Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3292 lines
134 KiB

// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "binary_json_conformance_suite.h"
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "google/protobuf/util/json_util.h"
#include "google/protobuf/util/type_resolver_util.h"
#include "absl/log/absl_check.h"
#include "absl/log/absl_log.h"
#include "absl/status/status.h"
#include "absl/strings/str_cat.h"
#include "json/json.h"
#include "conformance/conformance.pb.h"
#include "conformance_test.h"
#include "google/protobuf/endian.h"
#include "google/protobuf/test_messages_proto2.pb.h"
#include "google/protobuf/test_messages_proto3.pb.h"
#include "google/protobuf/text_format.h"
#include "google/protobuf/wire_format_lite.h"
namespace proto2_messages = protobuf_test_messages::proto2;
using conformance::ConformanceRequest;
using conformance::ConformanceResponse;
using conformance::WireFormat;
using google::protobuf::Descriptor;
using google::protobuf::FieldDescriptor;
using google::protobuf::Message;
using google::protobuf::internal::WireFormatLite;
using google::protobuf::internal::little_endian::FromHost;
using google::protobuf::util::NewTypeResolverForDescriptorPool;
using proto2_messages::TestAllTypesProto2;
using protobuf_test_messages::proto3::TestAllTypesProto3;
using std::string;
namespace {
constexpr absl::string_view kTypeUrlPrefix = "type.googleapis.com";
// The number of repetitions to use for performance tests.
// Corresponds approx to 500KB wireformat bytes.
const size_t kPerformanceRepeatCount = 50000;
string GetTypeUrl(const Descriptor* message) {
return absl::StrCat(kTypeUrlPrefix, "/", message->full_name());
}
/* Routines for building arbitrary protos *************************************/
// We would use CodedOutputStream except that we want more freedom to build
// arbitrary protos (even invalid ones).
// The maximum number of bytes that it takes to encode a 64-bit varint.
#define VARINT_MAX_LEN 10
size_t vencode64(uint64_t val, int over_encoded_bytes, char* buf) {
if (val == 0) {
buf[0] = 0;
return 1;
}
size_t i = 0;
while (val) {
uint8_t byte = val & 0x7fU;
val >>= 7;
if (val || over_encoded_bytes) byte |= 0x80U;
buf[i++] = byte;
}
while (over_encoded_bytes--) {
assert(i < 10);
uint8_t byte = over_encoded_bytes ? 0x80 : 0;
buf[i++] = byte;
}
return i;
}
string varint(uint64_t x) {
char buf[VARINT_MAX_LEN];
size_t len = vencode64(x, 0, buf);
return string(buf, len);
}
// Encodes a varint that is |extra| bytes longer than it needs to be, but still
// valid.
string longvarint(uint64_t x, int extra) {
char buf[VARINT_MAX_LEN];
size_t len = vencode64(x, extra, buf);
return string(buf, len);
}
string fixed32(void* data) {
uint32_t data_le;
std::memcpy(&data_le, data, 4);
data_le = FromHost(data_le);
return string(reinterpret_cast<char*>(&data_le), 4);
}
string fixed64(void* data) {
uint64_t data_le;
std::memcpy(&data_le, data, 8);
data_le = FromHost(data_le);
return string(reinterpret_cast<char*>(&data_le), 8);
}
string delim(const string& buf) {
return absl::StrCat(varint(buf.size()), buf);
}
string u32(uint32_t u32) { return fixed32(&u32); }
string u64(uint64_t u64) { return fixed64(&u64); }
string flt(float f) { return fixed32(&f); }
string dbl(double d) { return fixed64(&d); }
string zz32(int32_t x) { return varint(WireFormatLite::ZigZagEncode32(x)); }
string zz64(int64_t x) { return varint(WireFormatLite::ZigZagEncode64(x)); }
string tag(uint32_t fieldnum, char wire_type) {
return varint((fieldnum << 3) | wire_type);
}
string tag(int fieldnum, char wire_type) {
return tag(static_cast<uint32_t>(fieldnum), wire_type);
}
string GetDefaultValue(FieldDescriptor::Type type) {
switch (type) {
case FieldDescriptor::TYPE_INT32:
case FieldDescriptor::TYPE_INT64:
case FieldDescriptor::TYPE_UINT32:
case FieldDescriptor::TYPE_UINT64:
case FieldDescriptor::TYPE_ENUM:
case FieldDescriptor::TYPE_BOOL:
return varint(0);
case FieldDescriptor::TYPE_SINT32:
return zz32(0);
case FieldDescriptor::TYPE_SINT64:
return zz64(0);
case FieldDescriptor::TYPE_FIXED32:
case FieldDescriptor::TYPE_SFIXED32:
return u32(0);
case FieldDescriptor::TYPE_FIXED64:
case FieldDescriptor::TYPE_SFIXED64:
return u64(0);
case FieldDescriptor::TYPE_FLOAT:
return flt(0);
case FieldDescriptor::TYPE_DOUBLE:
return dbl(0);
case FieldDescriptor::TYPE_STRING:
case FieldDescriptor::TYPE_BYTES:
case FieldDescriptor::TYPE_MESSAGE:
return delim("");
default:
return "";
}
return "";
}
string GetNonDefaultValue(FieldDescriptor::Type type) {
switch (type) {
case FieldDescriptor::TYPE_INT32:
case FieldDescriptor::TYPE_INT64:
case FieldDescriptor::TYPE_UINT32:
case FieldDescriptor::TYPE_UINT64:
case FieldDescriptor::TYPE_ENUM:
case FieldDescriptor::TYPE_BOOL:
return varint(1);
case FieldDescriptor::TYPE_SINT32:
return zz32(1);
case FieldDescriptor::TYPE_SINT64:
return zz64(1);
case FieldDescriptor::TYPE_FIXED32:
case FieldDescriptor::TYPE_SFIXED32:
return u32(1);
case FieldDescriptor::TYPE_FIXED64:
case FieldDescriptor::TYPE_SFIXED64:
return u64(1);
case FieldDescriptor::TYPE_FLOAT:
return flt(1);
case FieldDescriptor::TYPE_DOUBLE:
return dbl(1);
case FieldDescriptor::TYPE_STRING:
case FieldDescriptor::TYPE_BYTES:
return delim("a");
case FieldDescriptor::TYPE_MESSAGE:
return delim(
absl::StrCat(tag(1, WireFormatLite::WIRETYPE_VARINT), varint(1234)));
default:
return "";
}
return "";
}
#define UNKNOWN_FIELD 666
enum class Packed {
kUnspecified = 0,
kTrue = 1,
kFalse = 2,
};
const FieldDescriptor* GetFieldForType(FieldDescriptor::Type type,
bool repeated, bool is_proto3,
Packed packed = Packed::kUnspecified) {
const Descriptor* d = is_proto3 ? TestAllTypesProto3().GetDescriptor()
: TestAllTypesProto2().GetDescriptor();
for (int i = 0; i < d->field_count(); i++) {
const FieldDescriptor* f = d->field(i);
if (f->type() == type && f->is_repeated() == repeated) {
if ((packed == Packed::kTrue && !f->is_packed()) ||
(packed == Packed::kFalse && f->is_packed())) {
continue;
}
return f;
}
}
absl::string_view packed_string = "";
const absl::string_view repeated_string =
repeated ? "Repeated " : "Singular ";
const absl::string_view proto_string = is_proto3 ? "Proto3" : "Proto2";
if (packed == Packed::kTrue) {
packed_string = "Packed ";
}
if (packed == Packed::kFalse) {
packed_string = "Unpacked ";
}
ABSL_LOG(FATAL) << "Couldn't find field with type: " << repeated_string
<< packed_string << FieldDescriptor::TypeName(type) << " for "
<< proto_string;
return nullptr;
}
const FieldDescriptor* GetFieldForMapType(FieldDescriptor::Type key_type,
FieldDescriptor::Type value_type,
bool is_proto3) {
const Descriptor* d = is_proto3 ? TestAllTypesProto3().GetDescriptor()
: TestAllTypesProto2().GetDescriptor();
for (int i = 0; i < d->field_count(); i++) {
const FieldDescriptor* f = d->field(i);
if (f->is_map()) {
const Descriptor* map_entry = f->message_type();
const FieldDescriptor* key = map_entry->field(0);
const FieldDescriptor* value = map_entry->field(1);
if (key->type() == key_type && value->type() == value_type) {
return f;
}
}
}
const absl::string_view proto_string = is_proto3 ? "Proto3" : "Proto2";
ABSL_LOG(FATAL) << "Couldn't find map field with type: "
<< FieldDescriptor::TypeName(key_type) << " and "
<< FieldDescriptor::TypeName(key_type) << " for "
<< proto_string;
return nullptr;
}
const FieldDescriptor* GetFieldForOneofType(FieldDescriptor::Type type,
bool is_proto3,
bool exclusive = false) {
const Descriptor* d = is_proto3 ? TestAllTypesProto3().GetDescriptor()
: TestAllTypesProto2().GetDescriptor();
for (int i = 0; i < d->field_count(); i++) {
const FieldDescriptor* f = d->field(i);
if (f->containing_oneof() && ((f->type() == type) ^ exclusive)) {
return f;
}
}
const absl::string_view proto_string = is_proto3 ? "Proto3" : "Proto2";
ABSL_LOG(FATAL) << "Couldn't find oneof field with type: "
<< FieldDescriptor::TypeName(type) << " for " << proto_string;
return nullptr;
}
string UpperCase(string str) {
for (size_t i = 0; i < str.size(); i++) {
str[i] = toupper(str[i]);
}
return str;
}
std::unique_ptr<Message> NewTestMessage(bool is_proto3) {
std::unique_ptr<Message> prototype;
if (is_proto3) {
prototype = std::make_unique<TestAllTypesProto3>();
} else {
prototype = std::make_unique<TestAllTypesProto2>();
}
return prototype;
}
bool IsProto3Default(FieldDescriptor::Type type, const string& binary_data) {
switch (type) {
case FieldDescriptor::TYPE_DOUBLE:
return binary_data == dbl(0);
case FieldDescriptor::TYPE_FLOAT:
return binary_data == flt(0);
case FieldDescriptor::TYPE_BOOL:
case FieldDescriptor::TYPE_INT64:
case FieldDescriptor::TYPE_UINT64:
case FieldDescriptor::TYPE_INT32:
case FieldDescriptor::TYPE_UINT32:
case FieldDescriptor::TYPE_SINT32:
case FieldDescriptor::TYPE_SINT64:
case FieldDescriptor::TYPE_ENUM:
return binary_data == varint(0);
case FieldDescriptor::TYPE_FIXED64:
case FieldDescriptor::TYPE_SFIXED64:
return binary_data == u64(0);
case FieldDescriptor::TYPE_FIXED32:
case FieldDescriptor::TYPE_SFIXED32:
return binary_data == u32(0);
case FieldDescriptor::TYPE_STRING:
case FieldDescriptor::TYPE_BYTES:
return binary_data == delim("");
default:
return false;
}
}
} // anonymous namespace
namespace google {
namespace protobuf {
bool BinaryAndJsonConformanceSuite::ParseJsonResponse(
const ConformanceResponse& response, Message* test_message) {
string binary_protobuf;
absl::Status status =
JsonToBinaryString(type_resolver_.get(), type_url_,
response.json_payload(), &binary_protobuf);
if (!status.ok()) {
return false;
}
if (!test_message->ParseFromString(binary_protobuf)) {
ABSL_LOG(FATAL) << "INTERNAL ERROR: internal JSON->protobuf transcode "
<< "yielded unparseable proto.";
return false;
}
return true;
}
bool BinaryAndJsonConformanceSuite::ParseResponse(
const ConformanceResponse& response,
const ConformanceRequestSetting& setting, Message* test_message) {
const ConformanceRequest& request = setting.GetRequest();
WireFormat requested_output = request.requested_output_format();
const string& test_name = setting.GetTestName();
ConformanceLevel level = setting.GetLevel();
switch (response.result_case()) {
case ConformanceResponse::kProtobufPayload: {
if (requested_output != conformance::PROTOBUF) {
ReportFailure(test_name, level, request, response,
absl::StrCat("Test was asked for ",
WireFormatToString(requested_output),
" output but provided PROTOBUF instead."));
return false;
}
if (!test_message->ParseFromString(response.protobuf_payload())) {
ReportFailure(test_name, level, request, response,
"Protobuf output we received from test was unparseable.");
return false;
}
break;
}
case ConformanceResponse::kJsonPayload: {
if (requested_output != conformance::JSON) {
ReportFailure(test_name, level, request, response,
absl::StrCat("Test was asked for ",
WireFormatToString(requested_output),
" output but provided JSON instead."));
return false;
}
if (!ParseJsonResponse(response, test_message)) {
ReportFailure(test_name, level, request, response,
"JSON output we received from test was unparseable.");
return false;
}
break;
}
default:
ABSL_LOG(FATAL) << test_name
<< ": unknown payload type: " << response.result_case();
}
return true;
}
void BinaryAndJsonConformanceSuite::ExpectParseFailureForProtoWithProtoVersion(
const string& proto, const string& test_name, ConformanceLevel level,
bool is_proto3) {
std::unique_ptr<Message> prototype = NewTestMessage(is_proto3);
// We don't expect output, but if the program erroneously accepts the protobuf
// we let it send its response as this. We must not leave it unspecified.
ConformanceRequestSetting setting(
level, conformance::PROTOBUF, conformance::PROTOBUF,
conformance::BINARY_TEST, *prototype, test_name, proto);
const ConformanceRequest& request = setting.GetRequest();
ConformanceResponse response;
string effective_test_name = absl::StrCat(
setting.ConformanceLevelToString(level),
(is_proto3 ? ".Proto3" : ".Proto2"), ".ProtobufInput.", test_name);
RunTest(effective_test_name, request, &response);
if (response.result_case() == ConformanceResponse::kParseError) {
ReportSuccess(effective_test_name);
} else if (response.result_case() == ConformanceResponse::kSkipped) {
ReportSkip(effective_test_name, request, response);
} else {
ReportFailure(effective_test_name, level, request, response,
"Should have failed to parse, but didn't.");
}
}
// Expect that this precise protobuf will cause a parse error.
void BinaryAndJsonConformanceSuite::ExpectParseFailureForProto(
const string& proto, const string& test_name, ConformanceLevel level) {
ExpectParseFailureForProtoWithProtoVersion(proto, test_name, level, true);
ExpectParseFailureForProtoWithProtoVersion(proto, test_name, level, false);
}
// Expect that this protobuf will cause a parse error, even if it is followed
// by valid protobuf data. We can try running this twice: once with this
// data verbatim and once with this data followed by some valid data.
