Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1142 lines
39 KiB

// Protocol Buffers - Google's data interchange format
// Copyright 2014 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "protobuf.h"
#include <math.h>
#include <ruby/encoding.h>
// -----------------------------------------------------------------------------
// Ruby <-> native slot management.
// -----------------------------------------------------------------------------
#define CHARPTR_AT(msg, ofs) ((char*)msg + ofs)
#define DEREF_OFFSET(msg, ofs, type) *(type*)CHARPTR_AT(msg, ofs)
#define DEREF(memory, type) *(type*)(memory)
size_t native_slot_size(upb_fieldtype_t type) {
switch (type) {
case UPB_TYPE_FLOAT: return 4;
case UPB_TYPE_DOUBLE: return 8;
case UPB_TYPE_BOOL: return 1;
case UPB_TYPE_STRING: return sizeof(VALUE);
case UPB_TYPE_BYTES: return sizeof(VALUE);
case UPB_TYPE_MESSAGE: return sizeof(VALUE);
case UPB_TYPE_ENUM: return 4;
case UPB_TYPE_INT32: return 4;
case UPB_TYPE_INT64: return 8;
case UPB_TYPE_UINT32: return 4;
case UPB_TYPE_UINT64: return 8;
default: return 0;
}
}
static bool is_ruby_num(VALUE value) {
return (TYPE(value) == T_FLOAT ||
TYPE(value) == T_FIXNUM ||
TYPE(value) == T_BIGNUM);
}
void native_slot_check_int_range_precision(const char* name, upb_fieldtype_t type, VALUE val) {
if (!is_ruby_num(val)) {
rb_raise(cTypeError, "Expected number type for integral field '%s' (given %s).",
name, rb_class2name(CLASS_OF(val)));
}
// NUM2{INT,UINT,LL,ULL} macros do the appropriate range checks on upper
// bound; we just need to do precision checks (i.e., disallow rounding) and
// check for < 0 on unsigned types.
if (TYPE(val) == T_FLOAT) {
double dbl_val = NUM2DBL(val);
if (floor(dbl_val) != dbl_val) {
rb_raise(rb_eRangeError,
"Non-integral floating point value assigned to integer field '%s' (given %s).",
name, rb_class2name(CLASS_OF(val)));
}
}
if (type == UPB_TYPE_UINT32 || type == UPB_TYPE_UINT64) {
if (NUM2DBL(val) < 0) {
rb_raise(rb_eRangeError,
"Assigning negative value to unsigned integer field '%s' (given %s).",
name, rb_class2name(CLASS_OF(val)));
}
}
}
VALUE native_slot_encode_and_freeze_string(upb_fieldtype_t type, VALUE value) {
rb_encoding* desired_encoding = (type == UPB_TYPE_STRING) ?
kRubyStringUtf8Encoding : kRubyString8bitEncoding;
VALUE desired_encoding_value = rb_enc_from_encoding(desired_encoding);
if (rb_obj_encoding(value) != desired_encoding_value || !OBJ_FROZEN(value)) {
// Note: this will not duplicate underlying string data unless necessary.
value = rb_str_encode(value, desired_encoding_value, 0, Qnil);
if (type == UPB_TYPE_STRING &&
rb_enc_str_coderange(value) == ENC_CODERANGE_BROKEN) {
rb_raise(rb_eEncodingError, "String is invalid UTF-8");
}
// Ensure the data remains valid. Since we called #encode a moment ago,
// this does not freeze the string the user assigned.
rb_obj_freeze(value);
}
return value;
}
void native_slot_set(const char* name,
upb_fieldtype_t type, VALUE type_class,
void* memory, VALUE value) {
native_slot_set_value_and_case(name, type, type_class, memory, value, NULL, 0);
}
void native_slot_set_value_and_case(const char* name,
upb_fieldtype_t type, VALUE type_class,
void* memory, VALUE value,
uint32_t* case_memory,
uint32_t case_number) {
// Note that in order to atomically change the value in memory and the case
// value (w.r.t. Ruby VM calls), we must set the value at |memory| only after
// all Ruby VM calls are complete. The case is then set at the bottom of this
// function.
