than setting with a default value, e.g.
/// a default submessage could share resources with the parent message.
fn set_absent_to_default(absent_mutator: Self::AbsentMutData<'_>) -> Self::PresentMutData<'_>;
}
/// Values that can be used to set a field of `T`.
pub trait SettableValue<T>: Sized
where
T: Proxied + ?Sized,
{
/// Consumes `self` to set the given mutator to the value of `self`.
#[doc(hidden)]
fn set_on<'msg>(self, _private: Private, mutator: Mut<'msg, T>)
where
T: 'msg;
/// Consumes `self` and `absent_mutator` to set the given empty field to
/// the value of `self`.
#[doc(hidden)]
fn set_on_absent(
self,
_private: Private,
absent_mutator: T::AbsentMutData<'_>,
) -> T::PresentMutData<'_>
where
T: ProxiedWithPresence,
{
let mut present = T::set_absent_to_default(absent_mutator);
self.set_on(Private, present.as_mut());
present
}
/// Consumes `self` and `present_mutator` to set the given present field
/// to the value of `self`.
#[doc(hidden)]
fn set_on_present(self, _private: Private, mut present_mutator: T::PresentMutData<'_>)
where
T: ProxiedWithPresence,
{
self.set_on(Private, present_mutator.as_mut())
}
/// Consumes `self` and `repeated_mutator` to set the value at the
/// given index to the value of `self`.
///
/// # Safety
/// `index` must be less than `repeated_mutator.len()`
#[doc(hidden)]
unsafe fn set_on_repeated_unchecked(
self,
_private: Private,
mut _repeated_mutator: RepeatedMut<T>,
_index: usize,
) where
T: ProxiedInRepeated,
{
unimplemented!()
}
}
#[cfg(test)]
mod tests {
use super::*;
use googletest::prelude::*;
use std::borrow::Cow;
#[derive(Debug, Default, PartialEq)]
struct MyProxied {
val: String,
}
impl MyProxied {
fn as_view(&self) -> View<'_, Self> {
MyProxiedView { my_proxied_ref: self }
}
fn as_mut(&mut self) -> Mut<'_, Self> {
MyProxiedMut { my_proxied_ref: self }
}
}
impl Proxied for MyProxied {
type View<'msg> = MyProxiedView<'msg>;
type Mut<'msg> = MyProxiedMut<'msg>;
}
#[derive(Debug, Clone, Copy)]
struct MyProxiedView<'msg> {
my_proxied_ref: &'msg MyProxied,
}
impl MyProxiedView<'_> {
fn val(&self) -> &str {
&self.my_proxied_ref.val
}
}
impl<'msg> ViewProxy<'msg> for MyProxiedView<'msg> {
type Proxied = MyProxied;
fn as_view(&self) -> View<'msg, MyProxied> {
*self
}
fn into_view<'shorter>(self) -> View<'shorter, MyProxied>
where
'msg: 'shorter,
{
self
}
}
#[derive(Debug)]
struct MyProxiedMut<'msg> {
my_proxied_ref: &'msg mut MyProxied,
}
impl<'msg> ViewProxy<'msg> for MyProxiedMut<'msg> {
type Proxied = MyProxied;
fn as_view(&self) -> View<'_, MyProxied> {
MyProxiedView { my_proxied_ref: self.my_proxied_ref }
}
fn into_view<'shorter>(self) -> View<'shorter, MyProxied>
where
'msg: 'shorter,
{
MyProxiedView { my_proxied_ref: self.my_proxied_ref }
}
}
impl<'msg> MutProxy<'msg> for MyProxiedMut<'msg> {
fn as_mut(&mut self) -> Mut<'_, MyProxied> {
MyProxiedMut { my_proxied_ref: self.my_proxied_ref }
}
fn into_mut<'shorter>(self) -> Mut<'shorter, MyProxied>
where
'msg: 'shorter,
{
self
}
}
impl SettableValue<MyProxied> for MyProxiedView<'_> {
fn set_on<'msg>(self, _private: Private, mutator: Mut<'msg, MyProxied>)
where
MyProxied: 'msg,
{
mutator.my_proxied_ref.val = self.my_proxied_ref.val.clone();
}
}
impl SettableValue<MyProxied> for String {
fn set_on<'msg>(self, _private: Private, mutator: Mut<'msg, MyProxied>)
where
MyProxied: 'msg,
{
mutator.my_proxied_ref.val = self;
}
}
impl SettableValue<MyProxied> for &'_ str {
fn set_on<'msg>(self, _private: Private, mutator: Mut<'msg, MyProxied>)
where
MyProxied: 'msg,
{
mutator.my_proxied_ref.val.replace_range(.., self);
}
}
impl SettableValue<MyProxied> for Cow<'_, str> {
fn set_on<'msg>(self, _private: Private, mutator: Mut<'msg, MyProxied>)
where
MyProxied: 'msg,
{
match self {
Cow::Owned(x) => <String as SettableValue<MyProxied>>::set_on(x, Private, mutator),
Cow::Borrowed(x) => <&str as SettableValue<MyProxied>>::set_on(x, Private, mutator),
}
}
}
#[test]
fn test_as_view() {
let my_proxied = MyProxied { val: "Hello World".to_string() };
let my_view = my_proxied.as_view();
assert_that!(my_view.val(), eq(&my_proxied.val));
}
#[test]
fn test_as_mut() {
let mut my_proxied = MyProxied { val: "Hello World".to_string() };
let mut my_mut = my_proxied.as_mut();
my_mut.set("Hello indeed".to_string());
let val_after_set = my_mut.as_view().val().to_string();
assert_that!(my_proxied.val, eq(val_after_set));
assert_that!(my_proxied.val, eq("Hello indeed"));
}
fn reborrow_mut_into_view<'msg>(x: Mut<'msg, MyProxied>) -> View<'msg, MyProxied> {
// x.as_view() fails to compile with:
// `ERROR: attempt to return function-local borrowed content`
x.into_view() // OK: we return the same lifetime as we got in.