//
// TODO(haberman): implement the second of these.
void BinaryAndJsonConformanceSuite::ExpectHardParseFailureForProto(
const string& proto, const string& test_name, ConformanceLevel level) {
return ExpectParseFailureForProto(proto, test_name, level);
}
void BinaryAndJsonConformanceSuite::RunValidJsonTest(
const string& test_name, ConformanceLevel level, const string& input_json,
const string& equivalent_text_format) {
TestAllTypesProto3 prototype;
RunValidJsonTestWithMessage(test_name, level, input_json,
equivalent_text_format, prototype);
}
void BinaryAndJsonConformanceSuite::RunValidJsonTest(
const string& test_name, ConformanceLevel level, const string& input_json,
const string& equivalent_text_format, bool is_proto3) {
if (is_proto3) {
RunValidJsonTest(test_name, level, input_json, equivalent_text_format);
} else {
TestAllTypesProto2 prototype;
RunValidJsonTestWithMessage(test_name, level, input_json,
equivalent_text_format, prototype);
}
}
void BinaryAndJsonConformanceSuite::RunValidJsonTestWithMessage(
const string& test_name, ConformanceLevel level, const string& input_json,
const string& equivalent_text_format, const Message& prototype) {
ConformanceRequestSetting setting1(
level, conformance::JSON, conformance::PROTOBUF, conformance::JSON_TEST,
prototype, test_name, input_json);
RunValidInputTest(setting1, equivalent_text_format);
ConformanceRequestSetting setting2(level, conformance::JSON,
conformance::JSON, conformance::JSON_TEST,
prototype, test_name, input_json);
RunValidInputTest(setting2, equivalent_text_format);
}
void BinaryAndJsonConformanceSuite::RunValidJsonTestWithProtobufInput(
const string& test_name, ConformanceLevel level,
const TestAllTypesProto3& input, const string& equivalent_text_format) {
ConformanceRequestSetting setting(
level, conformance::PROTOBUF, conformance::JSON, conformance::JSON_TEST,
input, test_name, input.SerializeAsString());
RunValidInputTest(setting, equivalent_text_format);
}
void BinaryAndJsonConformanceSuite::RunValidJsonIgnoreUnknownTest(
const string& test_name, ConformanceLevel level, const string& input_json,
const string& equivalent_text_format) {
TestAllTypesProto3 prototype;
ConformanceRequestSetting setting(
level, conformance::JSON, conformance::PROTOBUF,
conformance::JSON_IGNORE_UNKNOWN_PARSING_TEST, prototype, test_name,
input_json);
RunValidInputTest(setting, equivalent_text_format);
}
void BinaryAndJsonConformanceSuite::RunValidProtobufTest(
const string& test_name, ConformanceLevel level,
const string& input_protobuf, const string& equivalent_text_format,
bool is_proto3) {
std::unique_ptr<Message> prototype = NewTestMessage(is_proto3);
ConformanceRequestSetting setting1(
level, conformance::PROTOBUF, conformance::PROTOBUF,
conformance::BINARY_TEST, *prototype, test_name, input_protobuf);
RunValidInputTest(setting1, equivalent_text_format);
if (is_proto3) {
ConformanceRequestSetting setting2(
level, conformance::PROTOBUF, conformance::JSON,
conformance::BINARY_TEST, *prototype, test_name, input_protobuf);
RunValidInputTest(setting2, equivalent_text_format);
}
}
void BinaryAndJsonConformanceSuite::RunValidBinaryProtobufTest(
const string& test_name, ConformanceLevel level,
const string& input_protobuf, bool is_proto3) {
RunValidBinaryProtobufTest(test_name, level, input_protobuf, input_protobuf,
is_proto3);
}
void BinaryAndJsonConformanceSuite::RunValidBinaryProtobufTest(
const string& test_name, ConformanceLevel level,
const string& input_protobuf, const string& expected_protobuf,
bool is_proto3) {
std::unique_ptr<Message> prototype = NewTestMessage(is_proto3);
ConformanceRequestSetting setting(
level, conformance::PROTOBUF, conformance::PROTOBUF,
conformance::BINARY_TEST, *prototype, test_name, input_protobuf);
RunValidBinaryInputTest(setting, expected_protobuf, true);
}
void BinaryAndJsonConformanceSuite::RunBinaryPerformanceMergeMessageWithField(
const string& test_name, const string& field_proto, bool is_proto3) {
string message_tag = tag(27, WireFormatLite::WIRETYPE_LENGTH_DELIMITED);
string message_proto = absl::StrCat(message_tag, delim(field_proto));
string proto;
for (size_t i = 0; i < kPerformanceRepeatCount; i++) {
proto.append(message_proto);
}
string multiple_repeated_field_proto;
for (size_t i = 0; i < kPerformanceRepeatCount; i++) {
multiple_repeated_field_proto.append(field_proto);
}
string expected_proto =
absl::StrCat(message_tag, delim(multiple_repeated_field_proto));
RunValidBinaryProtobufTest(test_name, RECOMMENDED, proto, expected_proto,
is_proto3);
}
void BinaryAndJsonConformanceSuite::RunValidProtobufTestWithMessage(
const string& test_name, ConformanceLevel level, const Message* input,
const string& equivalent_text_format, bool is_proto3) {
RunValidProtobufTest(test_name, level, input->SerializeAsString(),
equivalent_text_format, is_proto3);
}
// According to proto JSON specification, JSON serializers follow more strict
// rules than parsers (e.g., a serializer must serialize int32 values as JSON
// numbers while the parser is allowed to accept them as JSON strings). This
// method allows strict checking on a proto JSON serializer by inspecting
// the JSON output directly.
void BinaryAndJsonConformanceSuite::RunValidJsonTestWithValidator(
const string& test_name, ConformanceLevel level, const string& input_json,
const Validator& validator, bool is_proto3) {
std::unique_ptr<Message> prototype = NewTestMessage(is_proto3);
ConformanceRequestSetting setting(level, conformance::JSON, conformance::JSON,
conformance::JSON_TEST, *prototype,
test_name, input_json);
const ConformanceRequest& request = setting.GetRequest();
ConformanceResponse response;
string effective_test_name =
absl::StrCat(setting.ConformanceLevelToString(level),
is_proto3 ? ".Proto3.JsonInput." : ".Proto2.JsonInput.",
test_name, ".Validator");
RunTest(effective_test_name, request, &response);
if (response.result_case() == ConformanceResponse::kSkipped) {
ReportSkip(effective_test_name, request, response);
return;
}
if (response.result_case() != ConformanceResponse::kJsonPayload) {
ReportFailure(effective_test_name, level, request, response,
absl::StrCat("Expected JSON payload but got type ",
response.result_case()));
return;
}
Json::Reader reader;
Json::Value value;
if (!reader.parse(response.json_payload(), value)) {
ReportFailure(effective_test_name, level, request, response,
absl::StrCat("JSON payload cannot be parsed as valid JSON: ",
reader.getFormattedErrorMessages()));
return;
}
if (!validator(value)) {
ReportFailure(effective_test_name, level, request, response,
"JSON payload validation failed.");
return;
}
ReportSuccess(effective_test_name);
}
void BinaryAndJsonConformanceSuite::ExpectParseFailureForJson(
const string& test_name, ConformanceLevel level, const string& input_json) {
TestAllTypesProto3 prototype;
// We don't expect output, but if the program erroneously accepts the protobuf
// we let it send its response as this. We must not leave it unspecified.
ConformanceRequestSetting setting(level, conformance::JSON, conformance::JSON,
conformance::JSON_TEST, prototype,
test_name, input_json);
const ConformanceRequest& request = setting.GetRequest();
ConformanceResponse response;
string effective_test_name = absl::StrCat(
setting.ConformanceLevelToString(level), ".Proto3.JsonInput.", test_name);
RunTest(effective_test_name, request, &response);
if (response.result_case() == ConformanceResponse::kParseError) {
ReportSuccess(effective_test_name);
} else if (response.result_case() == ConformanceResponse::kSkipped) {
ReportSkip(effective_test_name, request, response);
} else {
ReportFailure(effective_test_name, level, request, response,
"Should have failed to parse, but didn't.");
}
}
void BinaryAndJsonConformanceSuite::ExpectSerializeFailureForJson(
const string& test_name, ConformanceLevel level,
const string& text_format) {
TestAllTypesProto3 payload_message;
ABSL_CHECK(TextFormat::ParseFromString(text_format, &payload_message))
<< "Failed to parse: " << text_format;
TestAllTypesProto3 prototype;
ConformanceRequestSetting setting(
level, conformance::PROTOBUF, conformance::JSON, conformance::JSON_TEST,
prototype, test_name, payload_message.SerializeAsString());
const ConformanceRequest& request = setting.GetRequest();
ConformanceResponse response;
string effective_test_name = absl::StrCat(
setting.ConformanceLevelToString(level), ".", test_name, ".JsonOutput");
RunTest(effective_test_name, request, &response);
if (response.result_case() == ConformanceResponse::kSerializeError) {
ReportSuccess(effective_test_name);
} else if (response.result_case() == ConformanceResponse::kSkipped) {
ReportSkip(effective_test_name, request, response);
} else {
ReportFailure(effective_test_name, level, request, response,
"Should have failed to serialize, but didn't.");
}
}
void BinaryAndJsonConformanceSuite::TestPrematureEOFForType(
FieldDescriptor::Type type) {
// Incomplete values for each wire type.
static constexpr absl::string_view incompletes[6] = {
"\x80", // VARINT
"abcdefg", // 64BIT
"\x80", // DELIMITED (partial length)
"", // START_GROUP (no value required)
"", // END_GROUP (no value required)
"abc" // 32BIT
};
const FieldDescriptor* field = GetFieldForType(type, false, true);
const FieldDescriptor* rep_field = GetFieldForType(type, true, true);
WireFormatLite::WireType wire_type = WireFormatLite::WireTypeForFieldType(
static_cast<WireFormatLite::FieldType>(type));
absl::string_view incomplete = incompletes[wire_type];
const string type_name =
UpperCase(absl::StrCat(".", FieldDescriptor::TypeName(type)));
ExpectParseFailureForProto(
tag(field->number(), wire_type),
absl::StrCat("PrematureEofBeforeKnownNonRepeatedValue", type_name),
REQUIRED);
ExpectParseFailureForProto(
tag(rep_field->number(), wire_type),
absl::StrCat("PrematureEofBeforeKnownRepeatedValue", type_name),
REQUIRED);
ExpectParseFailureForProto(
tag(UNKNOWN_FIELD, wire_type),
absl::StrCat("PrematureEofBeforeUnknownValue", type_name), REQUIRED);
ExpectParseFailureForProto(
absl::StrCat(tag(field->number(), wire_type), incomplete),
absl::StrCat("PrematureEofInsideKnownNonRepeatedValue", type_name),
REQUIRED);
ExpectParseFailureForProto(
absl::StrCat(tag(rep_field->number(), wire_type), incomplete),
absl::StrCat("PrematureEofInsideKnownRepeatedValue", type_name),
REQUIRED);
ExpectParseFailureForProto(
absl::StrCat(tag(UNKNOWN_FIELD, wire_type), incomplete),
absl::StrCat("PrematureEofInsideUnknownValue", type_name), REQUIRED);
if (wire_type == WireFormatLite::WIRETYPE_LENGTH_DELIMITED) {
ExpectParseFailureForProto(
absl::StrCat(tag(field->number(), wire_type), varint(1)),
absl::StrCat("PrematureEofInDelimitedDataForKnownNonRepeatedValue",
type_name),
REQUIRED);
ExpectParseFailureForProto(
absl::StrCat(tag(rep_field->number(), wire_type), varint(1)),
absl::StrCat("PrematureEofInDelimitedDataForKnownRepeatedValue",
type_name),
REQUIRED);
// EOF in the middle of delimited data for unknown value.
ExpectParseFailureForProto(
absl::StrCat(tag(UNKNOWN_FIELD, wire_type), varint(1)),
absl::StrCat("PrematureEofInDelimitedDataForUnknownValue", type_name),
REQUIRED);
if (type == FieldDescriptor::TYPE_MESSAGE) {
// Submessage ends in the middle of a value.
string incomplete_submsg = absl::StrCat(
tag(WireFormatLite::TYPE_INT32, WireFormatLite::WIRETYPE_VARINT),
incompletes[WireFormatLite::WIRETYPE_VARINT]);
ExpectHardParseFailureForProto(
absl::StrCat(
tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
varint(incomplete_submsg.size()), incomplete_submsg),
absl::StrCat("PrematureEofInSubmessageValue", type_name), REQUIRED);
}
} else if (type != FieldDescriptor::TYPE_GROUP) {
// Non-delimited, non-group: eligible for packing.
// Packed region ends in the middle of a value.
ExpectHardParseFailureForProto(
absl::StrCat(
tag(rep_field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
varint(incomplete.size()), incomplete),
absl::StrCat("PrematureEofInPackedFieldValue", type_name), REQUIRED);
// EOF in the middle of packed region.
ExpectParseFailureForProto(
absl::StrCat(
tag(rep_field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
varint(1)),
absl::StrCat("PrematureEofInPackedField", type_name), REQUIRED);
}
}
void BinaryAndJsonConformanceSuite::TestValidDataForType(
FieldDescriptor::Type type,
std::vector<std::pair<std::string, std::string>> values) {
for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
const string type_name =
UpperCase(absl::StrCat(".", FieldDescriptor::TypeName(type)));
WireFormatLite::WireType wire_type = WireFormatLite::WireTypeForFieldType(
static_cast<WireFormatLite::FieldType>(type));
const FieldDescriptor* field = GetFieldForType(type, false, is_proto3);
const FieldDescriptor* rep_field = GetFieldForType(type, true, is_proto3);
// Test singular data for singular fields.
for (size_t i = 0; i < values.size(); i++) {
string proto =
absl::StrCat(tag(field->number(), wire_type), values[i].first);
// In proto3, default primitive fields should not be encoded.
string expected_proto =
is_proto3 && IsProto3Default(field->type(), values[i].second)
? ""
: absl::StrCat(tag(field->number(), wire_type), values[i].second);
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(expected_proto);
string text;
TextFormat::PrintToString(*test_message, &text);
RunValidProtobufTest(
absl::StrCat("ValidDataScalar", type_name, "[", i, "]"), REQUIRED,
proto, text, is_proto3);
RunValidBinaryProtobufTest(
absl::StrCat("ValidDataScalarBinary", type_name, "[", i, "]"),
RECOMMENDED, proto, expected_proto, is_proto3);
}
// Test repeated data for singular fields.
