Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

858 lines
27 KiB

/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2013 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* Code to compile a upb::MessageDef into bytecode for decoding that message.
* Bytecode definition is in decoder.int.h.
*/
#include <stdarg.h>
#include "upb/pb/decoder.int.h"
#include "upb/pb/varint.int.h"
#include "upb/bytestream.h"
#ifdef UPB_DUMP_BYTECODE
#include <stdio.h>
#endif
#define MAXLABEL 5
#define EMPTYLABEL -1
/* upb_pbdecodermethod ********************************************************/
static upb_pbdecodermethod *newmethod(const upb_msgdef *msg,
const upb_handlers *dest_handlers) {
upb_pbdecodermethod *ret = malloc(sizeof(upb_pbdecodermethod));
ret->msg = msg;
ret->dest_handlers = dest_handlers;
ret->native_code = false; // If we JIT, it will update this later.
upb_inttable_init(&ret->dispatch, UPB_CTYPE_UINT64);
if (ret->dest_handlers) {
upb_handlers_ref(ret->dest_handlers, ret);
}
return ret;
}
static void freemethod(upb_pbdecodermethod *method) {
if (method->dest_handlers) {
upb_handlers_unref(method->dest_handlers, method);
}
upb_inttable_uninit(&method->dispatch);
free(method);
}
/* upb_pbdecoderplan **********************************************************/
upb_pbdecoderplan *newplan() {
upb_pbdecoderplan *p = malloc(sizeof(*p));
upb_inttable_init(&p->methods, UPB_CTYPE_PTR);
p->code = NULL;
p->code_end = NULL;
return p;
}
void freeplan(void *_p) {
upb_pbdecoderplan *p = _p;
upb_inttable_iter i;
upb_inttable_begin(&i, &p->methods);
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
upb_pbdecodermethod *method = upb_value_getptr(upb_inttable_iter_value(&i));
freemethod(method);
}
upb_inttable_uninit(&p->methods);
free(p->code);
#ifdef UPB_USE_JIT_X64
upb_pbdecoder_freejit(p);
#endif
free(p);
}
void set_bytecode_handlers(upb_pbdecoderplan *p, upb_handlers *h) {
upb_handlers_setstartstr(h, UPB_BYTESTREAM_BYTES, upb_pbdecoder_start, p,
NULL);
upb_handlers_setstring(h, UPB_BYTESTREAM_BYTES, upb_pbdecoder_decode, p,
freeplan);
upb_handlers_setendstr(h, UPB_BYTESTREAM_BYTES, upb_pbdecoder_end, p, NULL);
}
static const upb_pbdecoderplan *getdecoderplan(const upb_handlers *h) {
if (upb_handlers_frametype(h) != &upb_pbdecoder_frametype)
return NULL;
upb_selector_t sel;
if (!upb_handlers_getselector(UPB_BYTESTREAM_BYTES, UPB_HANDLER_STARTSTR,
&sel)) {
return NULL;
}
return upb_handlers_gethandlerdata(h, sel);
}
/* compiler *******************************************************************/
// Data used only at compilation time.
typedef struct {
upb_pbdecoderplan *plan;
uint32_t *pc;
int fwd_labels[MAXLABEL];
int back_labels[MAXLABEL];
} compiler;
static compiler *newcompiler(upb_pbdecoderplan *plan) {
compiler *ret = malloc(sizeof(compiler));
ret->plan = plan;
for (int i = 0; i < MAXLABEL; i++) {
ret->fwd_labels[i] = EMPTYLABEL;
ret->back_labels[i] = EMPTYLABEL;
}
return ret;
}
static void freecompiler(compiler *c) {
free(c);
}
const size_t ptr_words = sizeof(void*) / sizeof(uint32_t);
// How many words an instruction is.
