|
|
|
/*
|
|
|
|
* upb - a minimalist implementation of protocol buffers.
|
|
|
|
*
|
|
|
|
* Copyright (c) 2013 Google Inc. See LICENSE for details.
|
|
|
|
* Author: Josh Haberman <jhaberman@gmail.com>
|
|
|
|
*
|
|
|
|
* Driver code for the x64 JIT compiler.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <dlfcn.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <sys/mman.h>
|
|
|
|
#include <unistd.h>
|
|
|
|
#include "upb/pb/decoder.h"
|
|
|
|
#include "upb/pb/decoder.int.h"
|
|
|
|
#include "upb/pb/varint.int.h"
|
|
|
|
#include "upb/shim/shim.h"
|
|
|
|
|
|
|
|
// To debug the JIT:
|
|
|
|
//
|
|
|
|
// 1. Uncomment:
|
|
|
|
// #define UPB_JIT_LOAD_SO
|
|
|
|
//
|
|
|
|
// Note: this mode requires that we can shell out to gcc.
|
|
|
|
//
|
|
|
|
// 2. Run the test once locally. This will load the JIT code by building a
|
|
|
|
// .so (/tmp/upb-jit-code.so) and using dlopen, so more of the tooling will
|
|
|
|
// work properly (like GDB).
|
|
|
|
//
|
|
|
|
// IF YOU ALSO WANT AUTOMATIC JIT DEBUG OUTPUT:
|
|
|
|
//
|
|
|
|
// 3. Run: upb/pb/make-gdb-script.rb > script.gdb. This reads
|
|
|
|
// /tmp/upb-jit-code.so as input and generates a GDB script that is specific
|
|
|
|
// to this jit code.
|
|
|
|
//
|
|
|
|
// 4. Run: gdb --command=script.gdb --args path/to/test
|
|
|
|
// This will drop you to a GDB prompt which you can now use normally.
|
|
|
|
// But when you run the test it will print a message to stdout every time
|
|
|
|
// the JIT executes assembly for a particular bytecode. Sample output:
|
|
|
|
//
|
|
|
|
// X.enterjit bytes=18
|
|
|
|
// buf_ofs=1 data_rem=17 delim_rem=-2 X.0x6.OP_PARSE_DOUBLE
|
|
|
|
// buf_ofs=9 data_rem=9 delim_rem=-10 X.0x7.OP_CHECKDELIM
|
|
|
|
// buf_ofs=9 data_rem=9 delim_rem=-10 X.0x8.OP_TAG1
|
|
|
|
// X.0x3.dispatch.DecoderTest
|
|
|
|
// X.parse_unknown
|
|
|
|
// X.0x3.dispatch.DecoderTest
|
|
|
|
// X.decode_unknown_tag_fallback
|
|
|
|
// X.exitjit
|
|
|
|
//
|
|
|
|
// This output should roughly correspond to the output that the bytecode
|
|
|
|
// interpreter emits when compiled with UPB_DUMP_BYTECODE (modulo some
|
|
|
|
// extra JIT-specific output).
|
|
|
|
|
|
|
|
// These defines are necessary for DynASM codegen.
|
|
|
|
// See dynasm/dasm_proto.h for more info.
|
|
|
|
#define Dst_DECL jitcompiler *jc
|
|
|
|
#define Dst_REF (jc->dynasm)
|
|
|
|
#define Dst (jc)
|
|
|
|
|
|
|
|
// In debug mode, make DynASM do internal checks (must be defined before any
|
|
|
|
// dasm header is included.
|
|
|
|
#ifndef NDEBUG
|
|
|
|
#define DASM_CHECKS
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef MAP_ANONYMOUS
|
|
|
|
#define MAP_ANONYMOUS MAP_ANON
|
|
|
|
#endif
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
mgroup *group;
|
|
|
|
uint32_t *pc;
|
|
|
|
|
|
|
|
// This pointer is allocated by dasm_init() and freed by dasm_free().
|
|
|
|
struct dasm_State *dynasm;
|
|
|
|
|
|
|
|
// Maps some key (an arbitrary void*) to a pclabel.
|
|
|
|
//
|
|
|
|
// The pclabel represents a location in the generated code -- DynASM exposes
|
|
|
|
// a pclabel -> (machine code offset) lookup function.
