Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

567 lines
18 KiB

/*
** upb::Encoder
**
** Since we are implementing pure handlers (ie. without any out-of-band access
** to pre-computed lengths), we have to buffer all submessages before we can
** emit even their first byte.
**
** Not knowing the size of submessages also means we can't write a perfect
** zero-copy implementation, even with buffering. Lengths are stored as
** varints, which means that we don't know how many bytes to reserve for the
** length until we know what the length is.
**
** This leaves us with three main choices:
**
** 1. buffer all submessage data in a temporary buffer, then copy it exactly
** once into the output buffer.
**
** 2. attempt to buffer data directly into the output buffer, estimating how
** many bytes each length will take. When our guesses are wrong, use
** memmove() to grow or shrink the allotted space.
**
** 3. buffer directly into the output buffer, allocating a max length
** ahead-of-time for each submessage length. If we overallocated, we waste
** space, but no memcpy() or memmove() is required. This approach requires
** defining a maximum size for submessages and rejecting submessages that
** exceed that size.
**
** (2) and (3) have the potential to have better performance, but they are more
** complicated and subtle to implement:
**
** (3) requires making an arbitrary choice of the maximum message size; it
** wastes space when submessages are shorter than this and fails
** completely when they are longer. This makes it more finicky and
** requires configuration based on the input. It also makes it impossible
** to perfectly match the output of reference encoders that always use the
** optimal amount of space for each length.
**
** (2) requires guessing the the size upfront, and if multiple lengths are
** guessed wrong the minimum required number of memmove() operations may
** be complicated to compute correctly. Implemented properly, it may have
** a useful amortized or average cost, but more investigation is required
** to determine this and what the optimal algorithm is to achieve it.
**
** (1) makes you always pay for exactly one copy, but its implementation is
** the simplest and its performance is predictable.
**
** So for now, we implement (1) only. If we wish to optimize later, we should
** be able to do it without affecting users.
**
** The strategy is to buffer the segments of data that do *not* depend on
** unknown lengths in one buffer, and keep a separate buffer of segment pointers
** and lengths. When the top-level submessage ends, we can go beginning to end,
** alternating the writing of lengths with memcpy() of the rest of the data.
** At the top level though, no buffering is required.
*/
#include "upb/pb/encoder.h"
#include "upb/pb/varint.int.h"
/* The output buffer is divided into segments; a segment is a string of data
* that is "ready to go" -- it does not need any varint lengths inserted into
* the middle. The seams between segments are where varints will be inserted
* once they are known.
*
* We also use the concept of a "run", which is a range of encoded bytes that
* occur at a single submessage level. Every segment contains one or more runs.
*
* A segment can span messages. Consider:
*
* .--Submessage lengths---------.
* | | |
* | V V
* V | |--------------- | |-----------------
* Submessages: | |-----------------------------------------------
* Top-level msg: ------------------------------------------------------------
*
* Segments: ----- ------------------- -----------------
* Runs: *---- *--------------*--- *----------------
* (* marks the start)
*
* Note that the top-level menssage is not in any segment because it does not
* have any length preceding it.
*
* A segment is only interrupted when another length needs to be inserted. So
* observe how the second segment spans both the inner submessage and part of
* the next enclosing message. */
typedef struct {
uint32_t msglen; /* The length to varint-encode before this segment. */
uint32_t seglen; /* Length of the segment. */
} upb_pb_encoder_segment;
struct upb_pb_encoder {
upb_env *env;
/* Our input and output. */
upb_sink input_;
upb_bytessink *output_;
/* The "subclosure" -- used as the inner closure as part of the bytessink
* protocol. */
void *subc;
/* The output buffer and limit, and our current write position. "buf"
* initially points to "initbuf", but is dynamically allocated if we need to
* grow beyond the initial size. */
char *buf, *ptr, *limit;
/* The beginning of the current run, or undefined if we are at the top
* level. */
char *runbegin;
/* The list of segments we are accumulating. */
upb_pb_encoder_segment *segbuf, *segptr, *seglimit;
/* The stack of enclosing submessages. Each entry in the stack points to the
* segment where this submessage's length is being accumulated. */
int *stack, *top, *stacklimit;
/* Depth of startmsg/endmsg calls. */
int depth;
};
/* low-level buffering ********************************************************/
/* Low-level functions for interacting with the output buffer. */
/* TODO(haberman): handle pushback */
static void putbuf(upb_pb_encoder *e, const char *buf, size_t len) {
size_t n = upb_bytessink_putbuf(e->output_, e->subc, buf, len, NULL);
UPB_ASSERT(n == len);
}
static upb_pb_encoder_segment *top(upb_pb_encoder *e) {
return &e->segbuf[*e->top];
}
/* Call to ensure that at least "bytes" bytes are available for writing at
* e->ptr. Returns false if the bytes could not be allocated. */
static bool reserve(upb_pb_encoder *e, size_t bytes) {
if ((size_t)(e->limit - e->ptr) < bytes) {
/* Grow buffer. */
char *new_buf;
size_t needed = bytes + (e->ptr - e->buf);
size_t old_size = e->limit - e->buf;
size_t new_size = old_size;
while (new_size < needed) {
new_size *= 2;
}
new_buf = upb_env_realloc(e->env, e->buf, old_size, new_size);
if (new_buf == NULL) {
return false;
}
e->ptr = new_buf + (e->ptr - e->buf);
e->runbegin = new_buf + (e->runbegin - e->buf);
e->limit = new_buf + new_size;
e->buf = new_buf;
}
return true;
}
/* Call when "bytes" bytes have been writte at e->ptr. The caller *must* have
* previously called reserve() with at least this many bytes. */
static void encoder_advance(upb_pb_encoder *e, size_t bytes) {
UPB_ASSERT((size_t)(e->limit - e->ptr) >= bytes);
e->ptr += bytes;
}
/* Call when all of the bytes for a handler have been written. Flushes the
* bytes if possible and necessary, returning false if this failed. */
static bool commit(upb_pb_encoder *e) {
if (!e->top) {
/* We aren't inside a delimited region. Flush our accumulated bytes to
* the output.