static int instruction_len(uint32_t instr) {
switch (getop(instr)) {
case OP_SETDISPATCH: return 1 + ptr_words;
case OP_TAGN: return 3;
case OP_SETBIGGROUPNUM: return 2;
default: return 1;
}
}
bool op_has_longofs(int32_t instruction) {
switch (getop(instruction)) {
case OP_CALL:
case OP_BRANCH:
case OP_CHECKDELIM:
return true;
// The "tag" instructions only have 8 bytes available for the jump target,
// but that is ok because these opcodes only require short jumps.
case OP_TAG1:
case OP_TAG2:
case OP_TAGN:
return false;
default:
assert(false);
return false;
}
}
static int32_t getofs(uint32_t instruction) {
if (op_has_longofs(instruction)) {
return (int32_t)instruction >> 8;
} else {
return (int8_t)(instruction >> 8);
}
}
static void setofs(uint32_t *instruction, int32_t ofs) {
if (op_has_longofs(*instruction)) {
*instruction = getop(*instruction) | ofs << 8;
} else {
*instruction = (*instruction & ~0xff00) | ((ofs & 0xff) << 8);
}
assert(getofs(*instruction) == ofs); // Would fail in cases of overflow.
}
static uint32_t pcofs(compiler *c) { return c->pc - c->plan->code; }
// Defines a local label at the current PC location. All previous forward
// references are updated to point to this location. The location is noted
// for any future backward references.
static void label(compiler *c, unsigned int label) {
assert(label < MAXLABEL);
int val = c->fwd_labels[label];
uint32_t *codep = (val == EMPTYLABEL) ? NULL : c->plan->code + val;
while (codep) {
int ofs = getofs(*codep);
setofs(codep, c->pc - codep - instruction_len(*codep));
codep = ofs ? codep + ofs : NULL;
}
c->fwd_labels[label] = EMPTYLABEL;
c->back_labels[label] = pcofs(c);
}
// Creates a reference to a numbered label; either a forward reference
// (positive arg) or backward reference (negative arg). For forward references
// the value returned now is actually a "next" pointer into a linked list of all
// instructions that use this label and will be patched later when the label is
// defined with label().
//
// The returned value is the offset that should be written into the instruction.
static int32_t labelref(compiler *c, int label) {
assert(label < MAXLABEL);
if (label == LABEL_DISPATCH) {
// No resolving required.
return 0;
} else if (label < 0) {
// Backward local label. Relative to the next instruction.
uint32_t from = (c->pc + 1) - c->plan->code;
return c->back_labels[-label] - from;
} else {
// Forward local label: prepend to (possibly-empty) linked list.
int *lptr = &c->fwd_labels[label];
int32_t ret = (*lptr == EMPTYLABEL) ? 0 : *lptr - pcofs(c);
*lptr = pcofs(c);
return ret;
}
}
static void put32(compiler *c, uint32_t v) {
if (c->pc == c->plan->code_end) {
int ofs = pcofs(c);
size_t oldsize = c->plan->code_end - c->plan->code;
size_t newsize = UPB_MAX(oldsize * 2, 64);
// TODO(haberman): handle OOM.