|
|
|
|
//
|
|
|
|
// The key can be anything. There are two main kinds of keys:
|
|
|
|
// - bytecode location -- the void* points to the bytecode instruction
|
|
|
|
// itself. We can then use this to generate jumps to this instruction.
|
|
|
|
// - other object (like dispatch table). We use these to represent parts
|
|
|
|
// of the generated code that do not exactly correspond to a bytecode
|
|
|
|
// instruction.
|
|
|
|
upb_inttable jmptargets;
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
// Like jmptargets, but members are present in the table when they have had
|
|
|
|
// define_jmptarget() (as opposed to jmptarget) called. Used to verify that
|
|
|
|
// define_jmptarget() is called exactly once for every target.
|
|
|
|
// The value is ignored.
|
|
|
|
upb_inttable jmpdefined;
|
|
|
|
|
|
|
|
// For checking that two asmlabels aren't defined for the same byte.
|
|
|
|
int lastlabelofs;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef UPB_JIT_LOAD_SO
|
|
|
|
// For marking labels that should go into the generated code.
|
|
|
|
// Maps pclabel -> char* label (string is owned by the table).
|
|
|
|
upb_inttable asmlabels;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// The total number of pclabels currently defined.
|
|
|
|
// Note that this contains both jmptargets and asmlabels, which both use
|
|
|
|
// pclabels but for different purposes.
|
|
|
|
uint32_t pclabel_count;
|
|
|
|
|
|
|
|
// Used by DynASM to store globals.
|
|
|
|
void **globals;
|
|
|
|
} jitcompiler;
|
|
|
|
|
|
|
|
// Functions called by codegen.
|
|
|
|
static int jmptarget(jitcompiler *jc, const void *key);
|
|
|
|
static int define_jmptarget(jitcompiler *jc, const void *key);
|
|
|
|
static void asmlabel(jitcompiler *jc, const char *fmt, ...);
|
|
|
|
static int pcofs(jitcompiler* jc);
|
|
|
|
static int alloc_pclabel(jitcompiler *jc);
|
|
|
|
|
|
|
|
#ifdef UPB_JIT_LOAD_SO
|
|
|
|
static char *upb_vasprintf(const char *fmt, va_list ap);
|
|
|
|
static char *upb_asprintf(const char *fmt, ...);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "dynasm/dasm_proto.h"
|
|
|
|
#include "dynasm/dasm_x86.h"
|
|
|
|
#include "upb/pb/compile_decoder_x64.h"
|
|
|
|
|
|
|
|
static jitcompiler *newjitcompiler(mgroup *group) {
|
|
|
|
jitcompiler *jc = malloc(sizeof(jitcompiler));
|
|
|
|
jc->group = group;
|
|
|
|
jc->pclabel_count = 0;
|
|
|
|
upb_inttable_init(&jc->jmptargets, UPB_CTYPE_UINT32);
|
|
|
|
#ifndef NDEBUG
|
|
|
|
jc->lastlabelofs = -1;
|
|
|
|
upb_inttable_init(&jc->jmpdefined, UPB_CTYPE_BOOL);
|
|
|
|
#endif
|
|
|
|
#ifdef UPB_JIT_LOAD_SO
|
|
|
|
upb_inttable_init(&jc->asmlabels, UPB_CTYPE_PTR);
|
|
|
|
#endif
|
|
|
|
jc->globals = malloc(UPB_JIT_GLOBAL__MAX * sizeof(*jc->globals));
|
|
|
|
|
|
|
|
dasm_init(jc, 1);
|
|
|
|
dasm_setupglobal(jc, jc->globals, UPB_JIT_GLOBAL__MAX);
|
|
|
|
dasm_setup(jc, upb_jit_actionlist);
|
|
|
|
|
|
|
|
return jc;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void freejitcompiler(jitcompiler *jc) {
|
|
|
|
#ifdef UPB_JIT_LOAD_SO
|
|
|
|
upb_inttable_iter i;
|
|
|
|
upb_inttable_begin(&i, &jc->asmlabels);
|
|
|
|
for (; !upb_inttable_done(&i); upb_inttable_next(&i)) {
|
|
|
|
free(upb_value_getptr(upb_inttable_iter_value(&i)));
|
|
|
|
}
|
|
|
|
upb_inttable_uninit(&jc->asmlabels);
|
|
|
|
#endif
|
|
|
|
#ifndef NDEBUG
|
|
|
|
upb_inttable_uninit(&jc->jmpdefined);
|
|
|
|
#endif
|
|
|
|
upb_inttable_uninit(&jc->jmptargets);
|
|
|
|
dasm_free(jc);
|
|
|
|
free(jc->globals);
|
|
|
|
free(jc);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef UPB_JIT_LOAD_SO
|
|
|
|
|
|
|
|
// Like sprintf except allocates the string, which is returned and owned by the
|
|
|
|
// caller.