switch (type) {
case UPB_TYPE_FLOAT:
if (!is_ruby_num(value)) {
rb_raise(cTypeError, "Expected number type for float field '%s' (given %s).",
name, rb_class2name(CLASS_OF(value)));
}
DEREF(memory, float) = NUM2DBL(value);
break;
case UPB_TYPE_DOUBLE:
if (!is_ruby_num(value)) {
rb_raise(cTypeError, "Expected number type for double field '%s' (given %s).",
name, rb_class2name(CLASS_OF(value)));
}
DEREF(memory, double) = NUM2DBL(value);
break;
case UPB_TYPE_BOOL: {
int8_t val = -1;
if (value == Qtrue) {
val = 1;
} else if (value == Qfalse) {
val = 0;
} else {
rb_raise(cTypeError, "Invalid argument for boolean field '%s' (given %s).",
name, rb_class2name(CLASS_OF(value)));
}
DEREF(memory, int8_t) = val;
break;
}
case UPB_TYPE_STRING:
if (CLASS_OF(value) == rb_cSymbol) {
value = rb_funcall(value, rb_intern("to_s"), 0);
} else if (CLASS_OF(value) != rb_cString) {
rb_raise(cTypeError, "Invalid argument for string field '%s' (given %s).",
name, rb_class2name(CLASS_OF(value)));
}
DEREF(memory, VALUE) = native_slot_encode_and_freeze_string(type, value);
break;
case UPB_TYPE_BYTES: {
if (CLASS_OF(value) != rb_cString) {
rb_raise(cTypeError, "Invalid argument for bytes field '%s' (given %s).",
name, rb_class2name(CLASS_OF(value)));
}
DEREF(memory, VALUE) = native_slot_encode_and_freeze_string(type, value);
break;
}
case UPB_TYPE_MESSAGE: {
if (CLASS_OF(value) == CLASS_OF(Qnil)) {
value = Qnil;
} else if (CLASS_OF(value) != type_class) {
// check for possible implicit conversions
VALUE converted_value = Qnil;
const char* field_type_name = rb_class2name(type_class);
if (strcmp(field_type_name, "Google::Protobuf::Timestamp") == 0 &&
rb_obj_is_kind_of(value, rb_cTime)) {
// Time -> Google::Protobuf::Timestamp
VALUE hash = rb_hash_new();
rb_hash_aset(hash, rb_str_new2("seconds"),
rb_funcall(value, rb_intern("to_i"), 0));
rb_hash_aset(hash, rb_str_new2("nanos"),
rb_funcall(value, rb_intern("nsec"), 0));
{
VALUE args[1] = {hash};
converted_value = rb_class_new_instance(1, args, type_class);
}
} else if (strcmp(field_type_name, "Google::Protobuf::Duration") == 0 &&
rb_obj_is_kind_of(value, rb_cNumeric)) {
// Numeric -> Google::Protobuf::Duration
VALUE hash = rb_hash_new();
rb_hash_aset(hash, rb_str_new2("seconds"),
rb_funcall(value, rb_intern("to_i"), 0));
{
VALUE n_value =
rb_funcall(value, rb_intern("remainder"), 1, INT2NUM(1));
n_value =
rb_funcall(n_value, rb_intern("*"), 1, INT2NUM(1000000000));
n_value = rb_funcall(n_value, rb_intern("round"), 0);
rb_hash_aset(hash, rb_str_new2("nanos"), n_value);
}
{
VALUE args[1] = { hash };
converted_value = rb_class_new_instance(1, args, type_class);
}
}
// raise if no suitable conversaion could be found
if (converted_value == Qnil) {
rb_raise(cTypeError,
"Invalid type %s to assign to submessage field '%s'.",
rb_class2name(CLASS_OF(value)), name);
} else {
value = converted_value;
}
}
DEREF(memory, VALUE) = value;
break;
}
case UPB_TYPE_ENUM: {
int32_t int_val = 0;
if (TYPE(value) == T_STRING) {
value = rb_funcall(value, rb_intern("to_sym"), 0);
} else if (!is_ruby_num(value) && TYPE(value) != T_SYMBOL) {
rb_raise(cTypeError,
"Expected number or symbol type for enum field '%s'.", name);
}
if (TYPE(value) == T_SYMBOL) {
// Ensure that the given symbol exists in the enum module.
VALUE lookup = rb_funcall(type_class, rb_intern("resolve"), 1, value);
if (lookup == Qnil) {
rb_raise(rb_eRangeError, "Unknown symbol value for enum field '%s'.", name);
} else {
int_val = NUM2INT(lookup);
}
} else {
native_slot_check_int_range_precision(name, UPB_TYPE_INT32, value);
int_val = NUM2INT(value);
}
DEREF(memory, int32_t) = int_val;
break;
}
case UPB_TYPE_INT32:
case UPB_TYPE_INT64:
case UPB_TYPE_UINT32:
case UPB_TYPE_UINT64:
native_slot_check_int_range_precision(name, type, value);
switch (type) {
case UPB_TYPE_INT32:
DEREF(memory, int32_t) = NUM2INT(value);
break;
case UPB_TYPE_INT64:
DEREF(memory, int64_t) = NUM2LL(value);
break;
case UPB_TYPE_UINT32:
DEREF(memory, uint32_t) = NUM2UINT(value);
break;
case UPB_TYPE_UINT64:
DEREF(memory, uint64_t) = NUM2ULL(value);
break;
default:
break;
}
break;
default:
break;
}
if (case_memory != NULL) {
*case_memory = case_number;
}
}
VALUE native_slot_get(upb_fieldtype_t type,
VALUE type_class,
const void* memory) {
switch (type) {
case UPB_TYPE_FLOAT:
return DBL2NUM(DEREF(memory, float));
case UPB_TYPE_DOUBLE:
return DBL2NUM(DEREF(memory, double));
case UPB_TYPE_BOOL:
return DEREF(memory, int8_t) ? Qtrue : Qfalse;
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
return DEREF(memory, VALUE);
case UPB_TYPE_MESSAGE: {
VALUE val = DEREF(memory, VALUE);
int type = TYPE(val);
if (type != T_DATA && type != T_NIL) {
// This must be a wrapper type.
