Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

474 lines
16 KiB

/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2010-2012 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* A upb_sink is an object that binds a upb_handlers object to some runtime
* state. It is the object that can actually receive data via the upb_handlers
* interface.
*
* Unlike upb_def and upb_handlers, upb_sink is never frozen, immutable, or
* thread-safe. You can create as many of them as you want, but each one may
* only be used in a single thread at a time.
*
* If we compare with class-based OOP, a you can think of a upb_def as an
* abstract base class, a upb_handlers as a concrete derived class, and a
* upb_sink as an object (class instance).
*/
#ifndef UPB_SINK_H
#define UPB_SINK_H
#include "upb/handlers.h"
#ifdef __cplusplus
namespace upb {
class Pipeline;
class Sink;
template <int size> class SeededPipeline;
}
typedef upb::Pipeline upb_pipeline;
typedef upb::Sink upb_sink;
UPB_INLINE upb_sink* upb_sinkframe_sink(const upb_sinkframe* frame);
UPB_INLINE void* upb_sinkframe_userdata(const upb_sinkframe* frame);
UPB_INLINE void* upb_sinkframe_handlerdata(const upb_sinkframe* frame);
#else
struct upb_pipeline;
struct upb_sink;
typedef struct upb_pipeline upb_pipeline;
typedef struct upb_sink upb_sink;
#endif
struct upb_frametype {
size_t size;
void (*init)(void* obj);
void (*uninit)(void* obj);
void (*reset)(void* obj);
};
#ifdef __cplusplus
// A upb::Pipeline is a set of sinks that can send data to each other. The
// pipeline object also contains an arena allocator that the sinks and their
// associated processing state can use for fast memory allocation. This makes
// pipelines very fast to construct and destroy, especially if the arena is
// supplied with an initial block of memory. If this initial block of memory
// is from the C stack and is large enough, then actual heap allocation can be
// avoided entirely which significantly reduces overhead in some cases.
//
// All sinks and processing state are automatically freed when the pipeline is
// destroyed, so Free() is not necessary or possible. Allocated objects can
// optionally specify a Reset() callback that will be called when whenever the
// pipeline is Reset() or destroyed. This can be used to free any outside
// resources the object is holding.
//
// Pipelines (and sinks/objects allocated from them) are not thread-safe!
class upb::Pipeline {
public:
// Initializes the pipeline's arena with the given initial memory that will
// be used before allocating memory using the given allocation function.
// The "ud" pointer will be passed as the first parameter to the realloc
// callback, and can be used to pass user-specific state.
Pipeline(void *initial_mem, size_t initial_size,
void *(*realloc)(void *ud, void *ptr, size_t size), void *ud);
~Pipeline();
// Returns a newly-allocated Sink for the given handlers. The sink is will
// live as long as the pipeline does. Caller retains ownership of the
// handlers object, which must outlive the pipeline.
//
// TODO(haberman): add an option for the sink to take a ref, so the handlers
// don't have to outlive? This would be simpler but imposes a minimum cost.
// Taking an atomic ref is not *so* bad in the single-threaded case, but this
// can degrade heavily under contention, so we need a way to avoid it in
// cases where this overhead would be significant and the caller can easily
// guarantee the outlive semantics.
Sink* NewSink(const Handlers* handlers);
// Accepts a ref donated from the given owner. Will unref the Handlers when
// the Pipeline is destroyed.
void DonateRef(const Handlers* h, const void* owner);
// The current error status for the pipeline.
const upb::Status& status() const;
// Calls "reset" on all Sinks and resettable state objects in the arena, and
// resets the error status. Useful for resetting processing state so new
// input can be accepted.
void Reset();
// Allocates/reallocates memory of the given size, or returns NULL if no
// memory is available. It is not necessary (or possible) to manually free
// the memory obtained from these functions.
void* Alloc(size_t size);
void* Realloc(void* ptr, size_t old_size, size_t size);
// Allocates an object with the given FrameType. Note that this object may
// *not* be resized with Realloc().
void* AllocObject(const FrameType* type);
private:
#else
struct upb_pipeline {
#endif
void *(*realloc)(void *ud, void *ptr, size_t size);
void *ud;
void *bump_top; // Current alloc offset, either from initial or dyn region.
void *bump_limit; // Limit of current alloc block.
void *obj_head; // Linked list of objects with "reset" functions.
void *region_head; // Linked list of dyn regions we got from user's realloc().
void *last_alloc;
upb_status status_;
};
#ifdef __cplusplus
// For convenience, a template for a pipeline with an array of initial memory.
template <int initial_size>
class upb::SeededPipeline : public upb::Pipeline {
public:
SeededPipeline(void *(*realloc)(void *ud, void *ptr, size_t size), void *ud)
: Pipeline(mem_, initial_size, realloc, ud) {
}
private:
char mem_[initial_size];
};
class upb::SinkFrame {
public:
// Returns the sink that this frame belongs to.