|
|
|
|
//
|
|
|
|
// Like the GNU extension asprintf(), except we abort on error (since this is
|
|
|
|
// only for debugging).
|
|
|
|
static char *upb_vasprintf(const char *fmt, va_list args) {
|
|
|
|
// Run once to get the length of the string.
|
|
|
|
va_list args_copy;
|
|
|
|
va_copy(args_copy, args);
|
|
|
|
int len = vsnprintf(NULL, 0, fmt, args_copy);
|
|
|
|
va_end(args_copy);
|
|
|
|
|
|
|
|
char *ret = malloc(len + 1); // + 1 for NULL terminator.
|
|
|
|
if (!ret) abort();
|
|
|
|
int written = vsnprintf(ret, len + 1, fmt, args);
|
|
|
|
UPB_ASSERT_VAR(written, written == len);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static char *upb_asprintf(const char *fmt, ...) {
|
|
|
|
va_list args;
|
|
|
|
va_start(args, fmt);
|
|
|
|
char *ret = upb_vasprintf(fmt, args);
|
|
|
|
va_end(args);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static int alloc_pclabel(jitcompiler *jc) {
|
|
|
|
int newpc = jc->pclabel_count++;
|
|
|
|
dasm_growpc(jc, jc->pclabel_count);
|
|
|
|
return newpc;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool try_getjmptarget(jitcompiler *jc, const void *key, int *pclabel) {
|
|
|
|
upb_value v;
|
|
|
|
if (upb_inttable_lookupptr(&jc->jmptargets, key, &v)) {
|
|
|
|
*pclabel = upb_value_getuint32(v);
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Gets the pclabel for this bytecode location's jmptarget. Requires that the
|
|
|
|
// jmptarget() has been previously defined.
|
|
|
|
static int getjmptarget(jitcompiler *jc, const void *key) {
|
|
|
|
int pclabel;
|
|
|
|
assert(upb_inttable_lookupptr(&jc->jmpdefined, key, NULL));
|
|
|
|
bool ok = try_getjmptarget(jc, key, &pclabel);
|
|
|
|
UPB_ASSERT_VAR(ok, ok);
|
|
|
|
return pclabel;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns a pclabel that serves as a jmp target for the given bytecode pointer.
|
|
|
|
// This should only be called for code that is jumping to the target; code
|
|
|
|
// defining the target should use define_jmptarget().
|
|
|
|
//
|
|
|
|
// Creates/allocates a pclabel for this target if one does not exist already.
|
|
|
|
static int jmptarget(jitcompiler *jc, const void *key) {
|
|
|
|
int pclabel;
|
|
|
|
if (!try_getjmptarget(jc, key, &pclabel)) {
|
|
|
|
pclabel = alloc_pclabel(jc);
|
|
|
|
upb_inttable_insertptr(&jc->jmptargets, key, upb_value_uint32(pclabel));
|
|
|
|
}
|
|
|
|
return pclabel;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Defines a pclabel associated with the given bytecode location.
|
|
|
|
// Must be called exactly once by the code that is generating the code for this
|
|
|
|
// bytecode.
|
|
|
|
//
|
|
|
|
// Must be called exactly once before bytecode generation is complete (this is a
|
|
|
|
// sanity check to make sure the label is defined exactly once).
|
|
|
|
static int define_jmptarget(jitcompiler *jc, const void *key) {
|
|
|
|
#ifndef NDEBUG
|
|
|
|
upb_inttable_insertptr(&jc->jmpdefined, key, upb_value_bool(true));
|
|
|
|
#endif
|
|
|
|
return jmptarget(jc, key);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns a bytecode pc offset relative to the beginning of the group's code.