*
* TODO(haberman): in the future we may want to delay flushing for
* efficiency reasons. */
putbuf(e, e->buf, e->ptr - e->buf);
e->ptr = e->buf;
}
return true;
}
/* Writes the given bytes to the buffer, handling reserve/advance. */
static bool encode_bytes(upb_pb_encoder *e, const void *data, size_t len) {
if (!reserve(e, len)) {
return false;
}
memcpy(e->ptr, data, len);
encoder_advance(e, len);
return true;
}
/* Finish the current run by adding the run totals to the segment and message
* length. */
static void accumulate(upb_pb_encoder *e) {
size_t run_len;
UPB_ASSERT(e->ptr >= e->runbegin);
run_len = e->ptr - e->runbegin;
e->segptr->seglen += run_len;
top(e)->msglen += run_len;
e->runbegin = e->ptr;
}
/* Call to indicate the start of delimited region for which the full length is
* not yet known. All data will be buffered until the length is known.
* Delimited regions may be nested; their lengths will all be tracked properly. */
static bool start_delim(upb_pb_encoder *e) {
if (e->top) {
/* We are already buffering, advance to the next segment and push it on the
* stack. */
accumulate(e);
if (++e->top == e->stacklimit) {
/* TODO(haberman): grow stack? */
return false;
}
if (++e->segptr == e->seglimit) {
/* Grow segment buffer. */
size_t old_size =
(e->seglimit - e->segbuf) * sizeof(upb_pb_encoder_segment);
size_t new_size = old_size * 2;
upb_pb_encoder_segment *new_buf =
upb_env_realloc(e->env, e->segbuf, old_size, new_size);
if (new_buf == NULL) {
return false;
}
e->segptr = new_buf + (e->segptr - e->segbuf);
e->seglimit = new_buf + (new_size / sizeof(upb_pb_encoder_segment));
e->segbuf = new_buf;
}
} else {
/* We were previously at the top level, start buffering. */
e->segptr = e->segbuf;
e->top = e->stack;
e->runbegin = e->ptr;
}
*e->top = e->segptr - e->segbuf;
e->segptr->seglen = 0;
e->segptr->msglen = 0;
return true;
}
/* Call to indicate the end of a delimited region. We now know the length of
* the delimited region. If we are not nested inside any other delimited
* regions, we can now emit all of the buffered data we accumulated. */
static bool end_delim(upb_pb_encoder *e) {
size_t msglen;
accumulate(e);
msglen = top(e)->msglen;
if (e->top == e->stack) {
/* All lengths are now available, emit all buffered data. */
char buf[UPB_PB_VARINT_MAX_LEN];
upb_pb_encoder_segment *s;
const char *ptr = e->buf;
for (s = e->segbuf; s <= e->segptr; s++) {
size_t lenbytes = upb_vencode64(s->msglen, buf);
putbuf(e, buf, lenbytes);
putbuf(e, ptr, s->seglen);
ptr += s->seglen;
}
e->ptr = e->buf;
e->top = NULL;
} else {
/* Need to keep buffering; propagate length info into enclosing
* submessages. */
--e->top;
top(e)->msglen += msglen + upb_varint_size(msglen);
}
return true;
}
/* tag_t **********************************************************************/
/* A precomputed (pre-encoded) tag and length. */
typedef struct {
uint8_t bytes;
char tag[7];
} tag_t;
/* Allocates a new tag for this field, and sets it in these handlerattr. */
static void new_tag(upb_handlers *h, const upb_fielddef *f, upb_wiretype_t wt,
upb_handlerattr *attr) {
uint32_t n = upb_fielddef_number(f);
tag_t *tag = upb_gmalloc(sizeof(tag_t));
tag->bytes = upb_vencode64((n << 3) | wt, tag->tag);
upb_handlerattr_init(attr);
upb_handlerattr_sethandlerdata(attr, tag);
upb_handlers_addcleanup(h, tag, upb_gfree);
}
static bool encode_tag(upb_pb_encoder *e, const tag_t *tag) {