// For scalar message fields, repeated values are merged, which is tested
// separately.
if (type != FieldDescriptor::TYPE_MESSAGE) {
string proto;
for (size_t i = 0; i < values.size(); i++) {
proto += absl::StrCat(tag(field->number(), wire_type), values[i].first);
}
string expected_proto =
absl::StrCat(tag(field->number(), wire_type), values.back().second);
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(expected_proto);
string text;
TextFormat::PrintToString(*test_message, &text);
RunValidProtobufTest(absl::StrCat("RepeatedScalarSelectsLast", type_name),
REQUIRED, proto, text, is_proto3);
}
// Test repeated fields.
if (FieldDescriptor::IsTypePackable(type)) {
const FieldDescriptor* packed_field =
GetFieldForType(type, true, is_proto3, Packed::kTrue);
const FieldDescriptor* unpacked_field =
GetFieldForType(type, true, is_proto3, Packed::kFalse);
string default_proto_packed;
string default_proto_unpacked;
string default_proto_packed_expected;
string default_proto_unpacked_expected;
string packed_proto_packed;
string packed_proto_unpacked;
string packed_proto_expected;
string unpacked_proto_packed;
string unpacked_proto_unpacked;
string unpacked_proto_expected;
for (size_t i = 0; i < values.size(); i++) {
default_proto_unpacked +=
absl::StrCat(tag(rep_field->number(), wire_type), values[i].first);
default_proto_unpacked_expected +=
absl::StrCat(tag(rep_field->number(), wire_type), values[i].second);
default_proto_packed += values[i].first;
default_proto_packed_expected += values[i].second;
packed_proto_unpacked += absl::StrCat(
tag(packed_field->number(), wire_type), values[i].first);
packed_proto_packed += values[i].first;
packed_proto_expected += values[i].second;
unpacked_proto_unpacked += absl::StrCat(
tag(unpacked_field->number(), wire_type), values[i].first);
unpacked_proto_packed += values[i].first;
unpacked_proto_expected += absl::StrCat(
tag(unpacked_field->number(), wire_type), values[i].second);
}
default_proto_packed = absl::StrCat(
tag(rep_field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(default_proto_packed));
default_proto_packed_expected = absl::StrCat(
tag(rep_field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(default_proto_packed_expected));
packed_proto_packed =
absl::StrCat(tag(packed_field->number(),
WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(packed_proto_packed));
packed_proto_expected =
absl::StrCat(tag(packed_field->number(),
WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(packed_proto_expected));
unpacked_proto_packed =
absl::StrCat(tag(unpacked_field->number(),
WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(unpacked_proto_packed));
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(default_proto_packed_expected);
string text;
TextFormat::PrintToString(*test_message, &text);
// Ensures both packed and unpacked data can be parsed.
RunValidProtobufTest(
absl::StrCat("ValidDataRepeated", type_name, ".UnpackedInput"),
REQUIRED, default_proto_unpacked, text, is_proto3);
RunValidProtobufTest(
absl::StrCat("ValidDataRepeated", type_name, ".PackedInput"),
REQUIRED, default_proto_packed, text, is_proto3);
// proto2 should encode as unpacked by default and proto3 should encode as
// packed by default.
string expected_proto = rep_field->is_packed()
? default_proto_packed_expected
: default_proto_unpacked_expected;
RunValidBinaryProtobufTest(absl::StrCat("ValidDataRepeated", type_name,
".UnpackedInput.DefaultOutput"),
RECOMMENDED, default_proto_unpacked,
expected_proto, is_proto3);
RunValidBinaryProtobufTest(absl::StrCat("ValidDataRepeated", type_name,
".PackedInput.DefaultOutput"),
RECOMMENDED, default_proto_packed,
expected_proto, is_proto3);
RunValidBinaryProtobufTest(absl::StrCat("ValidDataRepeated", type_name,
".UnpackedInput.PackedOutput"),
RECOMMENDED, packed_proto_unpacked,
packed_proto_expected, is_proto3);
RunValidBinaryProtobufTest(absl::StrCat("ValidDataRepeated", type_name,
".PackedInput.PackedOutput"),
RECOMMENDED, packed_proto_packed,
packed_proto_expected, is_proto3);
RunValidBinaryProtobufTest(absl::StrCat("ValidDataRepeated", type_name,
".UnpackedInput.UnpackedOutput"),
RECOMMENDED, unpacked_proto_unpacked,
unpacked_proto_expected, is_proto3);
RunValidBinaryProtobufTest(absl::StrCat("ValidDataRepeated", type_name,
".PackedInput.UnpackedOutput"),
RECOMMENDED, unpacked_proto_packed,
unpacked_proto_expected, is_proto3);
} else {
string proto;
string expected_proto;
for (size_t i = 0; i < values.size(); i++) {
proto +=
absl::StrCat(tag(rep_field->number(), wire_type), values[i].first);
expected_proto +=
absl::StrCat(tag(rep_field->number(), wire_type), values[i].second);
}
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(expected_proto);
string text;
TextFormat::PrintToString(*test_message, &text);
RunValidProtobufTest(absl::StrCat("ValidDataRepeated", type_name),
REQUIRED, proto, text, is_proto3);
}
}
}
void BinaryAndJsonConformanceSuite::TestValidDataForRepeatedScalarMessage() {
std::vector<std::string> values = {
delim(absl::StrCat(
tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(absl::StrCat(
tag(1, WireFormatLite::WIRETYPE_VARINT), varint(1234),
tag(2, WireFormatLite::WIRETYPE_VARINT), varint(1234),
tag(31, WireFormatLite::WIRETYPE_VARINT), varint(1234))))),
delim(absl::StrCat(
tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(absl::StrCat(
tag(1, WireFormatLite::WIRETYPE_VARINT), varint(4321),
tag(3, WireFormatLite::WIRETYPE_VARINT), varint(4321),
tag(31, WireFormatLite::WIRETYPE_VARINT), varint(4321))))),
};
const std::string expected =
R"({
corecursive: {
optional_int32: 4321,
optional_int64: 1234,
optional_uint32: 4321,
repeated_int32: [1234, 4321],
}
})";
for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
string proto;
const FieldDescriptor* field =
GetFieldForType(FieldDescriptor::TYPE_MESSAGE, false, is_proto3);
for (size_t i = 0; i < values.size(); i++) {
proto += absl::StrCat(
tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
values[i]);
}
RunValidProtobufTest("RepeatedScalarMessageMerge", REQUIRED, proto,
absl::StrCat(field->name(), ": ", expected),
is_proto3);
}
}
void BinaryAndJsonConformanceSuite::TestValidDataForMapType(
FieldDescriptor::Type key_type, FieldDescriptor::Type value_type) {
const string key_type_name =
UpperCase(absl::StrCat(".", FieldDescriptor::TypeName(key_type)));
const string value_type_name =
UpperCase(absl::StrCat(".", FieldDescriptor::TypeName(value_type)));
WireFormatLite::WireType key_wire_type = WireFormatLite::WireTypeForFieldType(
static_cast<WireFormatLite::FieldType>(key_type));
WireFormatLite::WireType value_wire_type =
WireFormatLite::WireTypeForFieldType(
static_cast<WireFormatLite::FieldType>(value_type));
string key1_data =
absl::StrCat(tag(1, key_wire_type), GetDefaultValue(key_type));
string value1_data =
absl::StrCat(tag(2, value_wire_type), GetDefaultValue(value_type));
string key2_data =
absl::StrCat(tag(1, key_wire_type), GetNonDefaultValue(key_type));
string value2_data =
absl::StrCat(tag(2, value_wire_type), GetNonDefaultValue(value_type));
for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
const FieldDescriptor* field =
GetFieldForMapType(key_type, value_type, is_proto3);
{
// Tests map with default key and value.
string proto = absl::StrCat(
tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(absl::StrCat(key1_data, value1_data)));
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(proto);
string text;
TextFormat::PrintToString(*test_message, &text);
RunValidProtobufTest(absl::StrCat("ValidDataMap", key_type_name,
value_type_name, ".Default"),
REQUIRED, proto, text, is_proto3);
}
{
// Tests map with missing default key and value.
string proto = absl::StrCat(
tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(""));
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(proto);
string text;
TextFormat::PrintToString(*test_message, &text);
RunValidProtobufTest(absl::StrCat("ValidDataMap", key_type_name,
value_type_name, ".MissingDefault"),
REQUIRED, proto, text, is_proto3);
}
{
// Tests map with non-default key and value.
string proto = absl::StrCat(
tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(absl::StrCat(key2_data, value2_data)));
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(proto);
string text;
TextFormat::PrintToString(*test_message, &text);
RunValidProtobufTest(absl::StrCat("ValidDataMap", key_type_name,
value_type_name, ".NonDefault"),
REQUIRED, proto, text, is_proto3);
}
{
// Tests map with unordered key and value.
string proto = absl::StrCat(
tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(absl::StrCat(value2_data, key2_data)));
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(proto);
string text;
TextFormat::PrintToString(*test_message, &text);
RunValidProtobufTest(absl::StrCat("ValidDataMap", key_type_name,
value_type_name, ".Unordered"),
REQUIRED, proto, text, is_proto3);
}
{
// Tests map with duplicate key.
string proto1 = absl::StrCat(
tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(absl::StrCat(key2_data, value1_data)));
string proto2 = absl::StrCat(
tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(absl::StrCat(key2_data, value2_data)));
string proto = absl::StrCat(proto1, proto2);
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(proto2);
string text;
TextFormat::PrintToString(*test_message, &text);
RunValidProtobufTest(absl::StrCat("ValidDataMap", key_type_name,
value_type_name, ".DuplicateKey"),
REQUIRED, proto, text, is_proto3);
}
{
// Tests map with duplicate key in map entry.
string proto = absl::StrCat(
tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(absl::StrCat(key1_data, key2_data, value2_data)));
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(proto);
string text;
TextFormat::PrintToString(*test_message, &text);
RunValidProtobufTest(
absl::StrCat("ValidDataMap", key_type_name, value_type_name,
".DuplicateKeyInMapEntry"),
REQUIRED, proto, text, is_proto3);
}
{
// Tests map with duplicate value in map entry.
string proto = absl::StrCat(
tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(absl::StrCat(key2_data, value1_data, value2_data)));
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(proto);
string text;
TextFormat::PrintToString(*test_message, &text);
RunValidProtobufTest(
absl::StrCat("ValidDataMap", key_type_name, value_type_name,
".DuplicateValueInMapEntry"),
REQUIRED, proto, text, is_proto3);
}
}
}
void BinaryAndJsonConformanceSuite::TestOverwriteMessageValueMap() {
string key_data = absl::StrCat(
tag(1, WireFormatLite::WIRETYPE_LENGTH_DELIMITED), delim(""));
string field1_data =
absl::StrCat(tag(1, WireFormatLite::WIRETYPE_VARINT), varint(1));
string field2_data =
absl::StrCat(tag(2, WireFormatLite::WIRETYPE_VARINT), varint(1));
string field31_data =
absl::StrCat(tag(31, WireFormatLite::WIRETYPE_VARINT), varint(1));
string submsg1_data = delim(absl::StrCat(field1_data, field31_data));
string submsg2_data = delim(absl::StrCat(field2_data, field31_data));
string value1_data = absl::StrCat(
tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(absl::StrCat(tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
submsg1_data)));
string value2_data = absl::StrCat(
tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(absl::StrCat(tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
submsg2_data)));
for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
const FieldDescriptor* field = GetFieldForMapType(
FieldDescriptor::TYPE_STRING, FieldDescriptor::TYPE_MESSAGE, is_proto3);
string proto1 = absl::StrCat(
tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(absl::StrCat(key_data, value1_data)));
string proto2 = absl::StrCat(
tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(absl::StrCat(key_data, value2_data)));
string proto = absl::StrCat(proto1, proto2);
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(proto2);
string text;
TextFormat::PrintToString(*test_message, &text);
RunValidProtobufTest("ValidDataMap.STRING.MESSAGE.MergeValue", REQUIRED,
proto, text, is_proto3);
}
}
void BinaryAndJsonConformanceSuite::TestValidDataForOneofType(
FieldDescriptor::Type type) {
const string type_name =
UpperCase(absl::StrCat(".", FieldDescriptor::TypeName(type)));
WireFormatLite::WireType wire_type = WireFormatLite::WireTypeForFieldType(
static_cast<WireFormatLite::FieldType>(type));
for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
const FieldDescriptor* field = GetFieldForOneofType(type, is_proto3);
const string default_value =
absl::StrCat(tag(field->number(), wire_type), GetDefaultValue(type));
const string non_default_value =
absl::StrCat(tag(field->number(), wire_type), GetNonDefaultValue(type));
{
// Tests oneof with default value.
const string proto = default_value;
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(proto);
string text;
TextFormat::PrintToString(*test_message, &text);
RunValidProtobufTest(
absl::StrCat("ValidDataOneof", type_name, ".DefaultValue"), REQUIRED,
proto, text, is_proto3);
RunValidBinaryProtobufTest(
absl::StrCat("ValidDataOneofBinary", type_name, ".DefaultValue"),
RECOMMENDED, proto, proto, is_proto3);
}
{
// Tests oneof with non-default value.
const string proto = non_default_value;
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(proto);
string text;
TextFormat::PrintToString(*test_message, &text);
RunValidProtobufTest(
absl::StrCat("ValidDataOneof", type_name, ".NonDefaultValue"),
REQUIRED, proto, text, is_proto3);
RunValidBinaryProtobufTest(
absl::StrCat("ValidDataOneofBinary", type_name, ".NonDefaultValue"),
RECOMMENDED, proto, proto, is_proto3);
}
{
// Tests oneof with multiple values of the same field.
const string proto = absl::StrCat(default_value, non_default_value);
const string expected_proto = non_default_value;
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(expected_proto);
string text;
TextFormat::PrintToString(*test_message, &text);
RunValidProtobufTest(absl::StrCat("ValidDataOneof", type_name,
".MultipleValuesForSameField"),
REQUIRED, proto, text, is_proto3);
RunValidBinaryProtobufTest(absl::StrCat("ValidDataOneofBinary", type_name,
".MultipleValuesForSameField"),
RECOMMENDED, proto, expected_proto, is_proto3);
}
{
// Tests oneof with multiple values of the different fields.