val = ruby_wrapper_type(type_class, val);
DEREF(memory, VALUE) = val;
}
return val;
}
case UPB_TYPE_ENUM: {
int32_t val = DEREF(memory, int32_t);
VALUE symbol = enum_lookup(type_class, INT2NUM(val));
if (symbol == Qnil) {
return INT2NUM(val);
} else {
return symbol;
}
}
case UPB_TYPE_INT32:
return INT2NUM(DEREF(memory, int32_t));
case UPB_TYPE_INT64:
return LL2NUM(DEREF(memory, int64_t));
case UPB_TYPE_UINT32:
return UINT2NUM(DEREF(memory, uint32_t));
case UPB_TYPE_UINT64:
return ULL2NUM(DEREF(memory, uint64_t));
default:
return Qnil;
}
}
void native_slot_init(upb_fieldtype_t type, void* memory) {
switch (type) {
case UPB_TYPE_FLOAT:
DEREF(memory, float) = 0.0;
break;
case UPB_TYPE_DOUBLE:
DEREF(memory, double) = 0.0;
break;
case UPB_TYPE_BOOL:
DEREF(memory, int8_t) = 0;
break;
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
DEREF(memory, VALUE) = rb_str_new2("");
rb_enc_associate(DEREF(memory, VALUE), (type == UPB_TYPE_BYTES) ?
kRubyString8bitEncoding : kRubyStringUtf8Encoding);
break;
case UPB_TYPE_MESSAGE:
DEREF(memory, VALUE) = Qnil;
break;
case UPB_TYPE_ENUM:
case UPB_TYPE_INT32:
DEREF(memory, int32_t) = 0;
break;
case UPB_TYPE_INT64:
DEREF(memory, int64_t) = 0;
break;
case UPB_TYPE_UINT32:
DEREF(memory, uint32_t) = 0;
break;
case UPB_TYPE_UINT64:
DEREF(memory, uint64_t) = 0;
break;
default:
break;
}
}
void native_slot_mark(upb_fieldtype_t type, void* memory) {
switch (type) {
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
case UPB_TYPE_MESSAGE:
rb_gc_mark(DEREF(memory, VALUE));
break;
default:
break;
}
}
void native_slot_dup(upb_fieldtype_t type, void* to, void* from) {
memcpy(to, from, native_slot_size(type));
}
void native_slot_deep_copy(upb_fieldtype_t type, void* to, void* from) {
switch (type) {
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES: {
VALUE from_val = DEREF(from, VALUE);
DEREF(to, VALUE) = (from_val != Qnil) ?
rb_funcall(from_val, rb_intern("dup"), 0) : Qnil;
break;
}
case UPB_TYPE_MESSAGE: {
VALUE from_val = DEREF(from, VALUE);
DEREF(to, VALUE) = (from_val != Qnil) ?
Message_deep_copy(from_val) : Qnil;
break;
}
default:
memcpy(to, from, native_slot_size(type));
}
}
bool native_slot_eq(upb_fieldtype_t type, VALUE type_class, void* mem1,
void* mem2) {
switch (type) {
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
case UPB_TYPE_MESSAGE: {
VALUE val1 = native_slot_get(type, type_class, mem1);
VALUE val2 = native_slot_get(type, type_class, mem2);
VALUE ret = rb_funcall(val1, rb_intern("=="), 1, val2);
return ret == Qtrue;
}
default:
return !memcmp(mem1, mem2, native_slot_size(type));
}
}
// -----------------------------------------------------------------------------
// Map field utilities.
// -----------------------------------------------------------------------------
const upb_msgdef* tryget_map_entry_msgdef(const upb_fielddef* field) {
const upb_msgdef* subdef;
if (upb_fielddef_label(field) != UPB_LABEL_REPEATED ||
upb_fielddef_type(field) != UPB_TYPE_MESSAGE) {
return NULL;
}
subdef = upb_fielddef_msgsubdef(field);
return upb_msgdef_mapentry(subdef) ? subdef : NULL;
}
const upb_msgdef *map_entry_msgdef(const upb_fielddef* field) {
const upb_msgdef* subdef = tryget_map_entry_msgdef(field);
assert(subdef);
return subdef;
}
bool is_map_field(const upb_fielddef *field) {
const upb_msgdef* subdef = tryget_map_entry_msgdef(field);
if (subdef == NULL) return false;
// Map fields are a proto3 feature.