c->plan->code = realloc(c->plan->code, newsize * sizeof(uint32_t));
c->plan->code_end = c->plan->code + newsize;
c->pc = c->plan->code + ofs;
}
*c->pc++ = v;
}
static void putop(compiler *c, opcode op, ...) {
va_list ap;
va_start(ap, op);
switch (op) {
case OP_SETDISPATCH: {
uintptr_t ptr = (uintptr_t)va_arg(ap, void*);
put32(c, OP_SETDISPATCH);
put32(c, ptr);
if (sizeof(uintptr_t) > sizeof(uint32_t))
put32(c, (uint64_t)ptr >> 32);
break;
}
case OP_STARTMSG:
case OP_ENDMSG:
case OP_PUSHTAGDELIM:
case OP_PUSHLENDELIM:
case OP_POP:
case OP_SETDELIM:
case OP_HALT:
put32(c, op);
break;
case OP_PARSE_DOUBLE:
case OP_PARSE_FLOAT:
case OP_PARSE_INT64:
case OP_PARSE_UINT64:
case OP_PARSE_INT32:
case OP_PARSE_FIXED64:
case OP_PARSE_FIXED32:
case OP_PARSE_BOOL:
case OP_PARSE_UINT32:
case OP_PARSE_SFIXED32:
case OP_PARSE_SFIXED64:
case OP_PARSE_SINT32:
case OP_PARSE_SINT64:
case OP_STARTSEQ:
case OP_SETGROUPNUM:
case OP_ENDSEQ:
case OP_STARTSUBMSG:
case OP_ENDSUBMSG:
case OP_STARTSTR:
case OP_STRING:
case OP_ENDSTR:
put32(c, op | va_arg(ap, upb_selector_t) << 8);
break;
case OP_SETBIGGROUPNUM:
put32(c, op);
put32(c, va_arg(ap, int));
break;
case OP_CALL: {
const upb_pbdecodermethod *method = va_arg(ap, upb_pbdecodermethod *);
put32(c, op | (method->base.ofs - (pcofs(c) + 1)) << 8);
break;
}
case OP_CHECKDELIM:
case OP_BRANCH: {
uint32_t instruction = op;
int label = va_arg(ap, int);
setofs(&instruction, labelref(c, label));
put32(c, instruction);
break;
}
case OP_TAG1:
case OP_TAG2: {
int label = va_arg(ap, int);
uint64_t tag = va_arg(ap, uint64_t);
uint32_t instruction = op | (tag << 16);
assert(tag <= 0xffff);
setofs(&instruction, labelref(c, label));
put32(c, instruction);
break;
}
case OP_TAGN: {
int label = va_arg(ap, int);
uint64_t tag = va_arg(ap, uint64_t);
uint32_t instruction = op | (upb_value_size(tag) << 16);
setofs(&instruction, labelref(c, label));
put32(c, instruction);
put32(c, tag);
put32(c, tag >> 32);
break;
}
}
va_end(ap);
}
#if defined(UPB_USE_JIT_X64) || defined(UPB_DUMP_BYTECODE)
const char *upb_pbdecoder_getopname(unsigned int op) {
#define OP(op) [OP_ ## op] = "OP_" #op
#define T(op) OP(PARSE_##op)
static const char *names[] = {
"<no opcode>",
T(DOUBLE), T(FLOAT), T(INT64), T(UINT64), T(INT32), T(FIXED64), T(FIXED32),
T(BOOL), T(UINT32), T(SFIXED32), T(SFIXED64), T(SINT32), T(SINT64),
OP(STARTMSG), OP(ENDMSG), OP(STARTSEQ), OP(ENDSEQ), OP(STARTSUBMSG),
OP(ENDSUBMSG), OP(STARTSTR), OP(STRING), OP(ENDSTR), OP(CALL),
OP(PUSHLENDELIM), OP(PUSHTAGDELIM), OP(SETDELIM), OP(CHECKDELIM),
OP(BRANCH), OP(TAG1), OP(TAG2), OP(TAGN), OP(SETDISPATCH), OP(POP),
OP(SETGROUPNUM), OP(SETBIGGROUPNUM), OP(HALT),
};
return op > OP_HALT ? names[0] : names[op];
#undef OP
#undef T
}
#endif
#ifdef UPB_DUMP_BYTECODE
static void dumpbc(uint32_t *p, uint32_t *end, FILE *f) {
uint32_t *begin = p;
while (p < end) {
fprintf(f, "%p %8tx", p, p - begin);
uint32_t instr = *p++;