Sink* sink() const;
// Returns the pipeline that this sink and frame belong to.
Pipeline* pipeline() const;
// The depth of this frame (counts all kind of frames (sequence, submessage,
// and string frames).
int depth() const;
// The Handlers object for this frame.
const Handlers* handlers() const;
// Returns the user data that is bound to this sink frame (as returned
// by the Start{SubMessage,String,Sequence} handler, or passed to
// Sink::Reset()).
void* userdata() const;
// A templated version of userdata() that type-checks the templated return
// type.
//
// TODO(haberman): this isn't truly robust until sequence and string frames
// have distinct FrameTypes in the Handlers.
template<class T>
T* GetUserdata() const {
#ifdef NDEBUG
return static_cast<T*>(userdata());
#else
const FrameType* type = handlers()->frame_type();
if (!type || type == GetFrameType<T>()) {
return static_cast<T*>(userdata());
} else {
assert(false);
return NULL;
}
#endif
}
// Returns the data that was bound to the currently-executing callback in the
// Handlers object. If not currently in a handler, the results are undefined.
void* handler_data() const;
private:
UPB_DISALLOW_POD_OPS(SinkFrame);
friend class upb::Sink;
friend upb_sink* ::upb_sinkframe_sink(const upb_sinkframe* frame);
friend void* ::upb_sinkframe_userdata(const upb_sinkframe* frame);
friend void* ::upb_sinkframe_handlerdata(const upb_sinkframe* frame);
#else
struct upb_sinkframe {
#endif
upb_sink *sink_;
const upb_handlers *h;
void *closure;
union {
// For the top frame (sink->top), the handler_data for the
// currently-executing callback, otherwise undefined.
// TODO(haberman): have a special pointer value to indicate "not in a
// callback"; this will be a way to enforce non-reentrancy of a sink.
void *handler_data;
// For other frames, the END* callback that will run when the subframe is
// popped (for example, for a "sequence" frame the frame above it will be a
// UPB_HANDLER_ENDSEQ handler). But this is only necessary for assertion
// checking inside upb_sink and can be omitted if the sink has only one
// caller.
// TODO(haberman): have a mechanism for ensuring that a sink only has one
// caller.
upb_selector_t selector;
} u;
};
#ifdef __cplusplus
// A upb::Sink is an object that binds a upb::Handlers object to some runtime
// state. It is the object that can actually call a set of handlers.
//
// Unlike upb::Def and upb::Handlers, upb::Sink is never frozen, immutable, or
// thread-safe. You can create as many of them as you want, but each one may
// only be used in a single thread at a time.
//
// If we compare with class-based OOP, a you can think of a upb::Def as an
// abstract base class, a upb::Handlers as a concrete derived class, and a
// upb::Sink as an object (class instance).
//
// Each upb::Sink lives in exactly one pipeline.
class upb::Sink {
public:
// Resets the state of the sink so that it is ready to accept new input.
// Any state from previously received data is discarded. "Closure" will be
// used as the top-level closure.
void Reset(void *closure);
// Returns the top-most and base (lowest) frame of the stack, respectively.
const SinkFrame* top() const;
const SinkFrame* base() const;
// Returns the pipeline that this sink comes from.
Pipeline* pipeline() const;
// Functions for pushing data into the sink.
//
// These return false if processing should stop (either due to error or just
// to suspend).
//
// These may not be called from within one of the same sink's handlers (in
// other words, handlers are not re-entrant).