|
|
|
|
static int pcofs(jitcompiler *jc) {
|
|
|
|
return jc->pc - jc->group->bytecode;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void upb_reg_jit_gdb(jitcompiler *jc);
|
|
|
|
|
|
|
|
// Returns a machine code offset corresponding to the given key.
|
|
|
|
// Requires that this key was defined with define_jmptarget.
|
|
|
|
static int machine_code_ofs(jitcompiler *jc, const void *key) {
|
|
|
|
int pclabel = getjmptarget(jc, key);
|
|
|
|
// Despite its name, this function takes a pclabel and returns the
|
|
|
|
// corresponding machine code offset.
|
|
|
|
return dasm_getpclabel(jc, pclabel);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns a machine code offset corresponding to the given method-relative
|
|
|
|
// bytecode offset. Note that the bytecode offset is relative to the given
|
|
|
|
// method, but the returned machine code offset is relative to the beginning of
|
|
|
|
// *all* the machine code.
|
|
|
|
static int machine_code_ofs2(jitcompiler *jc, const upb_pbdecodermethod *method,
|
|
|
|
int pcofs) {
|
|
|
|
void *bc_target = jc->group->bytecode + method->code_base.ofs + pcofs;
|
|
|
|
return machine_code_ofs(jc, bc_target);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Given a pcofs relative to this method's base, returns a machine code offset
|
|
|
|
// relative to jmptarget(dispatch->array) (which is used in jitdispatch as the
|
|
|
|
// machine code base for dispatch table lookups).
|
|
|
|
uint32_t dispatchofs(jitcompiler *jc, const upb_pbdecodermethod *method,
|
|
|
|
int pcofs) {
|
|
|
|
int mc_base = machine_code_ofs(jc, method->dispatch.array);
|
|
|
|
int mc_target = machine_code_ofs2(jc, method, pcofs);
|
|
|
|
assert(mc_base > 0);
|
|
|
|
assert(mc_target > 0);
|
|
|
|
int ret = mc_target - mc_base;
|
|
|
|
assert(ret > 0);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Rewrites the dispatch tables into machine code offsets.
|
|
|
|
static void patchdispatch(jitcompiler *jc) {
|
|
|
|
upb_inttable_iter i;
|
|
|
|
upb_inttable_begin(&i, &jc->group->methods);
|
|
|
|
for (; !upb_inttable_done(&i); upb_inttable_next(&i)) {
|
|
|
|
upb_pbdecodermethod *method = upb_value_getptr(upb_inttable_iter_value(&i));
|
|
|
|
method->is_native_ = true;
|
|
|
|
|
|
|
|
upb_inttable *dispatch = &method->dispatch;
|
|
|
|
|
|
|
|
// Remove DISPATCH_ENDMSG -- only the bytecode interpreter needs it.
|
|
|
|
// And leaving it around will cause us to find field 0 improperly.
|
|
|
|
upb_inttable_remove(dispatch, DISPATCH_ENDMSG, NULL);
|
|
|
|
|
|
|
|
upb_inttable_iter i2;
|
|
|
|
upb_inttable_begin(&i2, dispatch);
|
|
|
|
for (; !upb_inttable_done(&i2); upb_inttable_next(&i2)) {
|
|
|
|
uintptr_t key = upb_inttable_iter_key(&i2);
|
|
|
|
uint64_t val = upb_value_getuint64(upb_inttable_iter_value(&i2));
|
|
|
|
uint64_t newval;
|
|
|
|
if (key <= UPB_MAX_FIELDNUMBER) {
|
|
|
|
// Primary slot.
|
|
|
|
uint64_t ofs;
|
|
|
|
uint8_t wt1;
|
|
|
|
uint8_t wt2;
|
|
|
|
upb_pbdecoder_unpackdispatch(val, &ofs, &wt1, &wt2);
|
|
|
|
|
|
|
|
// Update offset and repack.
|
|
|
|
ofs = dispatchofs(jc, method, ofs);
|
|
|
|
newval = upb_pbdecoder_packdispatch(ofs, wt1, wt2);
|
|
|
|
assert((int64_t)newval > 0);
|
|
|
|
} else {
|
|
|
|
// Secondary slot. Since we have 64 bits for the value, we use an
|
|
|
|
// absolute offset.
