Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

822 lines
22 KiB

/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2009 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* Implementation is heavily inspired by Lua's ltable.c.
*/
#include "upb/table.int.h"
#include <stdlib.h>
#include <string.h>
#define UPB_MAXARRSIZE 16 // 64k.
// From Chromium.
#define ARRAY_SIZE(x) \
((sizeof(x)/sizeof(0[x])) / ((size_t)(!(sizeof(x) % sizeof(0[x])))))
static const double MAX_LOAD = 0.85;
// The minimum utilization of the array part of a mixed hash/array table. This
// is a speed/memory-usage tradeoff (though it's not straightforward because of
// cache effects). The lower this is, the more memory we'll use.
static const double MIN_DENSITY = 0.1;
bool is_pow2(uint64_t v) { return v == 0 || (v & (v - 1)) == 0; }
int log2ceil(uint64_t v) {
int ret = 0;
bool pow2 = is_pow2(v);
while (v >>= 1) ret++;
ret = pow2 ? ret : ret + 1; // Ceiling.
return UPB_MIN(UPB_MAXARRSIZE, ret);
}
char *upb_strdup(const char *s) {
return upb_strdup2(s, strlen(s));
}
char *upb_strdup2(const char *s, size_t len) {
// Always null-terminate, even if binary data; but don't rely on the input to
// have a null-terminating byte since it may be a raw binary buffer.
size_t n = len + 1;
char *p = malloc(n);
if (p) memcpy(p, s, len);
p[len] = 0;
return p;
}
// A type to represent the lookup key of either a strtable or an inttable.
typedef struct {
upb_tabkey key;
} lookupkey_t;
static lookupkey_t strkey2(const char *str, size_t len) {
lookupkey_t k;
k.key.s.str = (char*)str;
k.key.s.length = len;
return k;
}
static lookupkey_t intkey(uintptr_t key) {
lookupkey_t k;
k.key = upb_intkey(key);
return k;
}
typedef uint32_t hashfunc_t(upb_tabkey key);
typedef bool eqlfunc_t(upb_tabkey k1, lookupkey_t k2);
/* Base table (shared code) ***************************************************/
// For when we need to cast away const.
static upb_tabent *mutable_entries(upb_table *t) {
return (upb_tabent*)t->entries;
}
static bool isfull(upb_table *t) {
return (double)(t->count + 1) / upb_table_size(t) > MAX_LOAD;
}
static bool init(upb_table *t, upb_ctype_t ctype, uint8_t size_lg2) {
t->count = 0;
t->ctype = ctype;
t->size_lg2 = size_lg2;
t->mask = upb_table_size(t) ? upb_table_size(t) - 1 : 0;
size_t bytes = upb_table_size(t) * sizeof(upb_tabent);
if (bytes > 0) {
t->entries = malloc(bytes);
if (!t->entries) return false;
memset(mutable_entries(t), 0, bytes);
} else {
t->entries = NULL;
}
return true;
}
static void uninit(upb_table *t) { free(mutable_entries(t)); }
static upb_tabent *emptyent(upb_table *t) {
upb_tabent *e = mutable_entries(t) + upb_table_size(t);
while (1) { if (upb_tabent_isempty(--e)) return e; assert(e > t->entries); }
}
static upb_tabent *getentry_mutable(upb_table *t, uint32_t hash) {
return (upb_tabent*)upb_getentry(t, hash);
}
static const upb_tabent *findentry(const upb_table *t, lookupkey_t key,
uint32_t hash, eqlfunc_t *eql) {
if (t->size_lg2 == 0) return NULL;
const upb_tabent *e = upb_getentry(t, hash);
if (upb_tabent_isempty(e)) return NULL;
while (1) {
if (eql(e->key, key)) return e;
if ((e = e->next) == NULL) return NULL;
}
}
static upb_tabent *findentry_mutable(upb_table *t, lookupkey_t key,
uint32_t hash, eqlfunc_t *eql) {
return (upb_tabent*)findentry(t, key, hash, eql);
}
static bool lookup(const upb_table *t, lookupkey_t key, upb_value *v,
uint32_t hash, eqlfunc_t *eql) {
const upb_tabent *e = findentry(t, key, hash, eql);
if (e) {
if (v) {
_upb_value_setval(v, e->val, t->ctype);
}
return true;
} else {
return false;
}
}
// The given key must not already exist in the table.