// If we're using proto2 syntax we need to fallback to the repeated field.
return upb_msgdef_syntax(subdef) == UPB_SYNTAX_PROTO3;
}
const upb_fielddef* map_field_key(const upb_fielddef* field) {
const upb_msgdef* subdef = map_entry_msgdef(field);
return map_entry_key(subdef);
}
const upb_fielddef* map_field_value(const upb_fielddef* field) {
const upb_msgdef* subdef = map_entry_msgdef(field);
return map_entry_value(subdef);
}
const upb_fielddef* map_entry_key(const upb_msgdef* msgdef) {
const upb_fielddef* key_field = upb_msgdef_itof(msgdef, MAP_KEY_FIELD);
assert(key_field != NULL);
return key_field;
}
const upb_fielddef* map_entry_value(const upb_msgdef* msgdef) {
const upb_fielddef* value_field = upb_msgdef_itof(msgdef, MAP_VALUE_FIELD);
assert(value_field != NULL);
return value_field;
}
// -----------------------------------------------------------------------------
// Memory layout management.
// -----------------------------------------------------------------------------
bool field_contains_hasbit(MessageLayout* layout,
const upb_fielddef* field) {
return layout->fields[upb_fielddef_index(field)].hasbit !=
MESSAGE_FIELD_NO_HASBIT;
}
static size_t align_up_to(size_t offset, size_t granularity) {
// Granularity must be a power of two.
return (offset + granularity - 1) & ~(granularity - 1);
}
bool is_value_field(const upb_fielddef* f) {
return upb_fielddef_isseq(f) || upb_fielddef_issubmsg(f) ||
upb_fielddef_isstring(f);
}
void create_layout(Descriptor* desc) {
const upb_msgdef *msgdef = desc->msgdef;
MessageLayout* layout = ALLOC(MessageLayout);
int nfields = upb_msgdef_numfields(msgdef);
int noneofs = upb_msgdef_numoneofs(msgdef);
upb_msg_field_iter it;
upb_msg_oneof_iter oit;
size_t off = 0;
size_t hasbit = 0;
5 years ago
layout->empty_template = NULL;
layout->desc = desc;
5 years ago
desc->layout = layout;
layout->fields = ALLOC_N(MessageField, nfields);
layout->oneofs = NULL;
if (noneofs > 0) {
layout->oneofs = ALLOC_N(MessageOneof, noneofs);
}
for (upb_msg_field_begin(&it, msgdef);
!upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
const upb_fielddef* field = upb_msg_iter_field(&it);
if (upb_fielddef_haspresence(field)) {
layout->fields[upb_fielddef_index(field)].hasbit = hasbit++;
} else {
layout->fields[upb_fielddef_index(field)].hasbit =
MESSAGE_FIELD_NO_HASBIT;
}
}
if (hasbit != 0) {
off += (hasbit + 8 - 1) / 8;
}
off = align_up_to(off, sizeof(VALUE));
layout->value_offset = off;
layout->repeated_count = 0;
layout->map_count = 0;
layout->value_count = 0;
// Place all VALUE fields for repeated fields.
for (upb_msg_field_begin(&it, msgdef);
!upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
const upb_fielddef* field = upb_msg_iter_field(&it);
if (upb_fielddef_containingoneof(field) || !upb_fielddef_isseq(field) ||
upb_fielddef_ismap(field)) {
continue;
}
layout->fields[upb_fielddef_index(field)].offset = off;
off += sizeof(VALUE);
layout->repeated_count++;
}
// Place all VALUE fields for map fields.
for (upb_msg_field_begin(&it, msgdef);
!upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
const upb_fielddef* field = upb_msg_iter_field(&it);
if (upb_fielddef_containingoneof(field) || !upb_fielddef_isseq(field) ||
!upb_fielddef_ismap(field)) {
continue;
}
layout->fields[upb_fielddef_index(field)].offset = off;
off += sizeof(VALUE);
layout->map_count++;
}
layout->value_count = layout->repeated_count + layout->map_count;
// Next place all other (non-oneof) VALUE fields.
for (upb_msg_field_begin(&it, msgdef);
!upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
const upb_fielddef* field = upb_msg_iter_field(&it);
if (upb_fielddef_containingoneof(field) || !is_value_field(field) ||
upb_fielddef_isseq(field)) {
continue;
}
layout->fields[upb_fielddef_index(field)].offset = off;
off += sizeof(VALUE);
layout->value_count++;
}
// Now place all other (non-oneof) fields.
for (upb_msg_field_begin(&it, msgdef);
!upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
const upb_fielddef* field = upb_msg_iter_field(&it);
size_t field_size;
if (upb_fielddef_containingoneof(field) || is_value_field(field)) {
continue;
}
// Allocate |field_size| bytes for this field in the layout.
field_size = native_slot_size(upb_fielddef_type(field));
// Align current offset up to |size| granularity.
off = align_up_to(off, field_size);
layout->fields[upb_fielddef_index(field)].offset = off;
off += field_size;
}
// Handle oneofs now -- we iterate over oneofs specifically and allocate only
// one slot per oneof.