uint8_t op = getop(instr);
fprintf(f, " %s", upb_pbdecoder_getopname(op));
switch ((opcode)op) {
case OP_SETDISPATCH: {
const upb_inttable *dispatch;
memcpy(&dispatch, p, sizeof(void*));
p += ptr_words;
const upb_pbdecodermethod *method =
(void *)((char *)dispatch -
offsetof(upb_pbdecodermethod, dispatch));
fprintf(f, " %s", upb_msgdef_fullname(method->msg));
break;
}
case OP_STARTMSG:
case OP_ENDMSG:
case OP_PUSHLENDELIM:
case OP_PUSHTAGDELIM:
case OP_POP:
case OP_SETDELIM:
case OP_HALT:
break;
case OP_PARSE_DOUBLE:
case OP_PARSE_FLOAT:
case OP_PARSE_INT64:
case OP_PARSE_UINT64:
case OP_PARSE_INT32:
case OP_PARSE_FIXED64:
case OP_PARSE_FIXED32:
case OP_PARSE_BOOL:
case OP_PARSE_UINT32:
case OP_PARSE_SFIXED32:
case OP_PARSE_SFIXED64:
case OP_PARSE_SINT32:
case OP_PARSE_SINT64:
case OP_STARTSEQ:
case OP_ENDSEQ:
case OP_STARTSUBMSG:
case OP_ENDSUBMSG:
case OP_STARTSTR:
case OP_STRING:
case OP_ENDSTR:
case OP_SETGROUPNUM:
fprintf(f, " %d", instr >> 8);
break;
case OP_SETBIGGROUPNUM:
fprintf(f, " %d", *p++);
break;
case OP_CHECKDELIM:
case OP_CALL:
case OP_BRANCH:
fprintf(f, " =>0x%tx", p + getofs(instr) - begin);
break;
case OP_TAG1:
case OP_TAG2: {
fprintf(f, " tag:0x%x", instr >> 16);
if (getofs(instr)) {
fprintf(f, " =>0x%tx", p + getofs(instr) - begin);
}
break;
}
case OP_TAGN: {
uint64_t tag = *p++;
tag |= (uint64_t)*p++ << 32;
fprintf(f, " tag:0x%llx", (long long)tag);
fprintf(f, " n:%d", instr >> 16);
if (getofs(instr)) {
fprintf(f, " =>0x%tx", p + getofs(instr) - begin);
}
break;
}
}
fputs("\n", f);
}
}
#endif
static uint64_t get_encoded_tag(const upb_fielddef *f, int wire_type) {
uint32_t tag = (upb_fielddef_number(f) << 3) | wire_type;
uint64_t encoded_tag = upb_vencode32(tag);
// No tag should be greater than 5 bytes.
assert(encoded_tag <= 0xffffffffff);
return encoded_tag;
}
static void putchecktag(compiler *c, const upb_fielddef *f,
int wire_type, int dest) {
uint64_t tag = get_encoded_tag(f, wire_type);
switch (upb_value_size(tag)) {
case 1:
putop(c, OP_TAG1, dest, tag);
break;
case 2:
putop(c, OP_TAG2, dest, tag);
break;
default:
putop(c, OP_TAGN, dest, tag);
break;
}
}
static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) {
upb_selector_t selector;
bool ok = upb_handlers_getselector(f, type, &selector);
UPB_ASSERT_VAR(ok, ok);
return selector;
}
// Marks the current bytecode position as the dispatch target for this message,
// field, and wire type.
//
static void dispatchtarget(compiler *c, upb_pbdecodermethod *method,
const upb_fielddef *f, int wire_type) {
// Offset is relative to msg base.
uint64_t ofs = pcofs(c) - method->base.ofs;
uint32_t fn = upb_fielddef_number(f);
upb_inttable *d = &method->dispatch;
upb_value v;
if (upb_inttable_remove(d, fn, &v)) {
// TODO: prioritize based on packed setting in .proto file.
uint64_t oldval = upb_value_getuint64(v);
assert(((oldval >> 8) & 0xff) == 0); // wt2 should not be set yet.