static void insert(upb_table *t, lookupkey_t key, upb_value val,
uint32_t hash, hashfunc_t *hashfunc, eqlfunc_t *eql) {
UPB_UNUSED(eql);
assert(findentry(t, key, hash, eql) == NULL);
assert(val.ctype == t->ctype);
t->count++;
upb_tabent *mainpos_e = getentry_mutable(t, hash);
upb_tabent *our_e = mainpos_e;
if (upb_tabent_isempty(mainpos_e)) {
// Our main position is empty; use it.
our_e->next = NULL;
} else {
// Collision.
upb_tabent *new_e = emptyent(t);
// Head of collider's chain.
upb_tabent *chain = getentry_mutable(t, hashfunc(mainpos_e->key));
if (chain == mainpos_e) {
// Existing ent is in its main posisiton (it has the same hash as us, and
// is the head of our chain). Insert to new ent and append to this chain.
new_e->next = mainpos_e->next;
mainpos_e->next = new_e;
our_e = new_e;
} else {
// Existing ent is not in its main position (it is a node in some other
// chain). This implies that no existing ent in the table has our hash.
// Evict it (updating its chain) and use its ent for head of our chain.
*new_e = *mainpos_e; // copies next.
while (chain->next != mainpos_e) {
chain = (upb_tabent*)chain->next;
assert(chain);
}
chain->next = new_e;
our_e = mainpos_e;
our_e->next = NULL;
}
}
our_e->key = key.key;
our_e->val = val.val;
assert(findentry(t, key, hash, eql) == our_e);
}
static bool rm(upb_table *t, lookupkey_t key, upb_value *val,
upb_tabkey *removed, uint32_t hash, eqlfunc_t *eql) {
upb_tabent *chain = getentry_mutable(t, hash);
if (upb_tabent_isempty(chain)) return false;
if (eql(chain->key, key)) {
// Element to remove is at the head of its chain.
t->count--;
if (val) {
_upb_value_setval(val, chain->val, t->ctype);
}
if (chain->next) {
upb_tabent *move = (upb_tabent*)chain->next;
*chain = *move;
if (removed) *removed = move->key;
move->key.num = 0; // Make the slot empty.
} else {
if (removed) *removed = chain->key;
chain->key.num = 0; // Make the slot empty.
}
return true;
} else {
// Element to remove is either in a non-head position or not in the table.
while (chain->next && !eql(chain->next->key, key))
chain = (upb_tabent*)chain->next;
if (chain->next) {
// Found element to remove.
if (val) {
_upb_value_setval(val, chain->next->val, t->ctype);
}
upb_tabent *rm = (upb_tabent*)chain->next;
if (removed) *removed = rm->key;
rm->key.num = 0;
chain->next = rm->next;
t->count--;
return true;
} else {
return false;
}
}
}
static size_t next(const upb_table *t, size_t i) {
do {
if (++i >= upb_table_size(t))
return SIZE_MAX;
} while(upb_tabent_isempty(&t->entries[i]));
return i;
}
static size_t begin(const upb_table *t) {
return next(t, -1);
}
/* upb_strtable ***************************************************************/
// A simple "subclass" of upb_table that only adds a hash function for strings.