const FieldDescriptor* other_field =
GetFieldForOneofType(type, is_proto3, true);
FieldDescriptor::Type other_type = other_field->type();
WireFormatLite::WireType other_wire_type =
WireFormatLite::WireTypeForFieldType(
static_cast<WireFormatLite::FieldType>(other_type));
const string other_value =
absl::StrCat(tag(other_field->number(), other_wire_type),
GetDefaultValue(other_type));
const string proto = absl::StrCat(other_value, non_default_value);
const string expected_proto = non_default_value;
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(expected_proto);
string text;
TextFormat::PrintToString(*test_message, &text);
RunValidProtobufTest(absl::StrCat("ValidDataOneof", type_name,
".MultipleValuesForDifferentField"),
REQUIRED, proto, text, is_proto3);
RunValidBinaryProtobufTest(
absl::StrCat("ValidDataOneofBinary", type_name,
".MultipleValuesForDifferentField"),
RECOMMENDED, proto, expected_proto, is_proto3);
}
}
}
void BinaryAndJsonConformanceSuite::TestMergeOneofMessage() {
string field1_data =
absl::StrCat(tag(1, WireFormatLite::WIRETYPE_VARINT), varint(1));
string field2a_data =
absl::StrCat(tag(2, WireFormatLite::WIRETYPE_VARINT), varint(1));
string field2b_data =
absl::StrCat(tag(2, WireFormatLite::WIRETYPE_VARINT), varint(1));
string field89_data =
absl::StrCat(tag(89, WireFormatLite::WIRETYPE_VARINT), varint(1));
string submsg1_data = absl::StrCat(
tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(absl::StrCat(field1_data, field2a_data, field89_data)));
string submsg2_data =
absl::StrCat(tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(absl::StrCat(field2b_data, field89_data)));
string merged_data =
absl::StrCat(tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(absl::StrCat(field1_data, field2b_data, field89_data,
field89_data)));
for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
const FieldDescriptor* field =
GetFieldForOneofType(FieldDescriptor::TYPE_MESSAGE, is_proto3);
string proto1 = absl::StrCat(
tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(submsg1_data));
string proto2 = absl::StrCat(
tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(submsg2_data));
string proto = absl::StrCat(proto1, proto2);
string expected_proto = absl::StrCat(
tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(merged_data));
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(expected_proto);
string text;
TextFormat::PrintToString(*test_message, &text);
RunValidProtobufTest("ValidDataOneof.MESSAGE.Merge", REQUIRED, proto, text,
is_proto3);
RunValidBinaryProtobufTest("ValidDataOneofBinary.MESSAGE.Merge",
RECOMMENDED, proto, expected_proto, is_proto3);
}
}
void BinaryAndJsonConformanceSuite::TestIllegalTags() {
// field num 0 is illegal
string nullfield[] = {"\1DEADBEEF", "\2\1\1", "\3\4", "\5DEAD"};
for (int i = 0; i < 4; i++) {
string name = "IllegalZeroFieldNum_Case_0";
name.back() += i;
ExpectParseFailureForProto(nullfield[i], name, REQUIRED);
}
}
template <class MessageType>
void BinaryAndJsonConformanceSuite::TestOneofMessage(MessageType& message,
bool is_proto3) {
message.set_oneof_uint32(0);
RunValidProtobufTestWithMessage("OneofZeroUint32", RECOMMENDED, &message,
"oneof_uint32: 0", is_proto3);
message.mutable_oneof_nested_message()->set_a(0);
RunValidProtobufTestWithMessage(
"OneofZeroMessage", RECOMMENDED, &message,
is_proto3 ? "oneof_nested_message: {}" : "oneof_nested_message: {a: 0}",
is_proto3);
message.mutable_oneof_nested_message()->set_a(1);
RunValidProtobufTestWithMessage("OneofZeroMessageSetTwice", RECOMMENDED,
&message, "oneof_nested_message: {a: 1}",
is_proto3);
message.set_oneof_string("");
RunValidProtobufTestWithMessage("OneofZeroString", RECOMMENDED, &message,
"oneof_string: \"\"", is_proto3);
message.set_oneof_bytes("");
RunValidProtobufTestWithMessage("OneofZeroBytes", RECOMMENDED, &message,
"oneof_bytes: \"\"", is_proto3);
message.set_oneof_bool(false);
RunValidProtobufTestWithMessage("OneofZeroBool", RECOMMENDED, &message,
"oneof_bool: false", is_proto3);
message.set_oneof_uint64(0);
RunValidProtobufTestWithMessage("OneofZeroUint64", RECOMMENDED, &message,
"oneof_uint64: 0", is_proto3);
message.set_oneof_float(0.0f);
RunValidProtobufTestWithMessage("OneofZeroFloat", RECOMMENDED, &message,
"oneof_float: 0", is_proto3);
message.set_oneof_double(0.0);
RunValidProtobufTestWithMessage("OneofZeroDouble", RECOMMENDED, &message,
"oneof_double: 0", is_proto3);
message.set_oneof_enum(MessageType::FOO);
RunValidProtobufTestWithMessage("OneofZeroEnum", RECOMMENDED, &message,
"oneof_enum: FOO", is_proto3);
}
template <class MessageType>
void BinaryAndJsonConformanceSuite::TestUnknownMessage(MessageType& message,
bool is_proto3) {
message.ParseFromString("\xA8\x1F\x01");
RunValidBinaryProtobufTest("UnknownVarint", REQUIRED,
message.SerializeAsString(), is_proto3);
}
void BinaryAndJsonConformanceSuite::
TestBinaryPerformanceForAlternatingUnknownFields() {
string unknown_field_1 = absl::StrCat(
tag(UNKNOWN_FIELD, WireFormatLite::WIRETYPE_VARINT), varint(1234));
string unknown_field_2 = absl::StrCat(
tag(UNKNOWN_FIELD + 1, WireFormatLite::WIRETYPE_VARINT), varint(5678));
for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
string proto;
for (size_t i = 0; i < kPerformanceRepeatCount; i++) {
proto.append(unknown_field_1);
proto.append(unknown_field_2);
}
RunValidBinaryProtobufTest(
"TestBinaryPerformanceForAlternatingUnknownFields", RECOMMENDED, proto,
is_proto3);
}
}
void BinaryAndJsonConformanceSuite::
TestBinaryPerformanceMergeMessageWithRepeatedFieldForType(
FieldDescriptor::Type type) {
const string type_name =
UpperCase(absl::StrCat(".", FieldDescriptor::TypeName(type)));
for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
int field_number =
GetFieldForType(type, true, is_proto3, Packed::kFalse)->number();
string rep_field_proto = absl::StrCat(
tag(field_number, WireFormatLite::WireTypeForFieldType(
static_cast<WireFormatLite::FieldType>(type))),
GetNonDefaultValue(type));
RunBinaryPerformanceMergeMessageWithField(
absl::StrCat(
"TestBinaryPerformanceMergeMessageWithRepeatedFieldForType",
type_name),
rep_field_proto, is_proto3);
}
}
void BinaryAndJsonConformanceSuite::
TestBinaryPerformanceMergeMessageWithUnknownFieldForType(
FieldDescriptor::Type type) {
const string type_name =
UpperCase(absl::StrCat(".", FieldDescriptor::TypeName(type)));
string unknown_field_proto = absl::StrCat(
tag(UNKNOWN_FIELD, WireFormatLite::WireTypeForFieldType(
static_cast<WireFormatLite::FieldType>(type))),
GetNonDefaultValue(type));
for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
RunBinaryPerformanceMergeMessageWithField(
absl::StrCat("TestBinaryPerformanceMergeMessageWithUnknownFieldForType",
type_name),
unknown_field_proto, is_proto3);
}
}
void BinaryAndJsonConformanceSuite::RunSuiteImpl() {
// Hack to get the list of test failures based on whether
// GOOGLE_PROTOBUF_ENABLE_EXPERIMENTAL_PARSER is enabled or not.
conformance::FailureSet failure_set;
ConformanceRequest req;
ConformanceResponse res;
req.set_message_type(failure_set.GetTypeName());
req.set_protobuf_payload("");
req.set_requested_output_format(conformance::WireFormat::PROTOBUF);
RunTest("FindFailures", req, &res);
ABSL_CHECK(failure_set.MergeFromString(res.protobuf_payload()));
for (const string& failure : failure_set.failure()) {
AddExpectedFailedTest(failure);
}
type_resolver_.reset(NewTypeResolverForDescriptorPool(
kTypeUrlPrefix, DescriptorPool::generated_pool()));
type_url_ = GetTypeUrl(TestAllTypesProto3::descriptor());
if (!performance_) {
for (int i = 1; i <= FieldDescriptor::MAX_TYPE; i++) {
if (i == FieldDescriptor::TYPE_GROUP) continue;
TestPrematureEOFForType(static_cast<FieldDescriptor::Type>(i));
}
TestIllegalTags();
int64_t kInt64Min = -9223372036854775808ULL;
int64_t kInt64Max = 9223372036854775807ULL;
uint64_t kUint64Max = 18446744073709551615ULL;
int32_t kInt32Max = 2147483647;
int32_t kInt32Min = -2147483648;
uint32_t kUint32Max = 4294967295UL;
TestValidDataForType(
FieldDescriptor::TYPE_DOUBLE,
{
{dbl(0), dbl(0)},
{dbl(0.1), dbl(0.1)},
{dbl(1.7976931348623157e+308), dbl(1.7976931348623157e+308)},
{dbl(2.22507385850720138309e-308),
dbl(2.22507385850720138309e-308)},
});
TestValidDataForType(
FieldDescriptor::TYPE_FLOAT,
{
{flt(0), flt(0)},
{flt(0.1), flt(0.1)},
{flt(1.00000075e-36), flt(1.00000075e-36)},
{flt(3.402823e+38), flt(3.402823e+38)}, // 3.40282347e+38
{flt(1.17549435e-38f), flt(1.17549435e-38)},
});
TestValidDataForType(FieldDescriptor::TYPE_INT64,
{
{varint(0), varint(0)},
{varint(12345), varint(12345)},
{varint(kInt64Max), varint(kInt64Max)},
{varint(kInt64Min), varint(kInt64Min)},
});
TestValidDataForType(FieldDescriptor::TYPE_UINT64,
{
{varint(0), varint(0)},
{varint(12345), varint(12345)},
{varint(kUint64Max), varint(kUint64Max)},
});
TestValidDataForType(FieldDescriptor::TYPE_INT32,
{
{varint(0), varint(0)},
{varint(12345), varint(12345)},
{longvarint(12345, 2), varint(12345)},
{longvarint(12345, 7), varint(12345)},
{varint(kInt32Max), varint(kInt32Max)},
{varint(kInt32Min), varint(kInt32Min)},
{varint(1LL << 33), varint(0)},
{varint((1LL << 33) - 1), varint(-1)},
{varint(kInt64Max), varint(-1)},
{varint(kInt64Min + 1), varint(1)},
});
TestValidDataForType(
FieldDescriptor::TYPE_UINT32,
{
{varint(0), varint(0)},
{varint(12345), varint(12345)},
{longvarint(12345, 2), varint(12345)},
{longvarint(12345, 7), varint(12345)},
{varint(kUint32Max), varint(kUint32Max)}, // UINT32_MAX
{varint(1LL << 33), varint(0)},
{varint((1LL << 33) + 1), varint(1)},
{varint((1LL << 33) - 1), varint((1LL << 32) - 1)},
{varint(kInt64Max), varint((1LL << 32) - 1)},
{varint(kInt64Min + 1), varint(1)},
});
TestValidDataForType(FieldDescriptor::TYPE_FIXED64,
{
{u64(0), u64(0)},
{u64(12345), u64(12345)},
{u64(kUint64Max), u64(kUint64Max)},
});
TestValidDataForType(FieldDescriptor::TYPE_FIXED32,
{
{u32(0), u32(0)},
{u32(12345), u32(12345)},
{u32(kUint32Max), u32(kUint32Max)}, // UINT32_MAX
});
TestValidDataForType(FieldDescriptor::TYPE_SFIXED64,
{
{u64(0), u64(0)},
{u64(12345), u64(12345)},
{u64(kInt64Max), u64(kInt64Max)},
{u64(kInt64Min), u64(kInt64Min)},
});
TestValidDataForType(FieldDescriptor::TYPE_SFIXED32,
{
{u32(0), u32(0)},
{u32(12345), u32(12345)},
{u32(kInt32Max), u32(kInt32Max)},
{u32(kInt32Min), u32(kInt32Min)},
});
// Bools should be serialized as 0 for false and 1 for true. Parsers should
// also interpret any nonzero value as true.
TestValidDataForType(FieldDescriptor::TYPE_BOOL,
{
{varint(0), varint(0)},
{varint(1), varint(1)},
{varint(-1), varint(1)},
{varint(12345678), varint(1)},
{varint(1LL << 33), varint(1)},
{varint(kInt64Max), varint(1)},
{varint(kInt64Min), varint(1)},
});
TestValidDataForType(FieldDescriptor::TYPE_SINT32,
{
{zz32(0), zz32(0)},
{zz32(12345), zz32(12345)},
{zz32(kInt32Max), zz32(kInt32Max)},
{zz32(kInt32Min), zz32(kInt32Min)},
{zz64(kInt32Max + 2LL), zz32(1)},
});
TestValidDataForType(FieldDescriptor::TYPE_SINT64,
{
{zz64(0), zz64(0)},
{zz64(12345), zz64(12345)},
{zz64(kInt64Max), zz64(kInt64Max)},
{zz64(kInt64Min), zz64(kInt64Min)},
});
TestValidDataForType(
FieldDescriptor::TYPE_STRING,
{
{delim(""), delim("")},
{delim("Hello world!"), delim("Hello world!")},
{delim("\'\"\?\\\a\b\f\n\r\t\v"),
delim("\'\"\?\\\a\b\f\n\r\t\v")}, // escape
{delim("谷歌"), delim("谷歌")}, // Google in Chinese
{delim("\u8C37\u6B4C"), delim("谷歌")}, // unicode escape
{delim("\u8c37\u6b4c"), delim("谷歌")}, // lowercase unicode
{delim("\xF0\x9F\x98\x81"),
delim("\xF0\x9F\x98\x81")}, // emoji: 😁
});
TestValidDataForType(FieldDescriptor::TYPE_BYTES,
{
{delim(""), delim("")},
{delim("Hello world!"), delim("Hello world!")},
{delim("\x01\x02"), delim("\x01\x02")},
{delim("\xfb"), delim("\xfb")},
});
TestValidDataForType(FieldDescriptor::TYPE_ENUM,
{
{varint(0), varint(0)},
{varint(1), varint(1)},
{varint(2), varint(2)},
{varint(-1), varint(-1)},
{varint(kInt64Max), varint(-1)},
{varint(kInt64Min + 1), varint(1)},
});
TestValidDataForRepeatedScalarMessage();
TestValidDataForType(
FieldDescriptor::TYPE_MESSAGE,
{
{delim(""), delim("")},
{delim(absl::StrCat(tag(1, WireFormatLite::WIRETYPE_VARINT),
varint(1234))),
delim(absl::StrCat(tag(1, WireFormatLite::WIRETYPE_VARINT),
varint(1234)))},
});
TestValidDataForMapType(FieldDescriptor::TYPE_INT32,
FieldDescriptor::TYPE_INT32);
TestValidDataForMapType(FieldDescriptor::TYPE_INT64,
FieldDescriptor::TYPE_INT64);
TestValidDataForMapType(FieldDescriptor::TYPE_UINT32,
FieldDescriptor::TYPE_UINT32);
TestValidDataForMapType(FieldDescriptor::TYPE_UINT64,
FieldDescriptor::TYPE_UINT64);
TestValidDataForMapType(FieldDescriptor::TYPE_SINT32,
FieldDescriptor::TYPE_SINT32);
TestValidDataForMapType(FieldDescriptor::TYPE_SINT64,
FieldDescriptor::TYPE_SINT64);
TestValidDataForMapType(FieldDescriptor::TYPE_FIXED32,
FieldDescriptor::TYPE_FIXED32);
TestValidDataForMapType(FieldDescriptor::TYPE_FIXED64,
FieldDescriptor::TYPE_FIXED64);
TestValidDataForMapType(FieldDescriptor::TYPE_SFIXED32,
FieldDescriptor::TYPE_SFIXED32);
TestValidDataForMapType(FieldDescriptor::TYPE_SFIXED64,
FieldDescriptor::TYPE_SFIXED64);
TestValidDataForMapType(FieldDescriptor::TYPE_INT32,
FieldDescriptor::TYPE_FLOAT);
TestValidDataForMapType(FieldDescriptor::TYPE_INT32,
FieldDescriptor::TYPE_DOUBLE);
TestValidDataForMapType(FieldDescriptor::TYPE_BOOL,
FieldDescriptor::TYPE_BOOL);
TestValidDataForMapType(FieldDescriptor::TYPE_STRING,
FieldDescriptor::TYPE_STRING);
TestValidDataForMapType(FieldDescriptor::TYPE_STRING,
FieldDescriptor::TYPE_BYTES);
TestValidDataForMapType(FieldDescriptor::TYPE_STRING,
FieldDescriptor::TYPE_ENUM);
TestValidDataForMapType(FieldDescriptor::TYPE_STRING,
FieldDescriptor::TYPE_MESSAGE);
// Additional test to check overwriting message value map.