upb_inttable_insert(d, fn, upb_value_uint64(oldval | (wire_type << 8)));
upb_inttable_insert(d, fn + UPB_MAX_FIELDNUMBER, upb_value_uint64(ofs));
} else {
upb_inttable_insert(d, fn, upb_value_uint64((ofs << 16) | wire_type));
}
}
static void putpush(compiler *c, const upb_fielddef *f) {
if (upb_fielddef_descriptortype(f) == UPB_DESCRIPTOR_TYPE_MESSAGE) {
putop(c, OP_PUSHLENDELIM);
} else {
uint32_t fn = upb_fielddef_number(f);
putop(c, OP_PUSHTAGDELIM);
if (fn >= 1 << 24) {
putop(c, OP_SETBIGGROUPNUM, fn);
} else {
putop(c, OP_SETGROUPNUM, fn);
}
}
}
static upb_pbdecodermethod *find_submethod(const compiler *c,
const upb_pbdecodermethod *method,
const upb_fielddef *f) {
const void *key = method->dest_handlers ?
(const void*)upb_handlers_getsubhandlers(method->dest_handlers, f) :
(const void*)upb_downcast_msgdef(upb_fielddef_subdef(f));
upb_value v;
bool ok = upb_inttable_lookupptr(&c->plan->methods, key, &v);
UPB_ASSERT_VAR(ok, ok);
return upb_value_getptr(v);
}
// Adds bytecode for parsing the given message to the given decoderplan,
// while adding all dispatch targets to this message's dispatch table.
static void compile_method(compiler *c, upb_pbdecodermethod *method) {
assert(method);
// Symbolic names for our local labels.
const int LABEL_LOOPSTART = 1; // Top of a repeated field loop.
const int LABEL_LOOPBREAK = 2; // To jump out of a repeated loop
const int LABEL_FIELD = 3; // Jump backward to find the most recent field.
const int LABEL_ENDMSG = 4; // To reach the OP_ENDMSG instr for this msg.
// Index is descriptor type.
static const uint8_t native_wire_types[] = {
UPB_WIRE_TYPE_END_GROUP, // ENDGROUP
UPB_WIRE_TYPE_64BIT, // DOUBLE
UPB_WIRE_TYPE_32BIT, // FLOAT
UPB_WIRE_TYPE_VARINT, // INT64
UPB_WIRE_TYPE_VARINT, // UINT64
UPB_WIRE_TYPE_VARINT, // INT32
UPB_WIRE_TYPE_64BIT, // FIXED64
UPB_WIRE_TYPE_32BIT, // FIXED32
UPB_WIRE_TYPE_VARINT, // BOOL
UPB_WIRE_TYPE_DELIMITED, // STRING
UPB_WIRE_TYPE_START_GROUP, // GROUP
UPB_WIRE_TYPE_DELIMITED, // MESSAGE
UPB_WIRE_TYPE_DELIMITED, // BYTES
UPB_WIRE_TYPE_VARINT, // UINT32
UPB_WIRE_TYPE_VARINT, // ENUM
UPB_WIRE_TYPE_32BIT, // SFIXED32
UPB_WIRE_TYPE_64BIT, // SFIXED64
UPB_WIRE_TYPE_VARINT, // SINT32
UPB_WIRE_TYPE_VARINT, // SINT64
};
// Clear all entries in the dispatch table.
upb_inttable_uninit(&method->dispatch);
upb_inttable_init(&method->dispatch, UPB_CTYPE_UINT64);
method->base.ofs = pcofs(c);
putop(c, OP_SETDISPATCH, &method->dispatch);
putop(c, OP_STARTMSG);
label(c, LABEL_FIELD);
upb_msg_iter i;
for(upb_msg_begin(&i, method->msg); !upb_msg_done(&i); upb_msg_next(&i)) {
const upb_fielddef *f = upb_msg_iter_field(&i);
upb_descriptortype_t type = upb_fielddef_descriptortype(f);
// From a decoding perspective, ENUM is the same as INT32.
if (type == UPB_DESCRIPTOR_TYPE_ENUM)
type = UPB_DESCRIPTOR_TYPE_INT32;
label(c, LABEL_FIELD);
switch (upb_fielddef_type(f)) {
case UPB_TYPE_MESSAGE: {
const upb_pbdecodermethod *sub_m = find_submethod(c, method, f);
int wire_type = (type == UPB_DESCRIPTOR_TYPE_MESSAGE) ?
