|
|
|
// Copyright (c) 2009-2021, Google LLC
|
|
|
|
// All rights reserved.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are met:
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
|
|
// documentation and/or other materials provided with the distribution.
|
|
|
|
// * Neither the name of Google LLC nor the
|
|
|
|
// names of its contributors may be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL Google LLC BE LIABLE FOR ANY DIRECT,
|
|
|
|
// INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
|
|
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
|
|
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
#ifndef UPBC_FILE_LAYOUT_H
|
|
|
|
#define UPBC_FILE_LAYOUT_H
|
|
|
|
|
|
|
|
#include <string>
|
|
|
|
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
// begin:google_only
|
|
|
|
// #ifndef UPB_BOOTSTRAP_STAGE0
|
|
|
|
// #include "net/proto2/proto/descriptor.upb.h"
|
|
|
|
// #else
|
|
|
|
// #include "google/protobuf/descriptor.upb.h"
|
|
|
|
// #endif
|
|
|
|
// end:google_only
|
|
|
|
|
|
|
|
// begin:github_only
|
|
|
|
#include "google/protobuf/descriptor.upb.h"
|
|
|
|
// end:github_only
|
|
|
|
|
|
|
|
#include "absl/container/flat_hash_map.h"
|
|
|
|
#include "upb/mini_descriptor/decode.h"
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
#include "upb/reflection/def.h"
|
|
|
|
#include "upb/reflection/def.hpp"
|
|
|
|
#include "upb/upb.hpp"
|
|
|
|
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
// Must be last
|
|
|
|
#include "upb/port/def.inc"
|
|
|
|
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
namespace upbc {
|
|
|
|
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
std::vector<upb::EnumDefPtr> SortedEnums(upb::FileDefPtr file);
|
|
|
|
|
|
|
|
// Ordering must match upb/def.c!
|
|
|
|
//
|
|
|
|
// The ordering is significant because each upb_MessageDef* will point at the
|
|
|
|
// corresponding upb_MiniTable and we just iterate through the list without
|
|
|
|
// any search or lookup.
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
std::vector<upb::MessageDefPtr> SortedMessages(upb::FileDefPtr file);
|
|
|
|
|
|
|
|
// Ordering must match upb/def.c!
|
|
|
|
//
|
|
|
|
// The ordering is significant because each upb_FieldDef* will point at the
|
|
|
|
// corresponding upb_MiniTableExtension and we just iterate through the list
|
|
|
|
// without any search or lookup.
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
std::vector<upb::FieldDefPtr> SortedExtensions(upb::FileDefPtr file);
|
|
|
|
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
std::vector<upb::FieldDefPtr> FieldNumberOrder(upb::MessageDefPtr message);
|
|
|
|
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
// DefPoolPair is a pair of DefPools: one for 32-bit and one for 64-bit.
|
|
|
|
class DefPoolPair {
|
|
|
|
public:
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
DefPoolPair() {
|
|
|
|
pool32_._SetPlatform(kUpb_MiniTablePlatform_32Bit);
|
|
|
|
pool64_._SetPlatform(kUpb_MiniTablePlatform_64Bit);
|
Refactored message accessors to share a common set of functions instead of duplicating logic.
Prior to this CL, there were several different code paths for reading/writing message data. Generated code, MiniTable accessors, and reflection all performed direct manipulation of the bits and bytes in a message, but they all had distinct implementations that did not share much of any code. This divergence meant that they could easily have different behavior, bugs could creep into one but not another, and we would need three different sets of tests to get full test coverage. This also made it very difficult to change the internal representation in any way, since it would require updating many places in the code.
With this CL, the three different APIs for accessing message data now all share a common set of functions. The common functions all take a `upb_MiniTableField` as the canonical description of a field's type and layout. The lowest-level functions are very branchy, as they must test for every possible variation in the field type (field vs oneof, hasbit vs no-hasbit, different field sizes, whether a nonzero default value exists, extension vs. regular field), however these functions are declared inline and designed to be very optimizable when values are known at compile time.
In generated accessors, for example, we can declare constant `upb_MiniTableField` instances so that all values can constant-propagate, and we can get fully specialized code even though we are calling a generic function. On the other hand, when we use the generic functions from reflection, we get runtime branches since values are not known at compile time. But even the function is written to still be as efficient as possible even when used from reflection. For example, we use memcpy() calls with constant length so that the compiler can optimize these into inline loads/stores without having to make an out-of-line call to memcpy().