TestOverwriteMessageValueMap();
TestValidDataForOneofType(FieldDescriptor::TYPE_UINT32);
TestValidDataForOneofType(FieldDescriptor::TYPE_BOOL);
TestValidDataForOneofType(FieldDescriptor::TYPE_UINT64);
TestValidDataForOneofType(FieldDescriptor::TYPE_FLOAT);
TestValidDataForOneofType(FieldDescriptor::TYPE_DOUBLE);
TestValidDataForOneofType(FieldDescriptor::TYPE_STRING);
TestValidDataForOneofType(FieldDescriptor::TYPE_BYTES);
TestValidDataForOneofType(FieldDescriptor::TYPE_ENUM);
TestValidDataForOneofType(FieldDescriptor::TYPE_MESSAGE);
// Additional test to check merging oneof message.
TestMergeOneofMessage();
// TODO(haberman):
// TestValidDataForType(FieldDescriptor::TYPE_GROUP
// Unknown fields.
{
TestAllTypesProto3 messageProto3;
TestAllTypesProto2 messageProto2;
// TODO(yilunchong): update this behavior when unknown field's behavior
// changed in open source. Also delete
// Required.Proto3.ProtobufInput.UnknownVarint.ProtobufOutput
// from failure list of python_cpp python java
TestUnknownMessage(messageProto3, true);
TestUnknownMessage(messageProto2, false);
}
RunJsonTests();
}
// Flag control performance tests to keep them internal and opt-in only
if (performance_) {
RunBinaryPerformanceTests();
RunJsonPerformanceTests();
}
}
void BinaryAndJsonConformanceSuite::RunBinaryPerformanceTests() {
TestBinaryPerformanceForAlternatingUnknownFields();
TestBinaryPerformanceMergeMessageWithRepeatedFieldForType(
FieldDescriptor::TYPE_BOOL);
TestBinaryPerformanceMergeMessageWithRepeatedFieldForType(
FieldDescriptor::TYPE_DOUBLE);
TestBinaryPerformanceMergeMessageWithRepeatedFieldForType(
FieldDescriptor::TYPE_FLOAT);
TestBinaryPerformanceMergeMessageWithRepeatedFieldForType(
FieldDescriptor::TYPE_UINT32);
TestBinaryPerformanceMergeMessageWithRepeatedFieldForType(
FieldDescriptor::TYPE_UINT64);
TestBinaryPerformanceMergeMessageWithRepeatedFieldForType(
FieldDescriptor::TYPE_STRING);
TestBinaryPerformanceMergeMessageWithRepeatedFieldForType(
FieldDescriptor::TYPE_BYTES);
TestBinaryPerformanceMergeMessageWithUnknownFieldForType(
FieldDescriptor::TYPE_BOOL);
TestBinaryPerformanceMergeMessageWithUnknownFieldForType(
FieldDescriptor::TYPE_DOUBLE);
TestBinaryPerformanceMergeMessageWithUnknownFieldForType(
FieldDescriptor::TYPE_FLOAT);
TestBinaryPerformanceMergeMessageWithUnknownFieldForType(
FieldDescriptor::TYPE_UINT32);
TestBinaryPerformanceMergeMessageWithUnknownFieldForType(
FieldDescriptor::TYPE_UINT64);
TestBinaryPerformanceMergeMessageWithUnknownFieldForType(
FieldDescriptor::TYPE_STRING);
TestBinaryPerformanceMergeMessageWithUnknownFieldForType(
FieldDescriptor::TYPE_BYTES);
}
void BinaryAndJsonConformanceSuite::RunJsonPerformanceTests() {
TestJsonPerformanceMergeMessageWithRepeatedFieldForType(
FieldDescriptor::TYPE_BOOL, "true");
TestJsonPerformanceMergeMessageWithRepeatedFieldForType(
FieldDescriptor::TYPE_DOUBLE, "123");
TestJsonPerformanceMergeMessageWithRepeatedFieldForType(
FieldDescriptor::TYPE_FLOAT, "123");
TestJsonPerformanceMergeMessageWithRepeatedFieldForType(
FieldDescriptor::TYPE_UINT32, "123");
TestJsonPerformanceMergeMessageWithRepeatedFieldForType(
FieldDescriptor::TYPE_UINT64, "123");
TestJsonPerformanceMergeMessageWithRepeatedFieldForType(
FieldDescriptor::TYPE_STRING, "\"foo\"");
TestJsonPerformanceMergeMessageWithRepeatedFieldForType(
FieldDescriptor::TYPE_BYTES, "\"foo\"");
}
// This is currently considered valid input by some languages but not others
void BinaryAndJsonConformanceSuite::
TestJsonPerformanceMergeMessageWithRepeatedFieldForType(
FieldDescriptor::Type type, string field_value) {
const string type_name =
UpperCase(absl::StrCat(".", FieldDescriptor::TypeName(type)));
for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
const FieldDescriptor* field =
GetFieldForType(type, true, is_proto3, Packed::kFalse);
string field_name = field->name();
string message_field =
absl::StrCat("\"", field_name, "\": [", field_value, "]");
string recursive_message =
absl::StrCat("\"recursive_message\": { ", message_field, "}");
string input = absl::StrCat("{", recursive_message);
for (size_t i = 1; i < kPerformanceRepeatCount; i++) {
absl::StrAppend(&input, ",", recursive_message);
}
absl::StrAppend(&input, "}");
string textproto_message_field =
absl::StrCat(field_name, ": ", field_value);
string expected_textproto = "recursive_message { ";
for (size_t i = 0; i < kPerformanceRepeatCount; i++) {
absl::StrAppend(&expected_textproto, textproto_message_field, " ");
}
absl::StrAppend(&expected_textproto, "}");
RunValidJsonTest(
absl::StrCat("TestJsonPerformanceMergeMessageWithRepeatedFieldForType",
type_name),
RECOMMENDED, input, expected_textproto, is_proto3);
}
}
void BinaryAndJsonConformanceSuite::RunJsonTests() {
RunValidJsonTest("HelloWorld", REQUIRED,
"{\"optionalString\":\"Hello, World!\"}",
"optional_string: 'Hello, World!'");
// NOTE: The spec for JSON support is still being sorted out, these may not
// all be correct.
RunJsonTestsForFieldNameConvention();
RunJsonTestsForNonRepeatedTypes();
RunJsonTestsForRepeatedTypes();
RunJsonTestsForNullTypes();
RunJsonTestsForWrapperTypes();
RunJsonTestsForFieldMask();
RunJsonTestsForStruct();
RunJsonTestsForValue();
RunJsonTestsForAny();
RunJsonTestsForUnknownEnumStringValues();
RunValidJsonIgnoreUnknownTest("IgnoreUnknownJsonNumber", REQUIRED,
R"({
"unknown": 1
})",
"");
RunValidJsonIgnoreUnknownTest("IgnoreUnknownJsonString", REQUIRED,
R"({
"unknown": "a"
})",
"");
RunValidJsonIgnoreUnknownTest("IgnoreUnknownJsonTrue", REQUIRED,
R"({
"unknown": true
})",
"");
RunValidJsonIgnoreUnknownTest("IgnoreUnknownJsonFalse", REQUIRED,
R"({
"unknown": false
})",
"");
RunValidJsonIgnoreUnknownTest("IgnoreUnknownJsonNull", REQUIRED,
R"({
"unknown": null
})",
"");
RunValidJsonIgnoreUnknownTest("IgnoreUnknownJsonObject", REQUIRED,
R"({
"unknown": {"a": 1}
})",
"");
ExpectParseFailureForJson("RejectTopLevelNull", REQUIRED, "null");
}
void BinaryAndJsonConformanceSuite::RunJsonTestsForUnknownEnumStringValues() {
// Tests the handling of unknown enum values when encoded as string labels.
// The expected behavior depends on whether unknown fields are ignored:
// * when ignored, the parser should ignore the unknown enum string value.
// * when not ignored, the parser should fail.
struct TestCase {
// Used in the test name.
string enum_location;
// JSON input which will contain the unknown field.
string input_json;
};
const std::vector<TestCase> test_cases = {
{"InOptionalField", R"json({
"optional_nested_enum": "UNKNOWN_ENUM_VALUE"
})json"},
{"InRepeatedField", R"json({
"repeated_nested_enum": ["UNKNOWN_ENUM_VALUE"]
})json"},
{"InMapValue", R"json({
"map_string_nested_enum": {"key": "UNKNOWN_ENUM_VALUE"}
})json"},
};
for (const TestCase& test_case : test_cases) {
// Unknown enum string value is a parse failure when not ignoring unknown
// fields.
ExpectParseFailureForJson(
absl::StrCat("RejectUnknownEnumStringValue", test_case.enum_location),
RECOMMENDED, test_case.input_json);
// Unknown enum string value is ignored when ignoring unknown fields.
RunValidJsonIgnoreUnknownTest(
absl::StrCat("IgnoreUnknownEnumStringValue", test_case.enum_location),
RECOMMENDED, test_case.input_json, "");
}
}
void BinaryAndJsonConformanceSuite::RunJsonTestsForFieldNameConvention() {
RunValidJsonTest("FieldNameInSnakeCase", REQUIRED,
R"({
"fieldname1": 1,
"fieldName2": 2,
"FieldName3": 3,
"fieldName4": 4
})",
R"(
fieldname1: 1
field_name2: 2
_field_name3: 3
field__name4_: 4
)");
RunValidJsonTest("FieldNameWithNumbers", REQUIRED,
R"({
"field0name5": 5,
"field0Name6": 6
})",
R"(
field0name5: 5
field_0_name6: 6
)");
RunValidJsonTest("FieldNameWithMixedCases", REQUIRED,
R"({
"fieldName7": 7,
"FieldName8": 8,
"fieldName9": 9,
"FieldName10": 10,
"FIELDNAME11": 11,
"FIELDName12": 12
})",
R"(
fieldName7: 7
FieldName8: 8
field_Name9: 9
Field_Name10: 10
FIELD_NAME11: 11
FIELD_name12: 12
)");
RunValidJsonTest("FieldNameWithDoubleUnderscores", RECOMMENDED,
R"({
"FieldName13": 13,
"FieldName14": 14,
"fieldName15": 15,
"fieldName16": 16,
"fieldName17": 17,
"FieldName18": 18
})",
R"(
__field_name13: 13
__Field_name14: 14
field__name15: 15
field__Name16: 16
field_name17__: 17
Field_name18__: 18
)");
// Using the original proto field name in JSON is also allowed.
RunValidJsonTest("OriginalProtoFieldName", REQUIRED,
R"({
"fieldname1": 1,
"field_name2": 2,
"_field_name3": 3,
"field__name4_": 4,
"field0name5": 5,
"field_0_name6": 6,
"fieldName7": 7,
"FieldName8": 8,
"field_Name9": 9,
"Field_Name10": 10,
"FIELD_NAME11": 11,
"FIELD_name12": 12,
"__field_name13": 13,
"__Field_name14": 14,
"field__name15": 15,
"field__Name16": 16,
"field_name17__": 17,
"Field_name18__": 18
})",
R"(
fieldname1: 1
field_name2: 2
_field_name3: 3
field__name4_: 4
field0name5: 5
field_0_name6: 6
fieldName7: 7
FieldName8: 8
field_Name9: 9
Field_Name10: 10
FIELD_NAME11: 11
FIELD_name12: 12
__field_name13: 13
__Field_name14: 14
field__name15: 15
field__Name16: 16
field_name17__: 17
Field_name18__: 18
)");
// Field names can be escaped.
RunValidJsonTest("FieldNameEscaped", REQUIRED, R"({"fieldn\u0061me1": 1})",
"fieldname1: 1");
// String ends with escape character.
ExpectParseFailureForJson("StringEndsWithEscapeChar", RECOMMENDED,
"{\"optionalString\": \"abc\\");
// Field names must be quoted (or it's not valid JSON).
ExpectParseFailureForJson("FieldNameNotQuoted", RECOMMENDED,
"{fieldname1: 1}");
// Trailing comma is not allowed (not valid JSON).
ExpectParseFailureForJson("TrailingCommaInAnObject", RECOMMENDED,
R"({"fieldname1":1,})");
ExpectParseFailureForJson("TrailingCommaInAnObjectWithSpace", RECOMMENDED,
R"({"fieldname1":1 ,})");
ExpectParseFailureForJson("TrailingCommaInAnObjectWithSpaceCommaSpace",
RECOMMENDED, R"({"fieldname1":1 , })");
ExpectParseFailureForJson("TrailingCommaInAnObjectWithNewlines", RECOMMENDED,
R"({
"fieldname1":1,
})");
// JSON doesn't support comments.