UPB_WIRE_TYPE_DELIMITED : UPB_WIRE_TYPE_START_GROUP;
if (upb_fielddef_isseq(f)) {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, wire_type, LABEL_DISPATCH);
dispatchtarget(c, method, f, wire_type);
putop(c, OP_PUSHTAGDELIM);
putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ));
label(c, LABEL_LOOPSTART);
putpush(c, f);
putop(c, OP_STARTSUBMSG, getsel(f, UPB_HANDLER_STARTSUBMSG));
putop(c, OP_CALL, sub_m);
putop(c, OP_POP);
putop(c, OP_ENDSUBMSG, getsel(f, UPB_HANDLER_ENDSUBMSG));
if (wire_type == UPB_WIRE_TYPE_DELIMITED) {
putop(c, OP_SETDELIM);
}
putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK);
putchecktag(c, f, wire_type, LABEL_LOOPBREAK);
putop(c, OP_BRANCH, -LABEL_LOOPSTART);
label(c, LABEL_LOOPBREAK);
putop(c, OP_POP);
putop(c, OP_ENDSEQ, getsel(f, UPB_HANDLER_ENDSEQ));
} else {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, wire_type, LABEL_DISPATCH);
dispatchtarget(c, method, f, wire_type);
putpush(c, f);
putop(c, OP_STARTSUBMSG, getsel(f, UPB_HANDLER_STARTSUBMSG));
putop(c, OP_CALL, sub_m);
putop(c, OP_POP);
putop(c, OP_ENDSUBMSG, getsel(f, UPB_HANDLER_ENDSUBMSG));
if (wire_type == UPB_WIRE_TYPE_DELIMITED) {
putop(c, OP_SETDELIM);
}
}
break;
}
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
if (upb_fielddef_isseq(f)) {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH);
dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED);
putop(c, OP_PUSHTAGDELIM);
putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ));
label(c, LABEL_LOOPSTART);
putop(c, OP_PUSHLENDELIM);
putop(c, OP_STARTSTR, getsel(f, UPB_HANDLER_STARTSTR));
putop(c, OP_STRING, getsel(f, UPB_HANDLER_STRING));
putop(c, OP_POP);
putop(c, OP_ENDSTR, getsel(f, UPB_HANDLER_ENDSTR));
putop(c, OP_SETDELIM);
putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK);
putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_LOOPBREAK);
putop(c, OP_BRANCH, -LABEL_LOOPSTART);
label(c, LABEL_LOOPBREAK);
putop(c, OP_POP);
putop(c, OP_ENDSEQ, getsel(f, UPB_HANDLER_ENDSEQ));
} else {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH);
dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED);
putop(c, OP_PUSHLENDELIM);
putop(c, OP_STARTSTR, getsel(f, UPB_HANDLER_STARTSTR));
putop(c, OP_STRING, getsel(f, UPB_HANDLER_STRING));
putop(c, OP_POP);
putop(c, OP_ENDSTR, getsel(f, UPB_HANDLER_ENDSTR));
putop(c, OP_SETDELIM);
}
break;
default: {
opcode parse_type = (opcode)type;
assert((int)parse_type >= 0 && parse_type <= OP_MAX);
upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
int wire_type = native_wire_types[upb_fielddef_descriptortype(f)];
if (upb_fielddef_isseq(f)) {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH);
dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED);
putop(c, OP_PUSHLENDELIM);
putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); // Packed
label(c, LABEL_LOOPSTART);
putop(c, parse_type, sel);
putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK);
putop(c, OP_BRANCH, -LABEL_LOOPSTART);
dispatchtarget(c, method, f, wire_type);
putop(c, OP_PUSHTAGDELIM);
putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); // Non-packed
label(c, LABEL_LOOPSTART);
putop(c, parse_type, sel);
putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK);
putchecktag(c, f, wire_type, LABEL_LOOPBREAK);
putop(c, OP_BRANCH, -LABEL_LOOPSTART);
label(c, LABEL_LOOPBREAK);
putop(c, OP_POP); // Packed and non-packed join.