|
|
|
|
int mcofs = machine_code_ofs2(jc, method, val);
|
|
|
|
newval = (uint64_t)(jc->group->jit_code + mcofs);
|
|
|
|
}
|
|
|
|
bool ok = upb_inttable_replace(dispatch, key, upb_value_uint64(newval));
|
|
|
|
UPB_ASSERT_VAR(ok, ok);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Update entry point for this method to point at mc base instead of bc
|
|
|
|
// base. Set this only *after* we have patched the offsets
|
|
|
|
// (machine_code_ofs2() uses this).
|
|
|
|
method->code_base.ptr = jc->group->jit_code + machine_code_ofs(jc, method);
|
|
|
|
|
|
|
|
upb_byteshandler *h = &method->input_handler_;
|
|
|
|
upb_byteshandler_setstartstr(h, upb_pbdecoder_startjit, NULL);
|
|
|
|
upb_byteshandler_setstring(h, jc->group->jit_code, method->code_base.ptr);
|
|
|
|
upb_byteshandler_setendstr(h, upb_pbdecoder_end, method);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef UPB_JIT_LOAD_SO
|
|
|
|
|
|
|
|
static void load_so(jitcompiler *jc) {
|
|
|
|
// Dump to a .so file in /tmp and load that, so all the tooling works right
|
|
|
|
// (for example, debuggers and profilers will see symbol names for the JIT-ted
|
|
|
|
// code). This is the same goal of the GDB JIT code below, but the GDB JIT
|
|
|
|
// interface is only used/understood by GDB. Hopefully a standard will
|
|
|
|
// develop for registering JIT-ted code that all tools will recognize,
|
|
|
|
// rendering this obsolete.
|
|
|
|
|
|
|
|
// jc->asmlabels maps:
|
|
|
|
// pclabel -> char* label
|
|
|
|
//
|
|
|
|
// Use this to build mclabels, which maps:
|
|
|
|
// machine code offset -> char* label
|
|
|
|
//
|
|
|
|
// Then we can use mclabels to emit the labels as we iterate over the bytes we
|
|
|
|
// are outputting.
|
|
|
|
upb_inttable_iter i;
|
|
|
|
upb_inttable mclabels;
|
|
|
|
upb_inttable_init(&mclabels, UPB_CTYPE_PTR);
|
|
|
|
upb_inttable_begin(&i, &jc->asmlabels);
|
|
|
|
for (; !upb_inttable_done(&i); upb_inttable_next(&i)) {
|
|
|
|
upb_inttable_insert(&mclabels,
|
|
|
|
dasm_getpclabel(jc, upb_inttable_iter_key(&i)),
|
|
|
|
upb_inttable_iter_value(&i));
|
|
|
|
}
|
|
|
|
|
|
|
|
// We write a .s file in text format, as input to the assembler.
|
|
|
|
// Then we run gcc to turn it into a .so file.
|
|
|
|
//
|
|
|
|
// The last "XXXXXX" will be replaced with something randomly generated by
|
|
|
|
// mkstmemp(). We don't add ".s" to this filename because it makes the string
|
|
|
|
// processing for mkstemp() and system() more complicated.
|
|
|
|
char s_filename[] = "/tmp/upb-jit-codeXXXXXX";
|
|
|
|
int fd = mkstemp(s_filename);
|
|
|
|
FILE *f;
|
|
|
|
if (fd >= 0 && (f = fdopen(fd, "wb")) != NULL) {
|
|
|
|
uint8_t *jit_code = (uint8_t*)jc->group->jit_code;
|
|
|
|
fputs(" .text\n\n", f);
|
|
|
|
size_t linelen = 0;
|
|
|
|
for (size_t i = 0; i < jc->group->jit_size; i++) {
|
|
|
|
upb_value v;
|
|
|
|
if (upb_inttable_lookup(&mclabels, i, &v)) {
|
|
|
|
const char *label = upb_value_getptr(v);
|
|
|
|
// "X." makes our JIT syms recognizable as such, which we build into
|
|
|
|
// other tooling.