//
// We assign all value slots first, then pack the 'case' fields at the end,
// since in the common case (modern 64-bit platform) these are 8 bytes and 4
// bytes respectively and we want to avoid alignment overhead.
//
// Note that we reserve 4 bytes (a uint32) per 'case' slot because the value
// space for oneof cases is conceptually as wide as field tag numbers. In
// practice, it's unlikely that a oneof would have more than e.g. 256 or 64K
// members (8 or 16 bits respectively), so conceivably we could assign
// consecutive case numbers and then pick a smaller oneof case slot size, but
// the complexity to implement this indirection is probably not worthwhile.
for (upb_msg_oneof_begin(&oit, msgdef);
!upb_msg_oneof_done(&oit);
upb_msg_oneof_next(&oit)) {
const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
upb_oneof_iter fit;
// Always allocate NATIVE_SLOT_MAX_SIZE bytes, but share the slot between
// all fields.
size_t field_size = NATIVE_SLOT_MAX_SIZE;
// Align the offset.
off = align_up_to(off, field_size);
// Assign all fields in the oneof this same offset.
for (upb_oneof_begin(&fit, oneof);
!upb_oneof_done(&fit);
upb_oneof_next(&fit)) {
const upb_fielddef* field = upb_oneof_iter_field(&fit);
layout->fields[upb_fielddef_index(field)].offset = off;
layout->oneofs[upb_oneofdef_index(oneof)].offset = off;
}
off += field_size;
}
// Now the case fields.
for (upb_msg_oneof_begin(&oit, msgdef);
!upb_msg_oneof_done(&oit);
upb_msg_oneof_next(&oit)) {
const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
size_t field_size = sizeof(uint32_t);
// Align the offset.
off = (off + field_size - 1) & ~(field_size - 1);
layout->oneofs[upb_oneofdef_index(oneof)].case_offset = off;
off += field_size;
}
layout->size = off;
layout->msgdef = msgdef;
5 years ago
// Create the empty message template.
layout->empty_template = ALLOC_N(char, layout->size);
memset(layout->empty_template, 0, layout->size);
for (upb_msg_field_begin(&it, layout->msgdef);
!upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
layout_clear(layout, layout->empty_template, upb_msg_iter_field(&it));
}
}
void free_layout(MessageLayout* layout) {
5 years ago
xfree(layout->empty_template);
xfree(layout->fields);
xfree(layout->oneofs);
xfree(layout);
}
VALUE field_type_class(const MessageLayout* layout, const upb_fielddef* field) {
VALUE type_class = Qnil;
if (upb_fielddef_type(field) == UPB_TYPE_MESSAGE) {
VALUE submsgdesc = get_msgdef_obj(layout->desc->descriptor_pool,
upb_fielddef_msgsubdef(field));
type_class = Descriptor_msgclass(submsgdesc);
} else if (upb_fielddef_type(field) == UPB_TYPE_ENUM) {
VALUE subenumdesc = get_enumdef_obj(layout->desc->descriptor_pool,
upb_fielddef_enumsubdef(field));
type_class = EnumDescriptor_enummodule(subenumdesc);
}
return type_class;
}
static void* slot_memory(MessageLayout* layout,
const void* storage,
const upb_fielddef* field) {
return ((uint8_t *)storage) +
layout->fields[upb_fielddef_index(field)].offset;
}
static uint32_t* slot_oneof_case(MessageLayout* layout,
const void* storage,
const upb_oneofdef* oneof) {
return (uint32_t*)(((uint8_t*)storage) +
layout->oneofs[upb_oneofdef_index(oneof)].case_offset);
}
uint32_t slot_read_oneof_case(MessageLayout* layout, const void* storage,
const upb_oneofdef* oneof) {
uint32_t* ptr = slot_oneof_case(layout, storage, oneof);
return *ptr & ~ONEOF_CASE_MASK;
}
static void slot_set_hasbit(MessageLayout* layout,
const void* storage,
const upb_fielddef* field) {
size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit;
assert(hasbit != MESSAGE_FIELD_NO_HASBIT);
((uint8_t*)storage)[hasbit / 8] |= 1 << (hasbit % 8);
}
static void slot_clear_hasbit(MessageLayout* layout,
const void* storage,
const upb_fielddef* field) {
size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit;
assert(hasbit != MESSAGE_FIELD_NO_HASBIT);
((uint8_t*)storage)[hasbit / 8] &= ~(1 << (hasbit % 8));
}
static bool slot_is_hasbit_set(MessageLayout* layout,
const void* storage,
const upb_fielddef* field) {
size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit;
if (hasbit == MESSAGE_FIELD_NO_HASBIT) {
return false;
}
return DEREF_OFFSET(
(uint8_t*)storage, hasbit / 8, char) & (1 << (hasbit % 8));
}
VALUE layout_has(MessageLayout* layout,
const void* storage,
const upb_fielddef* field) {