putop(c, OP_ENDSEQ, getsel(f, UPB_HANDLER_ENDSEQ));
putop(c, OP_SETDELIM); // Could remove for non-packed by dup ENDSEQ.
} else {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, wire_type, LABEL_DISPATCH);
dispatchtarget(c, method, f, wire_type);
putop(c, parse_type, sel);
}
}
}
}
// For now we just loop back to the last field of the message (or if none,
// the DISPATCH opcode for the message.
putop(c, OP_BRANCH, -LABEL_FIELD);
label(c, LABEL_ENDMSG);
putop(c, OP_ENDMSG);
upb_inttable_compact(&method->dispatch);
}
// Populate "methods" with new upb_pbdecodermethod objects reachable from "md".
// "h" can be NULL, in which case the methods will not be statically bound to
// destination handlers.
//
// Returns the method for this msgdef/handlers.
//
// Note that there is a deep difference between keying the method table on
// upb_msgdef and keying it on upb_handlers. Since upb_msgdef : upb_handlers
// can be 1:many, binding a handlers statically can result in *more* methods
// being generated than if the methods are dynamically-bound.
//
// On the other hand, if/when the optimization mentioned below is implemented,
// binding to a upb_handlers can result in *fewer* methods being generated if
// many of the submessages have no handlers bound to them.
static upb_pbdecodermethod *find_methods(compiler *c,
const upb_msgdef *md,
const upb_handlers *h) {
const void *key = h ? (const void*)h : (const void*)md;
upb_value v;
if (upb_inttable_lookupptr(&c->plan->methods, key, &v))
return upb_value_getptr(v);
upb_pbdecodermethod *method = newmethod(md, h);
// Takes ownership of method.
upb_inttable_insertptr(&c->plan->methods, key, upb_value_ptr(method));
upb_msg_iter i;
for(upb_msg_begin(&i, md); !upb_msg_done(&i); upb_msg_next(&i)) {
const upb_fielddef *f = upb_msg_iter_field(&i);
if (upb_fielddef_type(f) != UPB_TYPE_MESSAGE)
continue;
const upb_handlers *sub_h = h ? upb_handlers_getsubhandlers(h, f) : NULL;
if (h && !sub_h &&
upb_fielddef_descriptortype(f) == UPB_DESCRIPTOR_TYPE_MESSAGE) {
// OPT: We could optimize away the sub-method, but would have to make sure
// this field is compiled as a string instead of a submessage.
}
find_methods(c, upb_downcast_msgdef(upb_fielddef_subdef(f)), sub_h);
}
return method;
}
// (Re-)compile bytecode for all messages in "msgs", ensuring that the code
// for "md" is emitted first. Overwrites any existing bytecode in "c".
static void compile_methods(compiler *c) {
// Start over at the beginning of the bytecode.
c->pc = c->plan->code;
compile_method(c, c->plan->topmethod);
upb_inttable_iter i;
upb_inttable_begin(&i, &c->plan->methods);
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
upb_pbdecodermethod *method = upb_value_getptr(upb_inttable_iter_value(&i));
if (method != c->plan->topmethod) {
compile_method(c, method);
}
}
}
/* JIT setup. ******************************************************************/
#ifdef UPB_USE_JIT_X64
static void sethandlers(upb_pbdecoderplan *p, upb_handlers *h, bool allowjit) {
p->jit_code = NULL;
if (allowjit) {
upb_pbdecoder_jit(p); // Compile byte-code into machine code.