static uint32_t strhash(upb_tabkey key) {
return MurmurHash2(key.s.str, key.s.length, 0);
}
static bool streql(upb_tabkey k1, lookupkey_t k2) {
return k1.s.length == k2.key.s.length &&
memcmp(k1.s.str, k2.key.s.str, k1.s.length) == 0;
}
bool upb_strtable_init(upb_strtable *t, upb_ctype_t ctype) {
return init(&t->t, ctype, 2);
}
void upb_strtable_uninit(upb_strtable *t) {
for (size_t i = 0; i < upb_table_size(&t->t); i++)
free((void*)t->t.entries[i].key.s.str);
uninit(&t->t);
}
bool upb_strtable_resize(upb_strtable *t, size_t size_lg2) {
upb_strtable new_table;
if (!init(&new_table.t, t->t.ctype, size_lg2))
return false;
upb_strtable_iter i;
upb_strtable_begin(&i, t);
for ( ; !upb_strtable_done(&i); upb_strtable_next(&i)) {
upb_strtable_insert2(
&new_table,
upb_strtable_iter_key(&i),
upb_strtable_iter_keylength(&i),
upb_strtable_iter_value(&i));
}
upb_strtable_uninit(t);
*t = new_table;
return true;
}
bool upb_strtable_insert2(upb_strtable *t, const char *k, size_t len,
upb_value v) {
if (isfull(&t->t)) {
// Need to resize. New table of double the size, add old elements to it.
if (!upb_strtable_resize(t, t->t.size_lg2 + 1)) {
return false;
}
}
if ((k = upb_strdup2(k, len)) == NULL) return false;
lookupkey_t key = strkey2(k, len);
uint32_t hash = MurmurHash2(key.key.s.str, key.key.s.length, 0);
insert(&t->t, key, v, hash, &strhash, &streql);
return true;
}
bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len,
upb_value *v) {
uint32_t hash = MurmurHash2(key, len, 0);
return lookup(&t->t, strkey2(key, len), v, hash, &streql);
}
bool upb_strtable_remove2(upb_strtable *t, const char *key, size_t len,
upb_value *val) {
uint32_t hash = MurmurHash2(key, strlen(key), 0);
upb_tabkey tabkey;
if (rm(&t->t, strkey2(key, len), val, &tabkey, hash, &streql)) {
free((void*)tabkey.s.str);
return true;
} else {
return false;
}
}
// Iteration
static const upb_tabent *str_tabent(const upb_strtable_iter *i) {
return &i->t->t.entries[i->index];
}
void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t) {
i->t = t;
i->index = begin(&t->t);
}
void upb_strtable_next(upb_strtable_iter *i) {
i->index = next(&i->t->t, i->index);
}
bool upb_strtable_done(const upb_strtable_iter *i) {
return i->index >= upb_table_size(&i->t->t) ||
upb_tabent_isempty(str_tabent(i));
}
const char *upb_strtable_iter_key(upb_strtable_iter *i) {
assert(!upb_strtable_done(i));
return str_tabent(i)->key.s.str;
}
size_t upb_strtable_iter_keylength(upb_strtable_iter *i) {
assert(!upb_strtable_done(i));
return str_tabent(i)->key.s.length;
}
upb_value upb_strtable_iter_value(const upb_strtable_iter *i) {
assert(!upb_strtable_done(i));
return _upb_value_val(str_tabent(i)->val, i->t->t.ctype);
}
void upb_strtable_iter_setdone(upb_strtable_iter *i) {
i->index = SIZE_MAX;
}
bool upb_strtable_iter_isequal(const upb_strtable_iter *i1,
const upb_strtable_iter *i2) {
if (upb_strtable_done(i1) && upb_strtable_done(i2))
return true;
return i1->t == i2->t && i1->index == i2->index;
}
/* upb_inttable ***************************************************************/
// For inttables we use a hybrid structure where small keys are kept in an
// array and large keys are put in the hash table.
static uint32_t inthash(upb_tabkey key) { return upb_inthash(key.num); }
static bool inteql(upb_tabkey k1, lookupkey_t k2) {
return k1.num == k2.key.num;
}
static _upb_value *mutable_array(upb_inttable *t) {
return (_upb_value*)t->array;
}
static _upb_value *inttable_val(upb_inttable *t, uintptr_t key) {
if (key < t->array_size) {
return upb_arrhas(t->array[key]) ? &(mutable_array(t)[key]) : NULL;
} else {
upb_tabent *e =
findentry_mutable(&t->t, intkey(key), upb_inthash(key), &inteql);
return e ? &e->val : NULL;
}
}
static const _upb_value *inttable_val_const(const upb_inttable *t,
uintptr_t key) {
return inttable_val((upb_inttable*)t, key);
}
size_t upb_inttable_count(const upb_inttable *t) {
return t->t.count + t->array_count;
}
static void check(upb_inttable *t) {
UPB_UNUSED(t);
#if defined(UPB_DEBUG_TABLE) && !defined(NDEBUG)
// This check is very expensive (makes inserts/deletes O(N)).