// Should be called at the start and end of processing.
bool StartMessage();
void EndMessage();
// Putting of individual values. These work for both repeated and
// non-repeated fields, but for repeated fields you must wrap them in
// calls to StartSequence()/EndSequence().
bool PutInt32(Handlers::Selector s, int32_t val);
bool PutInt64(Handlers::Selector s, int64_t val);
bool PutUInt32(Handlers::Selector s, uint32_t val);
bool PutUInt64(Handlers::Selector s, uint64_t val);
bool PutFloat(Handlers::Selector s, float val);
bool PutDouble(Handlers::Selector s, double val);
bool PutBool(Handlers::Selector s, bool val);
// Putting of string/bytes values. Each string can consist of zero or more
// non-contiguous buffers of data.
bool StartString(Handlers::Selector s, size_t size_hint);
size_t PutStringBuffer(Handlers::Selector s, const char *buf, size_t len);
bool EndString(Handlers::Selector s);
// For submessage fields.
bool StartSubMessage(Handlers::Selector s);
bool EndSubMessage(Handlers::Selector s);
// For repeated fields of any type, the sequence of values must be wrapped in
// these calls.
bool StartSequence(Handlers::Selector s);
bool EndSequence(Handlers::Selector s);
private:
UPB_DISALLOW_POD_OPS(Sink);
#else
struct upb_sink {
#endif
upb_pipeline *pipeline_;
upb_sinkframe *top_, *limit;
upb_sinkframe stack[UPB_MAX_NESTING];
};
// C API.
UPB_INLINE upb_sink *upb_sinkframe_sink(const upb_sinkframe* frame) {
return frame->sink_;
}
UPB_INLINE void *upb_sinkframe_userdata(const upb_sinkframe* frame) {
return frame->closure;
}
UPB_INLINE void *upb_sinkframe_handlerdata(const upb_sinkframe* frame) {
return frame->u.handler_data;
}
#ifdef __cplusplus
extern "C" {
#endif
void *upb_realloc(void *ud, void *ptr, size_t size);
void upb_pipeline_init(upb_pipeline *p, void *initial_mem, size_t initial_size,
void *(*realloc)(void *ud, void *ptr, size_t size),
void *ud);
void upb_pipeline_uninit(upb_pipeline *p);
void *upb_pipeline_alloc(upb_pipeline *p, size_t size);
void *upb_pipeline_realloc(
upb_pipeline *p, void *ptr, size_t old_size, size_t size);
void *upb_pipeline_allocobj(upb_pipeline *p, const upb_frametype *type);
void upb_pipeline_reset(upb_pipeline *p);
void upb_pipeline_donateref(
upb_pipeline *p, const upb_handlers *h, const void *owner);
upb_sink *upb_pipeline_newsink(upb_pipeline *p, const upb_handlers *h);
const upb_status *upb_pipeline_status(const upb_pipeline *p);
int upb_sinkframe_depth(const upb_sinkframe* frame);
const upb_handlers* upb_sinkframe_handlers(const upb_sinkframe* frame);
upb_pipeline* upb_sinkframe_pipeline(const upb_sinkframe* frame);
void upb_sink_reset(upb_sink *s, void *closure);
upb_pipeline *upb_sink_pipeline(const upb_sink *s);
const upb_sinkframe *upb_sink_top(const upb_sink *s);
const upb_sinkframe *upb_sink_base(const upb_sink *s);
bool upb_sink_startmsg(upb_sink *s);
void upb_sink_endmsg(upb_sink *s);
bool upb_sink_putint32(upb_sink *s, upb_selector_t sel, int32_t val);
bool upb_sink_putint64(upb_sink *s, upb_selector_t sel, int64_t val);
bool upb_sink_putuint32(upb_sink *s, upb_selector_t sel, uint32_t val);
bool upb_sink_putuint64(upb_sink *s, upb_selector_t sel, uint64_t val);
bool upb_sink_putfloat(upb_sink *s, upb_selector_t sel, float val);
bool upb_sink_putdouble(upb_sink *s, upb_selector_t sel, double val);
bool upb_sink_putbool(upb_sink *s, upb_selector_t sel, bool val);
bool upb_sink_startstr(upb_sink *s, upb_selector_t sel, size_t size_hint);
size_t upb_sink_putstring(upb_sink *s, upb_selector_t sel, const char *buf,
size_t len);
bool upb_sink_endstr(upb_sink *s, upb_selector_t sel);
bool upb_sink_startsubmsg(upb_sink *s, upb_selector_t sel);