upb_handlers_setstartstr(h, UPB_BYTESTREAM_BYTES, upb_pbdecoder_start, p,
freeplan);
upb_handlers_setstring(h, UPB_BYTESTREAM_BYTES, p->jit_code, NULL, NULL);
upb_handlers_setendstr(h, UPB_BYTESTREAM_BYTES, upb_pbdecoder_end, p, NULL);
} else {
set_bytecode_handlers(p, h);
}
}
static bool bind_dynamic(bool allowjit) {
// For the moment, JIT handlers always bind statically, but bytecode handlers
// never do.
return !allowjit;
}
#else // UPB_USE_JIT_X64
static void sethandlers(upb_pbdecoderplan *p, upb_handlers *h, bool allowjit) {
// No JIT compiled in; use bytecode handlers unconditionally.
UPB_UNUSED(allowjit);
set_bytecode_handlers(p, h);
}
static bool bind_dynamic(bool allowjit) {
// Bytecode handlers never bind statically.
UPB_UNUSED(allowjit);
return true;
}
#endif // UPB_USE_JIT_X64
/* Public interface ***********************************************************/
bool upb_pbdecoder_isdecoder(const upb_handlers *h) {
return getdecoderplan(h) != NULL;
}
bool upb_pbdecoderplan_hasjitcode(const upb_pbdecoderplan *p) {
#ifdef UPB_USE_JIT_X64
return p->jit_code != NULL;
#else
UPB_UNUSED(p);
return false;
#endif
}
bool upb_pbdecoder_hasjitcode(const upb_handlers *h) {
const upb_pbdecoderplan *p = getdecoderplan(h);
if (!p) return false;
return upb_pbdecoderplan_hasjitcode(p);
}
uint32_t *upb_pbdecoderplan_codebase(const upb_pbdecoderplan *p) {
return p->code;
}
upb_string_handler *upb_pbdecoderplan_jitcode(const upb_pbdecoderplan *p) {
#ifdef UPB_USE_JIT_X64
return p->jit_code;
#else
UPB_UNUSED(p);
assert(false);
return NULL;
#endif
}
const upb_handlers *upb_pbdecoder_getdesthandlers(const upb_handlers *h) {
const upb_pbdecoderplan *p = getdecoderplan(h);
if (!p) return NULL;
return p->topmethod->dest_handlers;
}
const upb_handlers *upb_pbdecoder_gethandlers(const upb_handlers *dest,
bool allowjit,
const void *owner) {
UPB_UNUSED(allowjit);
assert(upb_handlers_isfrozen(dest));
const upb_msgdef *md = upb_handlers_msgdef(dest);
upb_pbdecoderplan *p = newplan();
compiler *c = newcompiler(p);
if (bind_dynamic(allowjit)) {
// If binding dynamically, remove the reference against destination
// handlers.
dest = NULL;
}
p->topmethod = find_methods(c, md, dest);
// We compile in two passes:
// 1. all messages are assigned relative offsets from the beginning of the
// bytecode (saved in method->base).
// 2. forwards OP_CALL instructions can be correctly linked since message
// offsets have been previously assigned.
//
// Could avoid the second pass by linking OP_CALL instructions somehow.
compile_methods(c);
compile_methods(c);
p->code_end = c->pc;
#ifdef UPB_DUMP_BYTECODE
FILE *f = fopen("/tmp/upb-bytecode", "wb");
assert(f);
dumpbc(p->code, p->code_end, stderr);
dumpbc(p->code, p->code_end, f);
fclose(f);
#endif
upb_handlers *h = upb_handlers_new(
UPB_BYTESTREAM, &upb_pbdecoder_frametype, owner);
sethandlers(p, h, allowjit);
freecompiler(c);
return h;
}