ExpectParseFailureForJson("JsonWithComments", RECOMMENDED,
R"({
// This is a comment.
"fieldname1": 1
})");
// JSON spec says whitespace doesn't matter, so try a few spacings to be sure.
RunValidJsonTest("OneLineNoSpaces", RECOMMENDED,
"{\"optionalInt32\":1,\"optionalInt64\":2}",
R"(
optional_int32: 1
optional_int64: 2
)");
RunValidJsonTest("OneLineWithSpaces", RECOMMENDED,
"{ \"optionalInt32\" : 1 , \"optionalInt64\" : 2 }",
R"(
optional_int32: 1
optional_int64: 2
)");
RunValidJsonTest("MultilineNoSpaces", RECOMMENDED,
"{\n\"optionalInt32\"\n:\n1\n,\n\"optionalInt64\"\n:\n2\n}",
R"(
optional_int32: 1
optional_int64: 2
)");
RunValidJsonTest(
"MultilineWithSpaces", RECOMMENDED,
"{\n \"optionalInt32\" : 1\n ,\n \"optionalInt64\" : 2\n}\n",
R"(
optional_int32: 1
optional_int64: 2
)");
// Missing comma between key/value pairs.
ExpectParseFailureForJson("MissingCommaOneLine", RECOMMENDED,
"{ \"optionalInt32\": 1 \"optionalInt64\": 2 }");
ExpectParseFailureForJson(
"MissingCommaMultiline", RECOMMENDED,
"{\n \"optionalInt32\": 1\n \"optionalInt64\": 2\n}");
// Duplicated field names are not allowed.
ExpectParseFailureForJson("FieldNameDuplicate", RECOMMENDED,
R"({
"optionalNestedMessage": {a: 1},
"optionalNestedMessage": {}
})");
ExpectParseFailureForJson("FieldNameDuplicateDifferentCasing1", RECOMMENDED,
R"({
"optional_nested_message": {a: 1},
"optionalNestedMessage": {}
})");
ExpectParseFailureForJson("FieldNameDuplicateDifferentCasing2", RECOMMENDED,
R"({
"optionalNestedMessage": {a: 1},
"optional_nested_message": {}
})");
// Serializers should use lowerCamelCase by default.
RunValidJsonTestWithValidator(
"FieldNameInLowerCamelCase", REQUIRED,
R"({
"fieldname1": 1,
"fieldName2": 2,
"FieldName3": 3,
"fieldName4": 4
})",
[](const Json::Value& value) {
return value.isMember("fieldname1") && value.isMember("fieldName2") &&
value.isMember("FieldName3") && value.isMember("fieldName4");
},
true);
RunValidJsonTestWithValidator(
"FieldNameWithNumbers", REQUIRED,
R"({
"field0name5": 5,
"field0Name6": 6
})",
[](const Json::Value& value) {
return value.isMember("field0name5") && value.isMember("field0Name6");
},
true);
RunValidJsonTestWithValidator(
"FieldNameWithMixedCases", REQUIRED,
R"({
"fieldName7": 7,
"FieldName8": 8,
"fieldName9": 9,
"FieldName10": 10,
"FIELDNAME11": 11,
"FIELDName12": 12
})",
[](const Json::Value& value) {
return value.isMember("fieldName7") && value.isMember("FieldName8") &&
value.isMember("fieldName9") && value.isMember("FieldName10") &&
value.isMember("FIELDNAME11") && value.isMember("FIELDName12");
},
true);
RunValidJsonTestWithValidator(
"FieldNameWithDoubleUnderscores", RECOMMENDED,
R"({
"FieldName13": 13,
"FieldName14": 14,
"fieldName15": 15,
"fieldName16": 16,
"fieldName17": 17,
"FieldName18": 18
})",
[](const Json::Value& value) {
return value.isMember("FieldName13") && value.isMember("FieldName14") &&
value.isMember("fieldName15") && value.isMember("fieldName16") &&
value.isMember("fieldName17") && value.isMember("FieldName18");
},
true);
RunValidJsonTestWithValidator(
"StoresDefaultPrimitive", REQUIRED,
R"({
"FieldName13": 0
})",
[](const Json::Value& value) { return value.isMember("FieldName13"); },
false);
RunValidJsonTestWithValidator(
"SkipsDefaultPrimitive", REQUIRED,
R"({
"FieldName13": 0
})",
[](const Json::Value& value) { return !value.isMember("FieldName13"); },
true);
RunValidJsonTestWithValidator(
"FieldNameExtension", RECOMMENDED,
R"({
"[protobuf_test_messages.proto2.extension_int32]": 1
})",
[](const Json::Value& value) {
return value.isMember(
"[protobuf_test_messages.proto2.extension_int32]");
},
false);
}
void BinaryAndJsonConformanceSuite::RunJsonTestsForNonRepeatedTypes() {
// Integer fields.
RunValidJsonTest("Int32FieldMaxValue", REQUIRED,
R"({"optionalInt32": 2147483647})",
"optional_int32: 2147483647");
RunValidJsonTest("Int32FieldMinValue", REQUIRED,
R"({"optionalInt32": -2147483648})",
"optional_int32: -2147483648");
RunValidJsonTest("Uint32FieldMaxValue", REQUIRED,
R"({"optionalUint32": 4294967295})",
"optional_uint32: 4294967295");
RunValidJsonTest("Int64FieldMaxValue", REQUIRED,
R"({"optionalInt64": "9223372036854775807"})",
"optional_int64: 9223372036854775807");
RunValidJsonTest("Int64FieldMinValue", REQUIRED,
R"({"optionalInt64": "-9223372036854775808"})",
"optional_int64: -9223372036854775808");
RunValidJsonTest("Uint64FieldMaxValue", REQUIRED,
R"({"optionalUint64": "18446744073709551615"})",
"optional_uint64: 18446744073709551615");
// While not the largest Int64, this is the largest
// Int64 which can be exactly represented within an
// IEEE-754 64-bit float, which is the expected level
// of interoperability guarantee. Larger values may
// work in some implementations, but should not be
// relied upon.
RunValidJsonTest("Int64FieldMaxValueNotQuoted", REQUIRED,
R"({"optionalInt64": 9223372036854774784})",
"optional_int64: 9223372036854774784");
RunValidJsonTest("Int64FieldMinValueNotQuoted", REQUIRED,
R"({"optionalInt64": -9223372036854775808})",
"optional_int64: -9223372036854775808");
// Largest interoperable Uint64; see comment above
// for Int64FieldMaxValueNotQuoted.
RunValidJsonTest("Uint64FieldMaxValueNotQuoted", REQUIRED,
R"({"optionalUint64": 18446744073709549568})",
"optional_uint64: 18446744073709549568");
// Values can be represented as JSON strings.
RunValidJsonTest("Int32FieldStringValue", REQUIRED,
R"({"optionalInt32": "2147483647"})",
"optional_int32: 2147483647");
RunValidJsonTest("Int32FieldStringValueEscaped", REQUIRED,
R"({"optionalInt32": "2\u003147483647"})",
"optional_int32: 2147483647");
// Parsers reject out-of-bound integer values.
ExpectParseFailureForJson("Int32FieldTooLarge", REQUIRED,
R"({"optionalInt32": 2147483648})");
ExpectParseFailureForJson("Int32FieldTooSmall", REQUIRED,
R"({"optionalInt32": -2147483649})");
ExpectParseFailureForJson("Uint32FieldTooLarge", REQUIRED,
R"({"optionalUint32": 4294967296})");
ExpectParseFailureForJson("Int64FieldTooLarge", REQUIRED,
R"({"optionalInt64": "9223372036854775808"})");
ExpectParseFailureForJson("Int64FieldTooSmall", REQUIRED,
R"({"optionalInt64": "-9223372036854775809"})");
ExpectParseFailureForJson("Uint64FieldTooLarge", REQUIRED,
R"({"optionalUint64": "18446744073709551616"})");
// Parser reject non-integer numeric values as well.
ExpectParseFailureForJson("Int32FieldNotInteger", REQUIRED,
R"({"optionalInt32": 0.5})");
ExpectParseFailureForJson("Uint32FieldNotInteger", REQUIRED,
R"({"optionalUint32": 0.5})");
ExpectParseFailureForJson("Int64FieldNotInteger", REQUIRED,
R"({"optionalInt64": "0.5"})");
ExpectParseFailureForJson("Uint64FieldNotInteger", REQUIRED,
R"({"optionalUint64": "0.5"})");
// Integers but represented as float values are accepted.
RunValidJsonTest("Int32FieldFloatTrailingZero", REQUIRED,
R"({"optionalInt32": 100000.000})",
"optional_int32: 100000");
RunValidJsonTest("Int32FieldExponentialFormat", REQUIRED,
R"({"optionalInt32": 1e5})", "optional_int32: 100000");
RunValidJsonTest("Int32FieldMaxFloatValue", REQUIRED,
R"({"optionalInt32": 2.147483647e9})",
"optional_int32: 2147483647");
RunValidJsonTest("Int32FieldMinFloatValue", REQUIRED,
R"({"optionalInt32": -2.147483648e9})",
"optional_int32: -2147483648");
RunValidJsonTest("Uint32FieldMaxFloatValue", REQUIRED,
R"({"optionalUint32": 4.294967295e9})",
"optional_uint32: 4294967295");
// Parser reject non-numeric values.
ExpectParseFailureForJson("Int32FieldNotNumber", REQUIRED,
R"({"optionalInt32": "3x3"})");
ExpectParseFailureForJson("Uint32FieldNotNumber", REQUIRED,
R"({"optionalUint32": "3x3"})");
ExpectParseFailureForJson("Int64FieldNotNumber", REQUIRED,
R"({"optionalInt64": "3x3"})");
ExpectParseFailureForJson("Uint64FieldNotNumber", REQUIRED,
R"({"optionalUint64": "3x3"})");
// JSON does not allow "+" on numeric values.
ExpectParseFailureForJson("Int32FieldPlusSign", REQUIRED,
R"({"optionalInt32": +1})");
// JSON doesn't allow leading 0s.
ExpectParseFailureForJson("Int32FieldLeadingZero", REQUIRED,
R"({"optionalInt32": 01})");
ExpectParseFailureForJson("Int32FieldNegativeWithLeadingZero", REQUIRED,
R"({"optionalInt32": -01})");
// String values must follow the same syntax rule. Specifically leading
// or trailing spaces are not allowed.
ExpectParseFailureForJson("Int32FieldLeadingSpace", REQUIRED,
R"({"optionalInt32": " 1"})");
ExpectParseFailureForJson("Int32FieldTrailingSpace", REQUIRED,
R"({"optionalInt32": "1 "})");
// 64-bit values are serialized as strings.
RunValidJsonTestWithValidator(
"Int64FieldBeString", RECOMMENDED, R"({"optionalInt64": 1})",
[](const Json::Value& value) {
return value["optionalInt64"].type() == Json::stringValue &&
value["optionalInt64"].asString() == "1";
},
true);
RunValidJsonTestWithValidator(
"Uint64FieldBeString", RECOMMENDED, R"({"optionalUint64": 1})",
[](const Json::Value& value) {
return value["optionalUint64"].type() == Json::stringValue &&
value["optionalUint64"].asString() == "1";
},
true);
// Bool fields.
RunValidJsonTest("BoolFieldTrue", REQUIRED, R"({"optionalBool":true})",
"optional_bool: true");
RunValidJsonTest("BoolFieldFalse", REQUIRED, R"({"optionalBool":false})",
"optional_bool: false");
// Other forms are not allowed.
ExpectParseFailureForJson("BoolFieldIntegerZero", RECOMMENDED,
R"({"optionalBool":0})");
ExpectParseFailureForJson("BoolFieldIntegerOne", RECOMMENDED,
R"({"optionalBool":1})");
ExpectParseFailureForJson("BoolFieldCamelCaseTrue", RECOMMENDED,
R"({"optionalBool":True})");
ExpectParseFailureForJson("BoolFieldCamelCaseFalse", RECOMMENDED,
R"({"optionalBool":False})");
ExpectParseFailureForJson("BoolFieldAllCapitalTrue", RECOMMENDED,
R"({"optionalBool":TRUE})");
ExpectParseFailureForJson("BoolFieldAllCapitalFalse", RECOMMENDED,
R"({"optionalBool":FALSE})");
ExpectParseFailureForJson("BoolFieldDoubleQuotedTrue", RECOMMENDED,
R"({"optionalBool":"true"})");
ExpectParseFailureForJson("BoolFieldDoubleQuotedFalse", RECOMMENDED,
R"({"optionalBool":"false"})");
// Float fields.
RunValidJsonTest("FloatFieldMinPositiveValue", REQUIRED,
R"({"optionalFloat": 1.175494e-38})",
"optional_float: 1.175494e-38");
RunValidJsonTest("FloatFieldMaxNegativeValue", REQUIRED,
R"({"optionalFloat": -1.175494e-38})",
"optional_float: -1.175494e-38");
RunValidJsonTest("FloatFieldMaxPositiveValue", REQUIRED,
R"({"optionalFloat": 3.402823e+38})",
"optional_float: 3.402823e+38");
RunValidJsonTest("FloatFieldMinNegativeValue", REQUIRED,
R"({"optionalFloat": 3.402823e+38})",
"optional_float: 3.402823e+38");
// Values can be quoted.
RunValidJsonTest("FloatFieldQuotedValue", REQUIRED,
R"({"optionalFloat": "1"})", "optional_float: 1");
// Special values.
RunValidJsonTest("FloatFieldNan", REQUIRED, R"({"optionalFloat": "NaN"})",
"optional_float: nan");
RunValidJsonTest("FloatFieldInfinity", REQUIRED,
R"({"optionalFloat": "Infinity"})", "optional_float: inf");
RunValidJsonTest("FloatFieldNegativeInfinity", REQUIRED,
R"({"optionalFloat": "-Infinity"})", "optional_float: -inf");
// Non-canonical Nan will be correctly normalized.
{
TestAllTypesProto3 message;
// IEEE floating-point standard 32-bit quiet NaN:
// 0111 1111 1xxx xxxx xxxx xxxx xxxx xxxx
message.set_optional_float(WireFormatLite::DecodeFloat(0x7FA12345));
RunValidJsonTestWithProtobufInput("FloatFieldNormalizeQuietNan", REQUIRED,
message, "optional_float: nan");
// IEEE floating-point standard 64-bit signaling NaN:
// 1111 1111 1xxx xxxx xxxx xxxx xxxx xxxx
message.set_optional_float(WireFormatLite::DecodeFloat(0xFFB54321));
RunValidJsonTestWithProtobufInput("FloatFieldNormalizeSignalingNan",
REQUIRED, message, "optional_float: nan");
}
// Special values must be quoted.