|
|
|
|
fprintf(f, "\n\nX.%s:\n", label);
|
|
|
|
fprintf(f, " .globl X.%s", label);
|
|
|
|
linelen = 1000;
|
|
|
|
}
|
|
|
|
if (linelen >= 77) {
|
|
|
|
linelen = fprintf(f, "\n .byte %u", jit_code[i]);
|
|
|
|
} else {
|
|
|
|
linelen += fprintf(f, ",%u", jit_code[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
fputs("\n", f);
|
|
|
|
fclose(f);
|
|
|
|
} else {
|
|
|
|
fprintf(stderr, "Error opening tmp file for JIT debug output.\n");
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
|
|
|
|
// This is exploitable if you have an adversary on your machine who can write
|
|
|
|
// to this tmp directory. But this is just for debugging so we don't worry
|
|
|
|
// too much about that. It shouldn't be prone to races against concurrent
|
|
|
|
// (non-adversarial) upb JIT's because we used mkstemp().
|
|
|
|
char *cmd = upb_asprintf("gcc -shared -o %s.so -x assembler %s", s_filename,
|
|
|
|
s_filename);
|
|
|
|
if (system(cmd) != 0) {
|
|
|
|
fprintf(stderr, "Error compiling %s\n", s_filename);
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
free(cmd);
|
|
|
|
|
|
|
|
char *so_filename = upb_asprintf("%s.so", s_filename);
|
|
|
|
|
|
|
|
// Some convenience symlinks.
|
|
|
|
// This is racy, but just for convenience.
|
|
|
|
unlink("/tmp/upb-jit-code.so");
|
|
|
|
unlink("/tmp/upb-jit-code.s");
|
|
|
|
symlink(s_filename, "/tmp/upb-jit-code.s");
|
|
|
|
symlink(so_filename, "/tmp/upb-jit-code.so");
|
|
|
|
|
|
|
|
jc->group->dl = dlopen(so_filename, RTLD_LAZY);
|
|
|
|
free(so_filename);
|
|
|
|
if (!jc->group->dl) {
|
|
|
|
fprintf(stderr, "Couldn't dlopen(): %s\n", dlerror());
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
|
|
|
|
munmap(jc->group->jit_code, jc->group->jit_size);
|
|
|
|
jc->group->jit_code = dlsym(jc->group->dl, "X.enterjit");
|
|
|
|
if (!jc->group->jit_code) {
|
|
|
|
fprintf(stderr, "Couldn't find enterjit sym\n");
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
|
|
|
|
upb_inttable_uninit(&mclabels);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void upb_pbdecoder_jit(mgroup *group) {
|
|
|
|
group->debug_info = NULL;
|
|
|
|
group->dl = NULL;
|
|
|
|
|
|
|
|
assert(group->bytecode);
|
|
|
|
jitcompiler *jc = newjitcompiler(group);
|
|
|
|
emit_static_asm(jc);
|
|
|
|
jitbytecode(jc);
|
|
|
|
|
|
|
|
int dasm_status = dasm_link(jc, &jc->group->jit_size);
|
|
|
|
if (dasm_status != DASM_S_OK) {
|
|
|
|
fprintf(stderr, "DynASM error; returned status: 0x%08x\n", dasm_status);
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
|
|
|
|
char *jit_code = mmap(NULL, jc->group->jit_size, PROT_READ | PROT_WRITE,
|
|
|
|
MAP_ANONYMOUS | MAP_PRIVATE, 0, 0);
|
|
|
|
dasm_encode(jc, jit_code);
|
|
|
|
mprotect(jit_code, jc->group->jit_size, PROT_EXEC | PROT_READ);
|
|
|
|
upb_reg_jit_gdb(jc);
|
|
|
|
jc->group->jit_code = (upb_string_handlerfunc *)jit_code;
|
|
|
|
|
|
|
|
#ifdef UPB_JIT_LOAD_SO
|
|
|
|
load_so(jc);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
patchdispatch(jc);
|
|
|
|
|
|
|
|
freejitcompiler(jc);
|
|
|
|
|
|
|
|
// Now the bytecode is no longer needed.
|
|
|
|
free(group->bytecode);
|
|
|
|
group->bytecode = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_pbdecoder_freejit(mgroup *group) {
|
|
|
|
if (!group->jit_code) return;
|
|
|
|
if (group->dl) {
|
|
|
|
#ifdef UPB_JIT_LOAD_SO
|
|
|
|
dlclose(group->dl);
|
|
|
|
#endif
|
|
|
|
} else {
|
|
|
|
munmap(group->jit_code, group->jit_size);
|
|
|
|
}
|
|
|
|
free(group->debug_info);
|
|
|
|
// TODO: unregister GDB JIT interface.