In this way, this CL should be a benefit to both correctness and performance. It will also make it easier to change the message representation, for example to optimize the encoder by giving hasbits to all fields.
Note that we have not completely consolidated all access in this CL:
1. Some functions outside of get/set such as clear and hazzers are not yet unified.
2. The encoder and decoder still touch the message without going through the common functions. The encoder and decoder require a bit more specialized code to get good performance when reading/writing fields en masse.
PiperOrigin-RevId: 490016095
2 years ago
|
|
|
}
|
|
|
|
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
upb::FileDefPtr AddFile(const UPB_DESC(FileDescriptorProto) * file_proto,
|
|
|
|
upb::Status* status) {
|
|
|
|
upb::FileDefPtr file32 = pool32_.AddFile(file_proto, status);
|
|
|
|
upb::FileDefPtr file64 = pool64_.AddFile(file_proto, status);
|
|
|
|
if (!file32) return file32;
|
|
|
|
return file64;
|
Refactored message accessors to share a common set of functions instead of duplicating logic.
Prior to this CL, there were several different code paths for reading/writing message data. Generated code, MiniTable accessors, and reflection all performed direct manipulation of the bits and bytes in a message, but they all had distinct implementations that did not share much of any code. This divergence meant that they could easily have different behavior, bugs could creep into one but not another, and we would need three different sets of tests to get full test coverage. This also made it very difficult to change the internal representation in any way, since it would require updating many places in the code.
With this CL, the three different APIs for accessing message data now all share a common set of functions. The common functions all take a `upb_MiniTableField` as the canonical description of a field's type and layout. The lowest-level functions are very branchy, as they must test for every possible variation in the field type (field vs oneof, hasbit vs no-hasbit, different field sizes, whether a nonzero default value exists, extension vs. regular field), however these functions are declared inline and designed to be very optimizable when values are known at compile time.
In generated accessors, for example, we can declare constant `upb_MiniTableField` instances so that all values can constant-propagate, and we can get fully specialized code even though we are calling a generic function. On the other hand, when we use the generic functions from reflection, we get runtime branches since values are not known at compile time. But even the function is written to still be as efficient as possible even when used from reflection. For example, we use memcpy() calls with constant length so that the compiler can optimize these into inline loads/stores without having to make an out-of-line call to memcpy().
In this way, this CL should be a benefit to both correctness and performance. It will also make it easier to change the message representation, for example to optimize the encoder by giving hasbits to all fields.
Note that we have not completely consolidated all access in this CL:
1. Some functions outside of get/set such as clear and hazzers are not yet unified.
2. The encoder and decoder still touch the message without going through the common functions. The encoder and decoder require a bit more specialized code to get good performance when reading/writing fields en masse.
PiperOrigin-RevId: 490016095
2 years ago
|
|
|
}
|
|
|
|
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
const upb_MiniTable* GetMiniTable32(upb::MessageDefPtr m) const {
|
|
|
|
return pool32_.FindMessageByName(m.full_name()).mini_table();
|
|
|
|
}
|
|
|
|
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
const upb_MiniTable* GetMiniTable64(upb::MessageDefPtr m) const {
|
|
|
|
return pool64_.FindMessageByName(m.full_name()).mini_table();
|
|
|
|
}
|
|
|
|
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
const upb_MiniTableField* GetField32(upb::FieldDefPtr f) const {
|
|
|
|
return GetFieldFromPool(&pool32_, f);
|
|
|
|
}
|
|
|
|
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
const upb_MiniTableField* GetField64(upb::FieldDefPtr f) const {
|
|
|
|
return GetFieldFromPool(&pool64_, f);
|
|
|
|
}
|
|
|
|
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
private:
|
|
|
|
static const upb_MiniTableField* GetFieldFromPool(const upb::DefPool* pool,
|
|
|
|
upb::FieldDefPtr f) {
|
|
|
|
if (f.is_extension()) {
|
|
|
|
return pool->FindExtensionByName(f.full_name()).mini_table();
|
|
|
|
} else {
|
|
|
|
return pool->FindMessageByName(f.containing_type().full_name())
|
|
|
|
.FindFieldByNumber(f.number())
|
|
|
|
.mini_table();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
upb::DefPool pool32_;
|
|
|
|
upb::DefPool pool64_;
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace upbc
|
|
|
|
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
#include "upb/port/undef.inc"
|
|
|
|
|
|
|
|
#endif // UPBC_FILE_LAYOUT_H
|