assert(field_contains_hasbit(layout, field));
return slot_is_hasbit_set(layout, storage, field) ? Qtrue : Qfalse;
}
void layout_clear(MessageLayout* layout,
const void* storage,
const upb_fielddef* field) {
void* memory = slot_memory(layout, storage, field);
const upb_oneofdef* oneof = upb_fielddef_containingoneof(field);
if (field_contains_hasbit(layout, field)) {
slot_clear_hasbit(layout, storage, field);
}
if (oneof) {
uint32_t* oneof_case = slot_oneof_case(layout, storage, oneof);
memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
*oneof_case = ONEOF_CASE_NONE;
} else if (is_map_field(field)) {
VALUE map = Qnil;
const upb_fielddef* key_field = map_field_key(field);
const upb_fielddef* value_field = map_field_value(field);
VALUE type_class = field_type_class(layout, value_field);
if (type_class != Qnil) {
VALUE args[3] = {
fieldtype_to_ruby(upb_fielddef_type(key_field)),
fieldtype_to_ruby(upb_fielddef_type(value_field)),
type_class,
};
map = rb_class_new_instance(3, args, cMap);
} else {
VALUE args[2] = {
fieldtype_to_ruby(upb_fielddef_type(key_field)),
fieldtype_to_ruby(upb_fielddef_type(value_field)),
};
map = rb_class_new_instance(2, args, cMap);
}
DEREF(memory, VALUE) = map;
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
VALUE ary = Qnil;
VALUE type_class = field_type_class(layout, field);
if (type_class != Qnil) {
VALUE args[2] = {
fieldtype_to_ruby(upb_fielddef_type(field)),
type_class,
};
ary = rb_class_new_instance(2, args, cRepeatedField);
} else {
VALUE args[1] = { fieldtype_to_ruby(upb_fielddef_type(field)) };
ary = rb_class_new_instance(1, args, cRepeatedField);
}
DEREF(memory, VALUE) = ary;
} else {
native_slot_set(upb_fielddef_name(field), upb_fielddef_type(field),
field_type_class(layout, field), memory,
layout_get_default(field));
}
}
VALUE layout_get_default(const upb_fielddef *field) {
switch (upb_fielddef_type(field)) {
case UPB_TYPE_FLOAT: return DBL2NUM(upb_fielddef_defaultfloat(field));
case UPB_TYPE_DOUBLE: return DBL2NUM(upb_fielddef_defaultdouble(field));
case UPB_TYPE_BOOL:
return upb_fielddef_defaultbool(field) ? Qtrue : Qfalse;
case UPB_TYPE_MESSAGE: return Qnil;
case UPB_TYPE_ENUM: {
const upb_enumdef *enumdef = upb_fielddef_enumsubdef(field);
int32_t num = upb_fielddef_defaultint32(field);
const char *label = upb_enumdef_iton(enumdef, num);
if (label) {
return ID2SYM(rb_intern(label));
} else {
return INT2NUM(num);
}
}
case UPB_TYPE_INT32: return INT2NUM(upb_fielddef_defaultint32(field));
case UPB_TYPE_INT64: return LL2NUM(upb_fielddef_defaultint64(field));;
case UPB_TYPE_UINT32: return UINT2NUM(upb_fielddef_defaultuint32(field));
case UPB_TYPE_UINT64: return ULL2NUM(upb_fielddef_defaultuint64(field));
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES: {
size_t size;
const char *str = upb_fielddef_defaultstr(field, &size);
return get_frozen_string(str, size,
upb_fielddef_type(field) == UPB_TYPE_BYTES);
}
default: return Qnil;
}
}
VALUE layout_get(MessageLayout* layout,
const void* storage,
const upb_fielddef* field) {
void* memory = slot_memory(layout, storage, field);
const upb_oneofdef* oneof = upb_fielddef_containingoneof(field);
bool field_set;
if (field_contains_hasbit(layout, field)) {
field_set = slot_is_hasbit_set(layout, storage, field);
} else {
field_set = true;
}
if (oneof) {
uint32_t oneof_case = slot_read_oneof_case(layout, storage, oneof);
if (oneof_case != upb_fielddef_number(field)) {
return layout_get_default(field);
}
return native_slot_get(upb_fielddef_type(field),
field_type_class(layout, field), memory);
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
return *((VALUE *)memory);
} else if (!field_set) {
return layout_get_default(field);
} else {
return native_slot_get(upb_fielddef_type(field),
field_type_class(layout, field), memory);
}
}
static void check_repeated_field_type(const MessageLayout* layout, VALUE val,
const upb_fielddef* field) {
RepeatedField* self;
assert(upb_fielddef_label(field) == UPB_LABEL_REPEATED);
if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) ||
RTYPEDDATA_TYPE(val) != &RepeatedField_type) {
rb_raise(cTypeError, "Expected repeated field array");
}
self = ruby_to_RepeatedField(val);
if (self->field_type != upb_fielddef_type(field)) {
rb_raise(cTypeError, "Repeated field array has wrong element type");