|
|
|
|
}
|
|
|
|
|
|
|
|
// To debug JIT-ted code with GDB we need to tell GDB about the JIT-ted code
|
|
|
|
// at runtime. GDB 7.x+ has defined an interface for doing this, and these
|
|
|
|
// structure/function defintions are copied out of gdb/jit.h
|
|
|
|
//
|
|
|
|
// We need to give GDB an ELF file at runtime describing the symbols we have
|
|
|
|
// generated. To avoid implementing the ELF format, we generate an ELF file
|
|
|
|
// at compile-time and compile it in as a character string. We can replace
|
|
|
|
// a few key constants (address of JIT-ted function and its size) by looking
|
|
|
|
// for a few magic numbers and doing a dumb string replacement.
|
|
|
|
//
|
|
|
|
// Unfortunately this approach is showing its limits; we can only define one
|
|
|
|
// symbol, and this approach only works with GDB. The .so approach above is
|
|
|
|
// more reliable.
|
|
|
|
|
|
|
|
#ifndef __APPLE__
|
|
|
|
const unsigned char upb_jit_debug_elf_file[] = {
|
|
|
|
#include "upb/pb/jit_debug_elf_file.h"
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef enum {
|
|
|
|
GDB_JIT_NOACTION = 0,
|
|
|
|
GDB_JIT_REGISTER,
|
|
|
|
GDB_JIT_UNREGISTER
|
|
|
|
} jit_actions_t;
|
|
|
|
|
|
|
|
typedef struct gdb_jit_entry {
|
|
|
|
struct gdb_jit_entry *next_entry;
|
|
|
|
struct gdb_jit_entry *prev_entry;
|
|
|
|
const char *symfile_addr;
|
|
|
|
uint64_t symfile_size;
|
|
|
|
} gdb_jit_entry;
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
uint32_t version;
|
|
|
|
uint32_t action_flag;
|
|
|
|
gdb_jit_entry *relevant_entry;
|
|
|
|
gdb_jit_entry *first_entry;
|
|
|
|
} gdb_jit_descriptor;
|
|
|
|
|
|
|
|
gdb_jit_descriptor __jit_debug_descriptor = {1, GDB_JIT_NOACTION, NULL, NULL};
|
|
|
|
|
|
|
|
void __attribute__((noinline)) __jit_debug_register_code() {
|
|
|
|
__asm__ __volatile__("");
|
|
|
|
}
|
|
|
|
|
|
|
|
static void upb_reg_jit_gdb(jitcompiler *jc) {
|
|
|
|
// Create debug info.
|
|
|
|
size_t elf_len = sizeof(upb_jit_debug_elf_file);
|
|
|
|
jc->group->debug_info = malloc(elf_len);
|
|
|
|
memcpy(jc->group->debug_info, upb_jit_debug_elf_file, elf_len);
|
|
|
|
uint64_t *p = (void *)jc->group->debug_info;
|
|
|
|
for (; (void *)(p + 1) <= (void *)jc->group->debug_info + elf_len; ++p) {
|
|
|
|
if (*p == 0x12345678) {
|
|
|
|
*p = (uintptr_t)jc->group->jit_code;
|
|
|
|
}
|
|
|
|
if (*p == 0x321) {
|
|
|
|
*p = jc->group->jit_size;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Register the JIT-ted code with GDB.
|
|
|
|
gdb_jit_entry *e = malloc(sizeof(gdb_jit_entry));
|
|
|
|
e->next_entry = __jit_debug_descriptor.first_entry;
|
|
|
|
e->prev_entry = NULL;
|
|
|
|
if (e->next_entry) e->next_entry->prev_entry = e;
|
|
|
|
e->symfile_addr = jc->group->debug_info;
|
|
|
|
e->symfile_size = elf_len;
|
|
|
|
__jit_debug_descriptor.first_entry = e;
|
|
|
|
__jit_debug_descriptor.relevant_entry = e;
|
|
|
|
__jit_debug_descriptor.action_flag = GDB_JIT_REGISTER;
|
|
|
|
__jit_debug_register_code();
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
static void upb_reg_jit_gdb(jitcompiler *jc) { (void)jc; }
|
|
|
|
|
|
|
|
#endif
|