size_t count = 0;
upb_inttable_iter i;
upb_inttable_begin(&i, t);
for(; !upb_inttable_done(&i); upb_inttable_next(&i), count++) {
assert(upb_inttable_lookup(t, upb_inttable_iter_key(&i), NULL));
}
assert(count == upb_inttable_count(t));
#endif
}
bool upb_inttable_sizedinit(upb_inttable *t, upb_ctype_t ctype,
size_t asize, int hsize_lg2) {
if (!init(&t->t, ctype, hsize_lg2)) return false;
// Always make the array part at least 1 long, so that we know key 0
// won't be in the hash part, which simplifies things.
t->array_size = UPB_MAX(1, asize);
t->array_count = 0;
size_t array_bytes = t->array_size * sizeof(upb_value);
t->array = malloc(array_bytes);
if (!t->array) {
uninit(&t->t);
return false;
}
memset(mutable_array(t), 0xff, array_bytes);
check(t);
return true;
}
bool upb_inttable_init(upb_inttable *t, upb_ctype_t ctype) {
return upb_inttable_sizedinit(t, ctype, 0, 4);
}
void upb_inttable_uninit(upb_inttable *t) {
uninit(&t->t);
free(mutable_array(t));
}
bool upb_inttable_insert(upb_inttable *t, uintptr_t key, upb_value val) {
assert(upb_arrhas(val.val));
if (key < t->array_size) {
assert(!upb_arrhas(t->array[key]));
t->array_count++;
mutable_array(t)[key] = val.val;
} else {
if (isfull(&t->t)) {
// Need to resize the hash part, but we re-use the array part.
upb_table new_table;
if (!init(&new_table, t->t.ctype, t->t.size_lg2 + 1))
return false;
size_t i;
for (i = begin(&t->t); i < upb_table_size(&t->t); i = next(&t->t, i)) {
const upb_tabent *e = &t->t.entries[i];
upb_value v;
_upb_value_setval(&v, e->val, t->t.ctype);
uint32_t hash = upb_inthash(e->key.num);
insert(&new_table, intkey(e->key.num), v, hash, &inthash, &inteql);
}
assert(t->t.count == new_table.count);
uninit(&t->t);
t->t = new_table;
}
insert(&t->t, intkey(key), val, upb_inthash(key), &inthash, &inteql);
}
check(t);
return true;
}
bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v) {
const _upb_value *table_v = inttable_val_const(t, key);
if (!table_v) return false;
if (v) _upb_value_setval(v, *table_v, t->t.ctype);
return true;
}
bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val) {
_upb_value *table_v = inttable_val(t, key);
if (!table_v) return false;
*table_v = val.val;
return true;
}
bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val) {
bool success;
if (key < t->array_size) {
if (upb_arrhas(t->array[key])) {
t->array_count--;
if (val) {
_upb_value_setval(val, t->array[key], t->t.ctype);
}
_upb_value empty = UPB_ARRAY_EMPTYENT;
mutable_array(t)[key] = empty;
success = true;
} else {
success = false;
}
} else {
upb_tabkey removed;
uint32_t hash = upb_inthash(key);
success = rm(&t->t, intkey(key), val, &removed, hash, &inteql);
}
check(t);
return success;
}
bool upb_inttable_push(upb_inttable *t, upb_value val) {
return upb_inttable_insert(t, upb_inttable_count(t), val);
}
upb_value upb_inttable_pop(upb_inttable *t) {
upb_value val;
bool ok = upb_inttable_remove(t, upb_inttable_count(t) - 1, &val);
UPB_ASSERT_VAR(ok, ok);
return val;
}
bool upb_inttable_insertptr(upb_inttable *t, const void *key, upb_value val) {
return upb_inttable_insert(t, (uintptr_t)key, val);
}
bool upb_inttable_lookupptr(const upb_inttable *t, const void *key,
upb_value *v) {
return upb_inttable_lookup(t, (uintptr_t)key, v);
}
bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val) {
return upb_inttable_remove(t, (uintptr_t)key, val);
}
void upb_inttable_compact(upb_inttable *t) {
// Create a power-of-two histogram of the table keys.