ExpectParseFailureForJson("FloatFieldNanNotQuoted", RECOMMENDED,
R"({"optionalFloat": NaN})");
ExpectParseFailureForJson("FloatFieldInfinityNotQuoted", RECOMMENDED,
R"({"optionalFloat": Infinity})");
ExpectParseFailureForJson("FloatFieldNegativeInfinityNotQuoted", RECOMMENDED,
R"({"optionalFloat": -Infinity})");
// Parsers should reject out-of-bound values.
ExpectParseFailureForJson("FloatFieldTooSmall", REQUIRED,
R"({"optionalFloat": -3.502823e+38})");
ExpectParseFailureForJson("FloatFieldTooLarge", REQUIRED,
R"({"optionalFloat": 3.502823e+38})");
// Double fields.
RunValidJsonTest("DoubleFieldMinPositiveValue", REQUIRED,
R"({"optionalDouble": 2.22507e-308})",
"optional_double: 2.22507e-308");
RunValidJsonTest("DoubleFieldMaxNegativeValue", REQUIRED,
R"({"optionalDouble": -2.22507e-308})",
"optional_double: -2.22507e-308");
RunValidJsonTest("DoubleFieldMaxPositiveValue", REQUIRED,
R"({"optionalDouble": 1.79769e+308})",
"optional_double: 1.79769e+308");
RunValidJsonTest("DoubleFieldMinNegativeValue", REQUIRED,
R"({"optionalDouble": -1.79769e+308})",
"optional_double: -1.79769e+308");
// Values can be quoted.
RunValidJsonTest("DoubleFieldQuotedValue", REQUIRED,
R"({"optionalDouble": "1"})", "optional_double: 1");
// Special values.
RunValidJsonTest("DoubleFieldNan", REQUIRED, R"({"optionalDouble": "NaN"})",
"optional_double: nan");
RunValidJsonTest("DoubleFieldInfinity", REQUIRED,
R"({"optionalDouble": "Infinity"})", "optional_double: inf");
RunValidJsonTest("DoubleFieldNegativeInfinity", REQUIRED,
R"({"optionalDouble": "-Infinity"})",
"optional_double: -inf");
// Non-canonical Nan will be correctly normalized.
{
TestAllTypesProto3 message;
message.set_optional_double(
WireFormatLite::DecodeDouble(int64_t{0x7FFA123456789ABC}));
RunValidJsonTestWithProtobufInput("DoubleFieldNormalizeQuietNan", REQUIRED,
message, "optional_double: nan");
message.set_optional_double(
WireFormatLite::DecodeDouble(uint64_t{0xFFFBCBA987654321}));
RunValidJsonTestWithProtobufInput("DoubleFieldNormalizeSignalingNan",
REQUIRED, message,
"optional_double: nan");
}
// Special values must be quoted.
ExpectParseFailureForJson("DoubleFieldNanNotQuoted", RECOMMENDED,
R"({"optionalDouble": NaN})");
ExpectParseFailureForJson("DoubleFieldInfinityNotQuoted", RECOMMENDED,
R"({"optionalDouble": Infinity})");
ExpectParseFailureForJson("DoubleFieldNegativeInfinityNotQuoted", RECOMMENDED,
R"({"optionalDouble": -Infinity})");
// Parsers should reject out-of-bound values.
ExpectParseFailureForJson("DoubleFieldTooSmall", REQUIRED,
R"({"optionalDouble": -1.89769e+308})");
ExpectParseFailureForJson("DoubleFieldTooLarge", REQUIRED,
R"({"optionalDouble": +1.89769e+308})");
// Enum fields.
RunValidJsonTest("EnumField", REQUIRED, R"({"optionalNestedEnum": "FOO"})",
"optional_nested_enum: FOO");
// Enum fields with alias
RunValidJsonTest("EnumFieldWithAlias", REQUIRED,
R"({"optionalAliasedEnum": "ALIAS_BAZ"})",
"optional_aliased_enum: ALIAS_BAZ");
RunValidJsonTest("EnumFieldWithAliasUseAlias", REQUIRED,
R"({"optionalAliasedEnum": "MOO"})",
"optional_aliased_enum: ALIAS_BAZ");
RunValidJsonTest("EnumFieldWithAliasLowerCase", REQUIRED,
R"({"optionalAliasedEnum": "moo"})",
"optional_aliased_enum: ALIAS_BAZ");
RunValidJsonTest("EnumFieldWithAliasDifferentCase", REQUIRED,
R"({"optionalAliasedEnum": "bAz"})",
"optional_aliased_enum: ALIAS_BAZ");
// Enum values must be represented as strings.
ExpectParseFailureForJson("EnumFieldNotQuoted", REQUIRED,
R"({"optionalNestedEnum": FOO})");
// Numeric values are allowed.
RunValidJsonTest("EnumFieldNumericValueZero", REQUIRED,
R"({"optionalNestedEnum": 0})", "optional_nested_enum: FOO");
RunValidJsonTest("EnumFieldNumericValueNonZero", REQUIRED,
R"({"optionalNestedEnum": 1})", "optional_nested_enum: BAR");
// Unknown enum values are represented as numeric values.
RunValidJsonTestWithValidator(
"EnumFieldUnknownValue", REQUIRED, R"({"optionalNestedEnum": 123})",
[](const Json::Value& value) {
return value["optionalNestedEnum"].type() == Json::intValue &&
value["optionalNestedEnum"].asInt() == 123;
},
true);
// String fields.
RunValidJsonTest("StringField", REQUIRED,
R"({"optionalString": "Hello world!"})",
R"(optional_string: "Hello world!")");
RunValidJsonTest("StringFieldUnicode", REQUIRED,
// Google in Chinese.
R"({"optionalString": ""})",
R"(optional_string: "")");
RunValidJsonTest("StringFieldEscape", REQUIRED,
R"({"optionalString": "\"\\\/\b\f\n\r\t"})",
R"(optional_string: "\"\\/\b\f\n\r\t")");
RunValidJsonTest("StringFieldUnicodeEscape", REQUIRED,
R"({"optionalString": "\u8C37\u6B4C"})",
R"(optional_string: "")");
RunValidJsonTest("StringFieldUnicodeEscapeWithLowercaseHexLetters", REQUIRED,
R"({"optionalString": "\u8c37\u6b4c"})",
R"(optional_string: "")");
RunValidJsonTest(
"StringFieldSurrogatePair", REQUIRED,
// The character is an emoji: grinning face with smiling eyes. 😁
R"({"optionalString": "\uD83D\uDE01"})",
R"(optional_string: "\xF0\x9F\x98\x81")");
RunValidJsonTest("StringFieldEmbeddedNull", REQUIRED,
R"({"optionalString": "Hello\u0000world!"})",
R"(optional_string: "Hello\000world!")");
// Unicode escapes must start with "\u" (lowercase u).
ExpectParseFailureForJson("StringFieldUppercaseEscapeLetter", RECOMMENDED,
R"({"optionalString": "\U8C37\U6b4C"})");
ExpectParseFailureForJson("StringFieldInvalidEscape", RECOMMENDED,
R"({"optionalString": "\uXXXX\u6B4C"})");
ExpectParseFailureForJson("StringFieldUnterminatedEscape", RECOMMENDED,
R"({"optionalString": "\u8C3"})");
ExpectParseFailureForJson("StringFieldUnpairedHighSurrogate", RECOMMENDED,
R"({"optionalString": "\uD800"})");
ExpectParseFailureForJson("StringFieldUnpairedLowSurrogate", RECOMMENDED,
R"({"optionalString": "\uDC00"})");
ExpectParseFailureForJson("StringFieldSurrogateInWrongOrder", RECOMMENDED,
R"({"optionalString": "\uDE01\uD83D"})");
ExpectParseFailureForJson("StringFieldNotAString", REQUIRED,
R"({"optionalString": 12345})");
// Bytes fields.
RunValidJsonTest("BytesField", REQUIRED, R"({"optionalBytes": "AQI="})",
R"(optional_bytes: "\x01\x02")");
RunValidJsonTest("BytesFieldBase64Url", RECOMMENDED,
R"({"optionalBytes": "-_"})", R"(optional_bytes: "\xfb")");
// Message fields.
RunValidJsonTest("MessageField", REQUIRED,
R"({"optionalNestedMessage": {"a": 1234}})",
"optional_nested_message: {a: 1234}");
// Oneof fields.
ExpectParseFailureForJson("OneofFieldDuplicate", REQUIRED,
R"({"oneofUint32": 1, "oneofString": "test"})");
RunValidJsonTest("OneofFieldNullFirst", REQUIRED,
R"({"oneofUint32": null, "oneofString": "test"})",
"oneof_string: \"test\"");
RunValidJsonTest("OneofFieldNullSecond", REQUIRED,
R"({"oneofString": "test", "oneofUint32": null})",
"oneof_string: \"test\"");
// Ensure zero values for oneof make it out/backs.
TestAllTypesProto3 messageProto3;
TestAllTypesProto2 messageProto2;
TestOneofMessage(messageProto3, true);
TestOneofMessage(messageProto2, false);
RunValidJsonTest("OneofZeroUint32", RECOMMENDED, R"({"oneofUint32": 0})",
"oneof_uint32: 0");
RunValidJsonTest("OneofZeroMessage", RECOMMENDED,
R"({"oneofNestedMessage": {}})", "oneof_nested_message: {}");
RunValidJsonTest("OneofZeroString", RECOMMENDED, R"({"oneofString": ""})",
"oneof_string: \"\"");
RunValidJsonTest("OneofZeroBytes", RECOMMENDED, R"({"oneofBytes": ""})",
"oneof_bytes: \"\"");
RunValidJsonTest("OneofZeroBool", RECOMMENDED, R"({"oneofBool": false})",
"oneof_bool: false");
RunValidJsonTest("OneofZeroUint64", RECOMMENDED, R"({"oneofUint64": 0})",
"oneof_uint64: 0");
RunValidJsonTest("OneofZeroFloat", RECOMMENDED, R"({"oneofFloat": 0.0})",
"oneof_float: 0");
RunValidJsonTest("OneofZeroDouble", RECOMMENDED, R"({"oneofDouble": 0.0})",
"oneof_double: 0");
RunValidJsonTest("OneofZeroEnum", RECOMMENDED, R"({"oneofEnum":"FOO"})",
"oneof_enum: FOO");
// Map fields.
RunValidJsonTest("Int32MapField", REQUIRED,
R"({"mapInt32Int32": {"1": 2, "3": 4}})",
"map_int32_int32: {key: 1 value: 2}"
"map_int32_int32: {key: 3 value: 4}");
ExpectParseFailureForJson("Int32MapFieldKeyNotQuoted", RECOMMENDED,
R"({"mapInt32Int32": {1: 2, 3: 4}})");
RunValidJsonTest("Uint32MapField", REQUIRED,
R"({"mapUint32Uint32": {"1": 2, "3": 4}})",
"map_uint32_uint32: {key: 1 value: 2}"
"map_uint32_uint32: {key: 3 value: 4}");
ExpectParseFailureForJson("Uint32MapFieldKeyNotQuoted", RECOMMENDED,
R"({"mapUint32Uint32": {1: 2, 3: 4}})");
RunValidJsonTest("Int64MapField", REQUIRED,
R"({"mapInt64Int64": {"1": 2, "3": 4}})",
"map_int64_int64: {key: 1 value: 2}"
"map_int64_int64: {key: 3 value: 4}");
ExpectParseFailureForJson("Int64MapFieldKeyNotQuoted", RECOMMENDED,
R"({"mapInt64Int64": {1: 2, 3: 4}})");
RunValidJsonTest("Uint64MapField", REQUIRED,
R"({"mapUint64Uint64": {"1": 2, "3": 4}})",
"map_uint64_uint64: {key: 1 value: 2}"
"map_uint64_uint64: {key: 3 value: 4}");
ExpectParseFailureForJson("Uint64MapFieldKeyNotQuoted", RECOMMENDED,
R"({"mapUint64Uint64": {1: 2, 3: 4}})");
RunValidJsonTest("BoolMapField", REQUIRED,
R"({"mapBoolBool": {"true": true, "false": false}})",
"map_bool_bool: {key: true value: true}"
"map_bool_bool: {key: false value: false}");
ExpectParseFailureForJson("BoolMapFieldKeyNotQuoted", RECOMMENDED,
R"({"mapBoolBool": {true: true, false: false}})");
RunValidJsonTest("MessageMapField", REQUIRED,
R"({
"mapStringNestedMessage": {
"hello": {"a": 1234},
"world": {"a": 5678}
}
})",
R"(
map_string_nested_message: {
key: "hello"
value: {a: 1234}
}
map_string_nested_message: {
key: "world"
value: {a: 5678}
}
)");
// Since Map keys are represented as JSON strings, escaping should be allowed.
RunValidJsonTest("Int32MapEscapedKey", REQUIRED,
R"({"mapInt32Int32": {"\u0031": 2}})",
"map_int32_int32: {key: 1 value: 2}");
RunValidJsonTest("Int64MapEscapedKey", REQUIRED,
R"({"mapInt64Int64": {"\u0031": 2}})",
"map_int64_int64: {key: 1 value: 2}");
RunValidJsonTest("BoolMapEscapedKey", REQUIRED,
R"({"mapBoolBool": {"tr\u0075e": true}})",
"map_bool_bool: {key: true value: true}");
// http://www.rfc-editor.org/rfc/rfc7159.txt says strings have to use double
// quotes.
ExpectParseFailureForJson("StringFieldSingleQuoteKey", RECOMMENDED,
R"({'optionalString': "Hello world!"})");
ExpectParseFailureForJson("StringFieldSingleQuoteValue", RECOMMENDED,
R"({"optionalString": 'Hello world!'})");
ExpectParseFailureForJson("StringFieldSingleQuoteBoth", RECOMMENDED,
R"({'optionalString': 'Hello world!'})");
}
void BinaryAndJsonConformanceSuite::RunJsonTestsForRepeatedTypes() {
// Repeated fields.
RunValidJsonTest("PrimitiveRepeatedField", REQUIRED,
R"({"repeatedInt32": [1, 2, 3, 4]})",
"repeated_int32: [1, 2, 3, 4]");
RunValidJsonTest("EnumRepeatedField", REQUIRED,
R"({"repeatedNestedEnum": ["FOO", "BAR", "BAZ"]})",
"repeated_nested_enum: [FOO, BAR, BAZ]");
RunValidJsonTest("StringRepeatedField", REQUIRED,
R"({"repeatedString": ["Hello", "world"]})",
R"(repeated_string: ["Hello", "world"])");
RunValidJsonTest("BytesRepeatedField", REQUIRED,
R"({"repeatedBytes": ["AAEC", "AQI="]})",
R"(repeated_bytes: ["\x00\x01\x02", "\x01\x02"])");
RunValidJsonTest("MessageRepeatedField", REQUIRED,
R"({"repeatedNestedMessage": [{"a": 1234}, {"a": 5678}]})",
"repeated_nested_message: {a: 1234}"
"repeated_nested_message: {a: 5678}");
// Repeated field elements are of incorrect type.