bool upb_sink_endsubmsg(upb_sink *s, upb_selector_t sel);
bool upb_sink_startseq(upb_sink *s, upb_selector_t sel);
bool upb_sink_endseq(upb_sink *s, upb_selector_t sel);
#ifdef __cplusplus
} /* extern "C" */
#endif
#ifdef __cplusplus
namespace upb {
inline Pipeline::Pipeline(void *initial_mem, size_t initial_size,
void *(*realloc)(void *ud, void *ptr, size_t size),
void *ud) {
upb_pipeline_init(this, initial_mem, initial_size, realloc, ud);
}
inline Pipeline::~Pipeline() {
upb_pipeline_uninit(this);
}
inline void* Pipeline::Alloc(size_t size) {
return upb_pipeline_alloc(this, size);
}
inline void* Pipeline::Realloc(void* ptr, size_t old_size, size_t size) {
return upb_pipeline_realloc(this, ptr, old_size, size);
}
inline void* Pipeline::AllocObject(const upb::FrameType* type) {
return upb_pipeline_allocobj(this, type);
}
inline void Pipeline::Reset() {
upb_pipeline_reset(this);
}
inline const upb::Status& Pipeline::status() const {
return *upb_pipeline_status(this);
}
inline Sink* Pipeline::NewSink(const upb::Handlers* handlers) {
return upb_pipeline_newsink(this, handlers);
}
inline void Pipeline::DonateRef(const upb::Handlers* h, const void *owner) {
return upb_pipeline_donateref(this, h, owner);
}
inline Sink* SinkFrame::sink() const {
return upb_sinkframe_sink(this);
}
inline Pipeline* SinkFrame::pipeline() const {
return upb_sinkframe_pipeline(this);
}
inline void* SinkFrame::userdata() const {
return upb_sinkframe_userdata(this);
}
inline void* SinkFrame::handler_data() const {
return upb_sinkframe_handlerdata(this);
}
inline int SinkFrame::depth() const {
return upb_sinkframe_depth(this);
}
inline const Handlers* SinkFrame::handlers() const {
return upb_sinkframe_handlers(this);
}
inline void Sink::Reset(void *closure) {
upb_sink_reset(this, closure);
}
inline Pipeline* Sink::pipeline() const {
return upb_sink_pipeline(this);
}
inline const SinkFrame* Sink::top() const {
return upb_sink_top(this);
}
inline const SinkFrame* Sink::base() const {
return upb_sink_base(this);
}
inline bool Sink::StartMessage() {
return upb_sink_startmsg(this);
}
inline void Sink::EndMessage() {
upb_sink_endmsg(this);
}
inline bool Sink::PutInt32(Handlers::Selector sel, int32_t val) {
return upb_sink_putint32(this, sel, val);
}
inline bool Sink::PutInt64(Handlers::Selector sel, int64_t val) {
return upb_sink_putint64(this, sel, val);
}
inline bool Sink::PutUInt32(Handlers::Selector sel, uint32_t val) {
return upb_sink_putuint32(this, sel, val);
}
inline bool Sink::PutUInt64(Handlers::Selector sel, uint64_t val) {
return upb_sink_putuint64(this, sel, val);
}
inline bool Sink::PutFloat(Handlers::Selector sel, float val) {
return upb_sink_putfloat(this, sel, val);
}
inline bool Sink::PutDouble(Handlers::Selector sel, double val) {
return upb_sink_putdouble(this, sel, val);
}
inline bool Sink::PutBool(Handlers::Selector sel, bool val) {
return upb_sink_putbool(this, sel, val);
}
inline bool Sink::StartString(Handlers::Selector sel, size_t size_hint) {
return upb_sink_startstr(this, sel, size_hint);
}
inline size_t Sink::PutStringBuffer(Handlers::Selector sel, const char *buf,
size_t len) {
return upb_sink_putstring(this, sel, buf, len);
}
inline bool Sink::EndString(Handlers::Selector sel) {
return upb_sink_endstr(this, sel);
}
inline bool Sink::StartSubMessage(Handlers::Selector sel) {
return upb_sink_startsubmsg(this, sel);
}
inline bool Sink::EndSubMessage(Handlers::Selector sel) {
return upb_sink_endsubmsg(this, sel);
}
inline bool Sink::StartSequence(Handlers::Selector sel) {
return upb_sink_startseq(this, sel);
}
inline bool Sink::EndSequence(Handlers::Selector sel) {
return upb_sink_endseq(this, sel);
}
} // namespace upb
#endif
#endif