int counts[UPB_MAXARRSIZE + 1] = {0};
uintptr_t max_key = 0;
upb_inttable_iter i;
upb_inttable_begin(&i, t);
for (; !upb_inttable_done(&i); upb_inttable_next(&i)) {
uintptr_t key = upb_inttable_iter_key(&i);
if (key > max_key) {
max_key = key;
}
counts[log2ceil(key)]++;
}
int arr_size;
int arr_count = upb_inttable_count(t);
if (upb_inttable_count(t) >= max_key * MIN_DENSITY) {
// We can put 100% of the entries in the array part.
arr_size = max_key + 1;
} else {
// Find the largest power of two that satisfies the MIN_DENSITY definition.
for (int size_lg2 = ARRAY_SIZE(counts) - 1; size_lg2 > 1; size_lg2--) {
arr_size = 1 << size_lg2;
arr_count -= counts[size_lg2];
if (arr_count >= arr_size * MIN_DENSITY) {
break;
}
}
}
// Array part must always be at least 1 entry large to catch lookups of key
// 0. Key 0 must always be in the array part because "0" in the hash part
// denotes an empty entry.
arr_size = UPB_MAX(arr_size, 1);
// Insert all elements into new, perfectly-sized table.
int hash_count = upb_inttable_count(t) - arr_count;
int hash_size = hash_count ? (hash_count / MAX_LOAD) + 1 : 0;
int hashsize_lg2 = log2ceil(hash_size);
assert(hash_count >= 0);
upb_inttable new_t;
upb_inttable_sizedinit(&new_t, t->t.ctype, arr_size, hashsize_lg2);
upb_inttable_begin(&i, t);
for (; !upb_inttable_done(&i); upb_inttable_next(&i)) {
uintptr_t k = upb_inttable_iter_key(&i);
upb_inttable_insert(&new_t, k, upb_inttable_iter_value(&i));
}
assert(new_t.array_size == arr_size);
assert(new_t.t.size_lg2 == hashsize_lg2);
upb_inttable_uninit(t);
*t = new_t;
}
// Iteration.
static const upb_tabent *int_tabent(const upb_inttable_iter *i) {
assert(!i->array_part);
return &i->t->t.entries[i->index];
}
static _upb_value int_arrent(const upb_inttable_iter *i) {
assert(i->array_part);
return i->t->array[i->index];
}
void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t) {
i->t = t;
i->index = -1;
i->array_part = true;
upb_inttable_next(i);
}
void upb_inttable_next(upb_inttable_iter *iter) {
const upb_inttable *t = iter->t;
if (iter->array_part) {
while (++iter->index < t->array_size) {
if (upb_arrhas(int_arrent(iter))) {
return;
}
}
iter->array_part = false;
iter->index = begin(&t->t);
} else {
iter->index = next(&t->t, iter->index);
}
}
bool upb_inttable_done(const upb_inttable_iter *i) {
if (i->array_part) {
return i->index >= i->t->array_size ||
!upb_arrhas(int_arrent(i));
} else {
return i->index >= upb_table_size(&i->t->t) ||
upb_tabent_isempty(int_tabent(i));
}
}
uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i) {
assert(!upb_inttable_done(i));
return i->array_part ? i->index : int_tabent(i)->key.num;
}
upb_value upb_inttable_iter_value(const upb_inttable_iter *i) {
assert(!upb_inttable_done(i));
return _upb_value_val(
i->array_part ? i->t->array[i->index] : int_tabent(i)->val,
i->t->t.ctype);
}
void upb_inttable_iter_setdone(upb_inttable_iter *i) {
i->index = SIZE_MAX;
i->array_part = false;
}
bool upb_inttable_iter_isequal(const upb_inttable_iter *i1,
const upb_inttable_iter *i2) {
if (upb_inttable_done(i1) && upb_inttable_done(i2))
return true;
return i1->t == i2->t && i1->index == i2->index &&
i1->array_part == i2->array_part;
}
#ifdef UPB_UNALIGNED_READS_OK
//-----------------------------------------------------------------------------
// MurmurHash2, by Austin Appleby (released as public domain).