return encode_bytes(e, tag->tag, tag->bytes);
}
/* encoding of wire types *****************************************************/
static bool encode_fixed64(upb_pb_encoder *e, uint64_t val) {
/* TODO(haberman): byte-swap for big endian. */
return encode_bytes(e, &val, sizeof(uint64_t));
}
static bool encode_fixed32(upb_pb_encoder *e, uint32_t val) {
/* TODO(haberman): byte-swap for big endian. */
return encode_bytes(e, &val, sizeof(uint32_t));
}
static bool encode_varint(upb_pb_encoder *e, uint64_t val) {
if (!reserve(e, UPB_PB_VARINT_MAX_LEN)) {
return false;
}
encoder_advance(e, upb_vencode64(val, e->ptr));
return true;
}
static uint64_t dbl2uint64(double d) {
uint64_t ret;
memcpy(&ret, &d, sizeof(uint64_t));
return ret;
}
static uint32_t flt2uint32(float d) {
uint32_t ret;
memcpy(&ret, &d, sizeof(uint32_t));
return ret;
}
/* encoding of proto types ****************************************************/
static bool startmsg(void *c, const void *hd) {
upb_pb_encoder *e = c;
UPB_UNUSED(hd);
if (e->depth++ == 0) {
upb_bytessink_start(e->output_, 0, &e->subc);
}
return true;
}
static bool endmsg(void *c, const void *hd, upb_status *status) {
upb_pb_encoder *e = c;
UPB_UNUSED(hd);
UPB_UNUSED(status);
if (--e->depth == 0) {
upb_bytessink_end(e->output_);
}
return true;
}
static void *encode_startdelimfield(void *c, const void *hd) {
bool ok = encode_tag(c, hd) && commit(c) && start_delim(c);
return ok ? c : UPB_BREAK;
}
static bool encode_enddelimfield(void *c, const void *hd) {
UPB_UNUSED(hd);
return end_delim(c);
}
static void *encode_startgroup(void *c, const void *hd) {
return (encode_tag(c, hd) && commit(c)) ? c : UPB_BREAK;
}
static bool encode_endgroup(void *c, const void *hd) {
return encode_tag(c, hd) && commit(c);
}
static void *encode_startstr(void *c, const void *hd, size_t size_hint) {
UPB_UNUSED(size_hint);
return encode_startdelimfield(c, hd);
}
static size_t encode_strbuf(void *c, const void *hd, const char *buf,
size_t len, const upb_bufhandle *h) {
UPB_UNUSED(hd);
UPB_UNUSED(h);
return encode_bytes(c, buf, len) ? len : 0;
}
#define T(type, ctype, convert, encode) \
static bool encode_scalar_##type(void *e, const void *hd, ctype val) { \
return encode_tag(e, hd) && encode(e, (convert)(val)) && commit(e); \
} \
static bool encode_packed_##type(void *e, const void *hd, ctype val) { \
UPB_UNUSED(hd); \
return encode(e, (convert)(val)); \
}
T(double, double, dbl2uint64, encode_fixed64)
T(float, float, flt2uint32, encode_fixed32)
T(int64, int64_t, uint64_t, encode_varint)
T(int32, int32_t, int64_t, encode_varint)
T(fixed64, uint64_t, uint64_t, encode_fixed64)
T(fixed32, uint32_t, uint32_t, encode_fixed32)
T(bool, bool, bool, encode_varint)
T(uint32, uint32_t, uint32_t, encode_varint)
T(uint64, uint64_t, uint64_t, encode_varint)
T(enum, int32_t, uint32_t, encode_varint)
T(sfixed32, int32_t, uint32_t, encode_fixed32)
T(sfixed64, int64_t, uint64_t, encode_fixed64)
T(sint32, int32_t, upb_zzenc_32, encode_varint)
T(sint64, int64_t, upb_zzenc_64, encode_varint)
#undef T
/* code to build the handlers *************************************************/
static void newhandlers_callback(const void *closure, upb_handlers *h) {
const upb_msgdef *m;
upb_msg_field_iter i;
UPB_UNUSED(closure);
upb_handlers_setstartmsg(h, startmsg, NULL);
upb_handlers_setendmsg(h, endmsg, NULL);
m = upb_handlers_msgdef(h);
for(upb_msg_field_begin(&i, m);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