}
#[test]
fn test_mut_into_view() {
let mut my_proxied = MyProxied { val: "Hello World".to_string() };
reborrow_mut_into_view(my_proxied.as_mut());
}
fn require_unified_lifetimes<'msg>(_x: Mut<'msg, MyProxied>, _y: View<'msg, MyProxied>) {}
#[test]
fn test_require_unified_lifetimes() {
let mut my_proxied = MyProxied { val: "Hello1".to_string() };
let my_mut = my_proxied.as_mut();
{
let other_proxied = MyProxied { val: "Hello2".to_string() };
let other_view = other_proxied.as_view();
require_unified_lifetimes(my_mut, other_view);
}
}
fn reborrow_generic_as_view<'a, 'b, T>(
x: &'b mut Mut<'a, T>,
y: &'b View<'a, T>,
) -> [View<'b, T>; 2]
where
T: Proxied,
'a: 'b,
{
// `[x, y]` fails to compile because `'a` is not the same as `'b` and the `View`
// lifetime parameter is (conservatively) invariant.
[x.as_view(), y.as_view()]
}
#[test]
fn test_reborrow_generic_as_view() {
let mut my_proxied = MyProxied { val: "Hello1".to_string() };
let mut my_mut = my_proxied.as_mut();
let my_ref = &mut my_mut;
{
let other_proxied = MyProxied { val: "Hello2".to_string() };
let other_view = other_proxied.as_view();
reborrow_generic_as_view::<MyProxied>(my_ref, &other_view);
}
}
fn reborrow_generic_view_into_view<'a, 'b, T>(
x: View<'a, T>,
y: View<'b, T>,
) -> [View<'b, T>; 2]
where
T: Proxied,
'a: 'b,
{
// `[x, y]` fails to compile because `'a` is not the same as `'b` and the `View`
// lifetime parameter is (conservatively) invariant.
// `[x.as_view(), y]` fails because that borrow cannot outlive `'b`.
[x.into_view(), y]
}
#[test]
fn test_reborrow_generic_into_view() {
let my_proxied = MyProxied { val: "Hello1".to_string() };
let my_view = my_proxied.as_view();
{
let other_proxied = MyProxied { val: "Hello2".to_string() };
let other_view = other_proxied.as_view();
reborrow_generic_view_into_view::<MyProxied>(my_view, other_view);
}
}
fn reborrow_generic_mut_into_view<'a, 'b, T>(x: Mut<'a, T>, y: View<'b, T>) -> [View<'b, T>; 2]
where
T: Proxied,
'a: 'b,
{
[x.into_view(), y]
}
#[test]
fn test_reborrow_generic_mut_into_view() {
let mut my_proxied = MyProxied { val: "Hello1".to_string() };
let my_mut = my_proxied.as_mut();
{
let other_proxied = MyProxied { val: "Hello2".to_string() };
let other_view = other_proxied.as_view();
reborrow_generic_mut_into_view::<MyProxied>(my_mut, other_view);
}
}
fn reborrow_generic_mut_into_mut<'a, 'b, T>(x: Mut<'a, T>, y: Mut<'b, T>) -> [Mut<'b, T>; 2]
where
T: Proxied,
'a: 'b,
{
// `[x, y]` fails to compile because `'a` is not the same as `'b` and the `Mut`
// lifetime parameter is (conservatively) invariant.
// `[x.as_mut(), y]` fails because that borrow cannot outlive `'b`.
[x.into_mut(), y]
}
#[test]
fn test_reborrow_generic_mut_into_mut() {
let mut my_proxied = MyProxied { val: "Hello1".to_string() };
let my_mut = my_proxied.as_mut();
{
let mut other_proxied = MyProxied { val: "Hello2".to_string() };
let other_mut = other_proxied.as_mut();
// No need to reborrow, even though lifetime of &other_view is different
// than the lifetiem of my_ref. Rust references are covariant over their
// lifetime.
reborrow_generic_mut_into_mut::<MyProxied>(my_mut, other_mut);
}
}
#[test]
fn test_set() {
let mut my_proxied = MyProxied::default();
my_proxied.as_mut().set("hello");
assert_that!(my_proxied.as_view().val(), eq("hello"));
my_proxied.as_mut().set(String::from("hello2"));
assert_that!(my_proxied.as_view().val(), eq("hello2"));
my_proxied.as_mut().set(Cow::Borrowed("hello3"));
assert_that!(my_proxied.as_view().val(), eq("hello3"));
}
}