// Reformatted and C99-ified by Joshua Haberman.
// Note - This code makes a few assumptions about how your machine behaves -
// 1. We can read a 4-byte value from any address without crashing
// 2. sizeof(int) == 4 (in upb this limitation is removed by using uint32_t
// And it has a few limitations -
// 1. It will not work incrementally.
// 2. It will not produce the same results on little-endian and big-endian
// machines.
uint32_t MurmurHash2(const void *key, size_t len, uint32_t seed) {
// 'm' and 'r' are mixing constants generated offline.
// They're not really 'magic', they just happen to work well.
const uint32_t m = 0x5bd1e995;
const int32_t r = 24;
// Initialize the hash to a 'random' value
uint32_t h = seed ^ len;
// Mix 4 bytes at a time into the hash
const uint8_t * data = (const uint8_t *)key;
while(len >= 4) {
uint32_t k = *(uint32_t *)data;
k *= m;
k ^= k >> r;
k *= m;
h *= m;
h ^= k;
data += 4;
len -= 4;
}
// Handle the last few bytes of the input array
switch(len) {
case 3: h ^= data[2] << 16;
case 2: h ^= data[1] << 8;
case 1: h ^= data[0]; h *= m;
};
// Do a few final mixes of the hash to ensure the last few
// bytes are well-incorporated.
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
}
#else // !UPB_UNALIGNED_READS_OK
//-----------------------------------------------------------------------------
// MurmurHashAligned2, by Austin Appleby
// Same algorithm as MurmurHash2, but only does aligned reads - should be safer
// on certain platforms.
// Performance will be lower than MurmurHash2
#define MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; }
uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed) {
const uint32_t m = 0x5bd1e995;
const int32_t r = 24;
const uint8_t * data = (const uint8_t *)key;
uint32_t h = seed ^ len;
uint8_t align = (uintptr_t)data & 3;
if(align && (len >= 4)) {
// Pre-load the temp registers
uint32_t t = 0, d = 0;
switch(align) {
case 1: t |= data[2] << 16;
case 2: t |= data[1] << 8;
case 3: t |= data[0];
}
t <<= (8 * align);
data += 4-align;
len -= 4-align;
int32_t sl = 8 * (4-align);
int32_t sr = 8 * align;
// Mix
while(len >= 4) {
d = *(uint32_t *)data;
t = (t >> sr) | (d << sl);
uint32_t k = t;
MIX(h,k,m);
t = d;
data += 4;
len -= 4;
}
// Handle leftover data in temp registers
d = 0;
if(len >= align) {
switch(align) {
case 3: d |= data[2] << 16;
case 2: d |= data[1] << 8;
case 1: d |= data[0];
}
uint32_t k = (t >> sr) | (d << sl);
MIX(h,k,m);
data += align;
len -= align;
//----------
// Handle tail bytes
switch(len) {
case 3: h ^= data[2] << 16;
case 2: h ^= data[1] << 8;
case 1: h ^= data[0]; h *= m;
};
} else {
switch(len) {
case 3: d |= data[2] << 16;
case 2: d |= data[1] << 8;
case 1: d |= data[0];
case 0: h ^= (t >> sr) | (d << sl); h *= m;
}
}
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
} else {
while(len >= 4) {
uint32_t k = *(uint32_t *)data;
MIX(h,k,m);
data += 4;
len -= 4;
}
//----------
// Handle tail bytes
switch(len) {
case 3: h ^= data[2] << 16;
case 2: h ^= data[1] << 8;
case 1: h ^= data[0]; h *= m;
};
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
}
}
#undef MIX
#endif // UPB_UNALIGNED_READS_OK