}
if (self->field_type_class != field_type_class(layout, field)) {
rb_raise(cTypeError, "Repeated field array has wrong message/enum class");
}
}
static void check_map_field_type(const MessageLayout* layout, VALUE val,
const upb_fielddef* field) {
const upb_fielddef* key_field = map_field_key(field);
const upb_fielddef* value_field = map_field_value(field);
Map* self;
if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) ||
RTYPEDDATA_TYPE(val) != &Map_type) {
rb_raise(cTypeError, "Expected Map instance");
}
self = ruby_to_Map(val);
if (self->key_type != upb_fielddef_type(key_field)) {
rb_raise(cTypeError, "Map key type does not match field's key type");
}
if (self->value_type != upb_fielddef_type(value_field)) {
rb_raise(cTypeError, "Map value type does not match field's value type");
}
if (self->value_type_class != field_type_class(layout, value_field)) {
rb_raise(cTypeError, "Map value type has wrong message/enum class");
}
}
void layout_set(MessageLayout* layout,
void* storage,
const upb_fielddef* field,
VALUE val) {
void* memory = slot_memory(layout, storage, field);
const upb_oneofdef* oneof = upb_fielddef_containingoneof(field);
if (oneof) {
uint32_t* oneof_case = slot_oneof_case(layout, storage, oneof);
if (val == Qnil) {
// Assigning nil to a oneof field clears the oneof completely.
*oneof_case = ONEOF_CASE_NONE;
memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
} else {
// The transition between field types for a single oneof (union) slot is
// somewhat complex because we need to ensure that a GC triggered at any
// point by a call into the Ruby VM sees a valid state for this field and
// does not either go off into the weeds (following what it thinks is a
// VALUE but is actually a different field type) or miss an object (seeing
// what it thinks is a primitive field but is actually a VALUE for the new
// field type).
//
// In order for the transition to be safe, the oneof case slot must be in
// sync with the value slot whenever the Ruby VM has been called. Thus, we
// use native_slot_set_value_and_case(), which ensures that both the value
// and case number are altered atomically (w.r.t. the Ruby VM).
uint32_t case_value = upb_fielddef_number(field);
if (upb_fielddef_issubmsg(field) || upb_fielddef_isstring(field)) {
case_value |= ONEOF_CASE_MASK;
}
native_slot_set_value_and_case(
upb_fielddef_name(field), upb_fielddef_type(field),
field_type_class(layout, field), memory, val, oneof_case, case_value);
}
} else if (is_map_field(field)) {
check_map_field_type(layout, val, field);
DEREF(memory, VALUE) = val;
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
check_repeated_field_type(layout, val, field);
DEREF(memory, VALUE) = val;
} else {
native_slot_set(upb_fielddef_name(field), upb_fielddef_type(field),
field_type_class(layout, field), memory, val);
}
if (layout->fields[upb_fielddef_index(field)].hasbit !=
MESSAGE_FIELD_NO_HASBIT) {
slot_set_hasbit(layout, storage, field);
}
}
5 years ago
void layout_init(MessageLayout* layout, void* storage) {
VALUE* value = (VALUE*)CHARPTR_AT(storage, layout->value_offset);
int i;
for (i = 0; i < layout->repeated_count; i++, value++) {
*value = RepeatedField_new_this_type(*value);
}
for (i = 0; i < layout->map_count; i++, value++) {
*value = Map_new_this_type(*value);
}
}
void layout_mark(MessageLayout* layout, void* storage) {
VALUE* values = (VALUE*)CHARPTR_AT(storage, layout->value_offset);
int noneofs = upb_msgdef_numoneofs(layout->msgdef);
int i;
for (i = 0; i < layout->value_count; i++) {
rb_gc_mark(values[i]);
}
for (i = 0; i < noneofs; i++) {
MessageOneof* oneof = &layout->oneofs[i];
uint32_t* case_ptr = (uint32_t*)CHARPTR_AT(storage, oneof->case_offset);
if (*case_ptr & ONEOF_CASE_MASK) {
rb_gc_mark(DEREF_OFFSET(storage, oneof->offset, VALUE));
}
}
}
void layout_dup(MessageLayout* layout, void* to, void* from) {
upb_msg_field_iter it;
for (upb_msg_field_begin(&it, layout->msgdef);
!upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
const upb_fielddef* field = upb_msg_iter_field(&it);
const upb_oneofdef* oneof = upb_fielddef_containingoneof(field);
void* to_memory = slot_memory(layout, to, field);
void* from_memory = slot_memory(layout, from, field);
if (oneof) {
uint32_t* to_oneof_case = slot_oneof_case(layout, to, oneof);