const upb_fielddef *f = upb_msg_iter_field(&i);
bool packed = upb_fielddef_isseq(f) && upb_fielddef_isprimitive(f) &&
upb_fielddef_packed(f);
upb_handlerattr attr;
upb_wiretype_t wt =
packed ? UPB_WIRE_TYPE_DELIMITED
: upb_pb_native_wire_types[upb_fielddef_descriptortype(f)];
/* Pre-encode the tag for this field. */
new_tag(h, f, wt, &attr);
if (packed) {
upb_handlers_setstartseq(h, f, encode_startdelimfield, &attr);
upb_handlers_setendseq(h, f, encode_enddelimfield, &attr);
}
#define T(upper, lower, upbtype) \
case UPB_DESCRIPTOR_TYPE_##upper: \
if (packed) { \
upb_handlers_set##upbtype(h, f, encode_packed_##lower, &attr); \
} else { \
upb_handlers_set##upbtype(h, f, encode_scalar_##lower, &attr); \
} \
break;
switch (upb_fielddef_descriptortype(f)) {
T(DOUBLE, double, double);
T(FLOAT, float, float);
T(INT64, int64, int64);
T(INT32, int32, int32);
T(FIXED64, fixed64, uint64);
T(FIXED32, fixed32, uint32);
T(BOOL, bool, bool);
T(UINT32, uint32, uint32);
T(UINT64, uint64, uint64);
T(ENUM, enum, int32);
T(SFIXED32, sfixed32, int32);
T(SFIXED64, sfixed64, int64);
T(SINT32, sint32, int32);
T(SINT64, sint64, int64);
case UPB_DESCRIPTOR_TYPE_STRING:
case UPB_DESCRIPTOR_TYPE_BYTES:
upb_handlers_setstartstr(h, f, encode_startstr, &attr);
upb_handlers_setendstr(h, f, encode_enddelimfield, &attr);
upb_handlers_setstring(h, f, encode_strbuf, &attr);
break;
case UPB_DESCRIPTOR_TYPE_MESSAGE:
upb_handlers_setstartsubmsg(h, f, encode_startdelimfield, &attr);
upb_handlers_setendsubmsg(h, f, encode_enddelimfield, &attr);
break;
case UPB_DESCRIPTOR_TYPE_GROUP: {
/* Endgroup takes a different tag (wire_type = END_GROUP). */
upb_handlerattr attr2;
new_tag(h, f, UPB_WIRE_TYPE_END_GROUP, &attr2);
upb_handlers_setstartsubmsg(h, f, encode_startgroup, &attr);
upb_handlers_setendsubmsg(h, f, encode_endgroup, &attr2);
upb_handlerattr_uninit(&attr2);
break;
}
}
#undef T
upb_handlerattr_uninit(&attr);
}
}
void upb_pb_encoder_reset(upb_pb_encoder *e) {
e->segptr = NULL;
e->top = NULL;
e->depth = 0;
}
/* public API *****************************************************************/
const upb_handlers *upb_pb_encoder_newhandlers(const upb_msgdef *m,
const void *owner) {
return upb_handlers_newfrozen(m, owner, newhandlers_callback, NULL);
}
upb_pb_encoder *upb_pb_encoder_create(upb_env *env, const upb_handlers *h,
upb_bytessink *output) {
const size_t initial_bufsize = 256;
const size_t initial_segbufsize = 16;
/* TODO(haberman): make this configurable. */
const size_t stack_size = 64;
#ifndef NDEBUG
const size_t size_before = upb_env_bytesallocated(env);
#endif
upb_pb_encoder *e = upb_env_malloc(env, sizeof(upb_pb_encoder));
if (!e) return NULL;
e->buf = upb_env_malloc(env, initial_bufsize);
e->segbuf = upb_env_malloc(env, initial_segbufsize * sizeof(*e->segbuf));
e->stack = upb_env_malloc(env, stack_size * sizeof(*e->stack));
if (!e->buf || !e->segbuf || !e->stack) {
return NULL;
}
e->limit = e->buf + initial_bufsize;
e->seglimit = e->segbuf + initial_segbufsize;
e->stacklimit = e->stack + stack_size;
upb_pb_encoder_reset(e);
upb_sink_reset(&e->input_, h, e);
e->env = env;
e->output_ = output;
e->subc = output->closure;
e->ptr = e->buf;
/* If this fails, increase the value in encoder.h. */
UPB_ASSERT_DEBUGVAR(upb_env_bytesallocated(env) - size_before <=
UPB_PB_ENCODER_SIZE);
return e;
}
upb_sink *upb_pb_encoder_input(upb_pb_encoder *e) { return &e->input_; }