uint32_t* from_oneof_case = slot_oneof_case(layout, from, oneof);
if (slot_read_oneof_case(layout, from, oneof) ==
upb_fielddef_number(field)) {
*to_oneof_case = *from_oneof_case;
native_slot_dup(upb_fielddef_type(field), to_memory, from_memory);
}
} else if (is_map_field(field)) {
DEREF(to_memory, VALUE) = Map_dup(DEREF(from_memory, VALUE));
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
DEREF(to_memory, VALUE) = RepeatedField_dup(DEREF(from_memory, VALUE));
} else {
if (field_contains_hasbit(layout, field)) {
if (!slot_is_hasbit_set(layout, from, field)) continue;
slot_set_hasbit(layout, to, field);
}
native_slot_dup(upb_fielddef_type(field), to_memory, from_memory);
}
}
}
void layout_deep_copy(MessageLayout* layout, void* to, void* from) {
upb_msg_field_iter it;
for (upb_msg_field_begin(&it, layout->msgdef);
!upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
const upb_fielddef* field = upb_msg_iter_field(&it);
const upb_oneofdef* oneof = upb_fielddef_containingoneof(field);
void* to_memory = slot_memory(layout, to, field);
void* from_memory = slot_memory(layout, from, field);
if (oneof) {
uint32_t* to_oneof_case = slot_oneof_case(layout, to, oneof);
uint32_t* from_oneof_case = slot_oneof_case(layout, from, oneof);
if (slot_read_oneof_case(layout, from, oneof) ==
upb_fielddef_number(field)) {
*to_oneof_case = *from_oneof_case;
native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory);
}
} else if (is_map_field(field)) {
DEREF(to_memory, VALUE) =
Map_deep_copy(DEREF(from_memory, VALUE));
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
DEREF(to_memory, VALUE) =
RepeatedField_deep_copy(DEREF(from_memory, VALUE));
} else {
if (field_contains_hasbit(layout, field)) {
if (!slot_is_hasbit_set(layout, from, field)) continue;
slot_set_hasbit(layout, to, field);
}
native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory);
}
}
}
VALUE layout_eq(MessageLayout* layout, void* msg1, void* msg2) {
upb_msg_field_iter it;
for (upb_msg_field_begin(&it, layout->msgdef);
!upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
const upb_fielddef* field = upb_msg_iter_field(&it);
const upb_oneofdef* oneof = upb_fielddef_containingoneof(field);
void* msg1_memory = slot_memory(layout, msg1, field);
void* msg2_memory = slot_memory(layout, msg2, field);
if (oneof) {
uint32_t* msg1_oneof_case = slot_oneof_case(layout, msg1, oneof);
uint32_t* msg2_oneof_case = slot_oneof_case(layout, msg2, oneof);
if (*msg1_oneof_case != *msg2_oneof_case ||
(slot_read_oneof_case(layout, msg1, oneof) ==
upb_fielddef_number(field) &&
!native_slot_eq(upb_fielddef_type(field),
field_type_class(layout, field), msg1_memory,
msg2_memory))) {
return Qfalse;
}
} else if (is_map_field(field)) {
if (!Map_eq(DEREF(msg1_memory, VALUE),
DEREF(msg2_memory, VALUE))) {
return Qfalse;
}
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
if (!RepeatedField_eq(DEREF(msg1_memory, VALUE),
DEREF(msg2_memory, VALUE))) {
return Qfalse;
}
} else {
if (slot_is_hasbit_set(layout, msg1, field) !=
slot_is_hasbit_set(layout, msg2, field) ||
!native_slot_eq(upb_fielddef_type(field),
field_type_class(layout, field), msg1_memory,
msg2_memory)) {
return Qfalse;
}
}
}
return Qtrue;
}
VALUE layout_hash(MessageLayout* layout, void* storage) {
upb_msg_field_iter it;
st_index_t h = rb_hash_start(0);
VALUE hash_sym = rb_intern("hash");
for (upb_msg_field_begin(&it, layout->msgdef);
!upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
const upb_fielddef* field = upb_msg_iter_field(&it);
VALUE field_val = layout_get(layout, storage, field);
h = rb_hash_uint(h, NUM2LONG(rb_funcall(field_val, hash_sym, 0)));
}
h = rb_hash_end(h);
return INT2FIX(h);
}
VALUE layout_inspect(MessageLayout* layout, void* storage) {
VALUE str = rb_str_new2("");
upb_msg_field_iter it;
bool first = true;
for (upb_msg_field_begin(&it, layout->msgdef);
!upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
const upb_fielddef* field = upb_msg_iter_field(&it);
VALUE field_val = layout_get(layout, storage, field);
if (!first) {
str = rb_str_cat2(str, ", ");
} else {
first = false;
}
str = rb_str_cat2(str, upb_fielddef_name(field));
str = rb_str_cat2(str, ": ");
str = rb_str_append(str, rb_funcall(field_val, rb_intern("inspect"), 0));
}
return str;
}