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingIntegersGotBool", REQUIRED,
R"({"repeatedInt32": [1, false, 3, 4]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingIntegersGotString", REQUIRED,
R"({"repeatedInt32": [1, 2, "name", 4]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingIntegersGotMessage", REQUIRED,
R"({"repeatedInt32": [1, 2, 3, {"a": 4}]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingStringsGotInt", REQUIRED,
R"({"repeatedString": ["1", 2, "3", "4"]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingStringsGotBool", REQUIRED,
R"({"repeatedString": ["1", "2", false, "4"]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingStringsGotMessage", REQUIRED,
R"({"repeatedString": ["1", 2, "3", {"a": 4}]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingMessagesGotInt", REQUIRED,
R"({"repeatedNestedMessage": [{"a": 1}, 2]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingMessagesGotBool", REQUIRED,
R"({"repeatedNestedMessage": [{"a": 1}, false]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingMessagesGotString", REQUIRED,
R"({"repeatedNestedMessage": [{"a": 1}, "2"]})");
// Trailing comma in the repeated field is not allowed.
ExpectParseFailureForJson("RepeatedFieldTrailingComma", RECOMMENDED,
R"({"repeatedInt32": [1, 2, 3, 4,]})");
ExpectParseFailureForJson("RepeatedFieldTrailingCommaWithSpace", RECOMMENDED,
"{\"repeatedInt32\": [1, 2, 3, 4 ,]}");
ExpectParseFailureForJson("RepeatedFieldTrailingCommaWithSpaceCommaSpace",
RECOMMENDED,
"{\"repeatedInt32\": [1, 2, 3, 4 , ]}");
ExpectParseFailureForJson(
"RepeatedFieldTrailingCommaWithNewlines", RECOMMENDED,
"{\"repeatedInt32\": [\n 1,\n 2,\n 3,\n 4,\n]}");
}
void BinaryAndJsonConformanceSuite::RunJsonTestsForNullTypes() {
// "null" is accepted for all fields types.
RunValidJsonTest("AllFieldAcceptNull", REQUIRED,
R"({
"optionalInt32": null,
"optionalInt64": null,
"optionalUint32": null,
"optionalUint64": null,
"optionalSint32": null,
"optionalSint64": null,
"optionalFixed32": null,
"optionalFixed64": null,
"optionalSfixed32": null,
"optionalSfixed64": null,
"optionalFloat": null,
"optionalDouble": null,
"optionalBool": null,
"optionalString": null,
"optionalBytes": null,
"optionalNestedEnum": null,
"optionalNestedMessage": null,
"repeatedInt32": null,
"repeatedInt64": null,
"repeatedUint32": null,
"repeatedUint64": null,
"repeatedSint32": null,
"repeatedSint64": null,
"repeatedFixed32": null,
"repeatedFixed64": null,
"repeatedSfixed32": null,
"repeatedSfixed64": null,
"repeatedFloat": null,
"repeatedDouble": null,
"repeatedBool": null,
"repeatedString": null,
"repeatedBytes": null,
"repeatedNestedEnum": null,
"repeatedNestedMessage": null,
"mapInt32Int32": null,
"mapBoolBool": null,
"mapStringNestedMessage": null
})",
"");
// Repeated field elements cannot be null.
ExpectParseFailureForJson("RepeatedFieldPrimitiveElementIsNull", RECOMMENDED,
R"({"repeatedInt32": [1, null, 2]})");
ExpectParseFailureForJson(
"RepeatedFieldMessageElementIsNull", RECOMMENDED,
R"({"repeatedNestedMessage": [{"a":1}, null, {"a":2}]})");
// Map field keys cannot be null.
ExpectParseFailureForJson("MapFieldKeyIsNull", RECOMMENDED,
R"({"mapInt32Int32": {null: 1}})");
// Map field values cannot be null.
ExpectParseFailureForJson("MapFieldValueIsNull", RECOMMENDED,
R"({"mapInt32Int32": {"0": null}})");
}
void BinaryAndJsonConformanceSuite::RunJsonTestsForWrapperTypes() {
RunValidJsonTest("OptionalBoolWrapper", REQUIRED,
R"({"optionalBoolWrapper": false})",
"optional_bool_wrapper: {value: false}");
RunValidJsonTest("OptionalInt32Wrapper", REQUIRED,
R"({"optionalInt32Wrapper": 0})",
"optional_int32_wrapper: {value: 0}");
RunValidJsonTest("OptionalUint32Wrapper", REQUIRED,
R"({"optionalUint32Wrapper": 0})",
"optional_uint32_wrapper: {value: 0}");
RunValidJsonTest("OptionalInt64Wrapper", REQUIRED,
R"({"optionalInt64Wrapper": 0})",
"optional_int64_wrapper: {value: 0}");
RunValidJsonTest("OptionalUint64Wrapper", REQUIRED,
R"({"optionalUint64Wrapper": 0})",
"optional_uint64_wrapper: {value: 0}");
RunValidJsonTest("OptionalFloatWrapper", REQUIRED,
R"({"optionalFloatWrapper": 0})",
"optional_float_wrapper: {value: 0}");
RunValidJsonTest("OptionalDoubleWrapper", REQUIRED,
R"({"optionalDoubleWrapper": 0})",
"optional_double_wrapper: {value: 0}");
RunValidJsonTest("OptionalStringWrapper", REQUIRED,
R"({"optionalStringWrapper": ""})",
R"(optional_string_wrapper: {value: ""})");
RunValidJsonTest("OptionalBytesWrapper", REQUIRED,
R"({"optionalBytesWrapper": ""})",
R"(optional_bytes_wrapper: {value: ""})");
RunValidJsonTest("OptionalWrapperTypesWithNonDefaultValue", REQUIRED,
R"({
"optionalBoolWrapper": true,
"optionalInt32Wrapper": 1,
"optionalUint32Wrapper": 1,
"optionalInt64Wrapper": "1",
"optionalUint64Wrapper": "1",
"optionalFloatWrapper": 1,
"optionalDoubleWrapper": 1,
"optionalStringWrapper": "1",
"optionalBytesWrapper": "AQI="
})",
R"(
optional_bool_wrapper: {value: true}
optional_int32_wrapper: {value: 1}
optional_uint32_wrapper: {value: 1}
optional_int64_wrapper: {value: 1}
optional_uint64_wrapper: {value: 1}
optional_float_wrapper: {value: 1}
optional_double_wrapper: {value: 1}
optional_string_wrapper: {value: "1"}
optional_bytes_wrapper: {value: "\x01\x02"}
)");
RunValidJsonTest("RepeatedBoolWrapper", REQUIRED,
R"({"repeatedBoolWrapper": [true, false]})",
"repeated_bool_wrapper: {value: true}"
"repeated_bool_wrapper: {value: false}");
RunValidJsonTest("RepeatedInt32Wrapper", REQUIRED,
R"({"repeatedInt32Wrapper": [0, 1]})",
"repeated_int32_wrapper: {value: 0}"
"repeated_int32_wrapper: {value: 1}");
RunValidJsonTest("RepeatedUint32Wrapper", REQUIRED,
R"({"repeatedUint32Wrapper": [0, 1]})",
"repeated_uint32_wrapper: {value: 0}"
"repeated_uint32_wrapper: {value: 1}");
RunValidJsonTest("RepeatedInt64Wrapper", REQUIRED,
R"({"repeatedInt64Wrapper": [0, 1]})",
"repeated_int64_wrapper: {value: 0}"
"repeated_int64_wrapper: {value: 1}");
RunValidJsonTest("RepeatedUint64Wrapper", REQUIRED,
R"({"repeatedUint64Wrapper": [0, 1]})",
"repeated_uint64_wrapper: {value: 0}"
"repeated_uint64_wrapper: {value: 1}");
RunValidJsonTest("RepeatedFloatWrapper", REQUIRED,
R"({"repeatedFloatWrapper": [0, 1]})",
"repeated_float_wrapper: {value: 0}"
"repeated_float_wrapper: {value: 1}");
RunValidJsonTest("RepeatedDoubleWrapper", REQUIRED,
R"({"repeatedDoubleWrapper": [0, 1]})",
"repeated_double_wrapper: {value: 0}"
"repeated_double_wrapper: {value: 1}");
RunValidJsonTest("RepeatedStringWrapper", REQUIRED,
R"({"repeatedStringWrapper": ["", "AQI="]})",
R"(
repeated_string_wrapper: {value: ""}
repeated_string_wrapper: {value: "AQI="}
)");
RunValidJsonTest("RepeatedBytesWrapper", REQUIRED,
R"({"repeatedBytesWrapper": ["", "AQI="]})",
R"(
repeated_bytes_wrapper: {value: ""}
repeated_bytes_wrapper: {value: "\x01\x02"}
)");
RunValidJsonTest("WrapperTypesWithNullValue", REQUIRED,
R"({
"optionalBoolWrapper": null,
"optionalInt32Wrapper": null,
"optionalUint32Wrapper": null,
"optionalInt64Wrapper": null,
"optionalUint64Wrapper": null,
"optionalFloatWrapper": null,
"optionalDoubleWrapper": null,
"optionalStringWrapper": null,
"optionalBytesWrapper": null,
"repeatedBoolWrapper": null,
"repeatedInt32Wrapper": null,
"repeatedUint32Wrapper": null,
"repeatedInt64Wrapper": null,
"repeatedUint64Wrapper": null,
"repeatedFloatWrapper": null,
"repeatedDoubleWrapper": null,
"repeatedStringWrapper": null,
"repeatedBytesWrapper": null
})",
"");
// Duration
RunValidJsonTest(
"DurationMinValue", REQUIRED,
R"({"optionalDuration": "-315576000000.999999999s"})",
"optional_duration: {seconds: -315576000000 nanos: -999999999}");
RunValidJsonTest(
"DurationMaxValue", REQUIRED,
R"({"optionalDuration": "315576000000.999999999s"})",
"optional_duration: {seconds: 315576000000 nanos: 999999999}");
RunValidJsonTest("DurationRepeatedValue", REQUIRED,
R"({"repeatedDuration": ["1.5s", "-1.5s"]})",
"repeated_duration: {seconds: 1 nanos: 500000000}"
"repeated_duration: {seconds: -1 nanos: -500000000}");
RunValidJsonTest("DurationNull", REQUIRED, R"({"optionalDuration": null})",
"");
RunValidJsonTest("DurationNegativeSeconds", REQUIRED,
R"({"optionalDuration": "-5s"})",
"optional_duration: {seconds: -5 nanos: 0}");
RunValidJsonTest("DurationNegativeNanos", REQUIRED,
R"({"optionalDuration": "-0.5s"})",
"optional_duration: {seconds: 0 nanos: -500000000}");
ExpectParseFailureForJson("DurationMissingS", REQUIRED,
R"({"optionalDuration": "1"})");
ExpectParseFailureForJson(
"DurationJsonInputTooSmall", REQUIRED,
R"({"optionalDuration": "-315576000001.000000000s"})");
ExpectParseFailureForJson(
"DurationJsonInputTooLarge", REQUIRED,
R"({"optionalDuration": "315576000001.000000000s"})");
ExpectSerializeFailureForJson(
"DurationProtoInputTooSmall", REQUIRED,
"optional_duration: {seconds: -315576000001 nanos: 0}");
ExpectSerializeFailureForJson(
"DurationProtoInputTooLarge", REQUIRED,
"optional_duration: {seconds: 315576000001 nanos: 0}");
RunValidJsonTestWithValidator(
"DurationHasZeroFractionalDigit", RECOMMENDED,
R"({"optionalDuration": "1.000000000s"})",
[](const Json::Value& value) {
return value["optionalDuration"].asString() == "1s";
},
true);
RunValidJsonTestWithValidator(
"DurationHas3FractionalDigits", RECOMMENDED,
R"({"optionalDuration": "1.010000000s"})",
[](const Json::Value& value) {
return value["optionalDuration"].asString() == "1.010s";
},
true);
RunValidJsonTestWithValidator(
"DurationHas6FractionalDigits", RECOMMENDED,
R"({"optionalDuration": "1.000010000s"})",
[](const Json::Value& value) {
return value["optionalDuration"].asString() == "1.000010s";
},
true);
RunValidJsonTestWithValidator(
"DurationHas9FractionalDigits", RECOMMENDED,
R"({"optionalDuration": "1.000000010s"})",
[](const Json::Value& value) {
return value["optionalDuration"].asString() == "1.000000010s";
},
true);
// Timestamp
RunValidJsonTest("TimestampMinValue", REQUIRED,
R"({"optionalTimestamp": "0001-01-01T00:00:00Z"})",
"optional_timestamp: {seconds: -62135596800}");
RunValidJsonTest(
"TimestampMaxValue", REQUIRED,
R"({"optionalTimestamp": "9999-12-31T23:59:59.999999999Z"})",
"optional_timestamp: {seconds: 253402300799 nanos: 999999999}");
RunValidJsonTest(
"TimestampRepeatedValue", REQUIRED,
R"({
"repeatedTimestamp": [
"0001-01-01T00:00:00Z",
"9999-12-31T23:59:59.999999999Z"
]
})",
"repeated_timestamp: {seconds: -62135596800}"
"repeated_timestamp: {seconds: 253402300799 nanos: 999999999}");
RunValidJsonTest("TimestampLeap", REQUIRED,
R"({"optionalTimestamp": "1993-02-10T00:00:00.000Z"})",
"optional_timestamp: {seconds: 729302400}");
RunValidJsonTest("TimestampWithPositiveOffset", REQUIRED,
R"({"optionalTimestamp": "1970-01-01T08:00:01+08:00"})",
"optional_timestamp: {seconds: 1}");
RunValidJsonTest("TimestampWithNegativeOffset", REQUIRED,
R"({"optionalTimestamp": "1969-12-31T16:00:01-08:00"})",
"optional_timestamp: {seconds: 1}");
RunValidJsonTest("TimestampNull", REQUIRED, R"({"optionalTimestamp": null})",
"");
ExpectParseFailureForJson("TimestampJsonInputTooSmall", REQUIRED,
R"({"optionalTimestamp": "0000-01-01T00:00:00Z"})");
ExpectParseFailureForJson(
"TimestampJsonInputTooLarge", REQUIRED,
R"({"optionalTimestamp": "10000-01-01T00:00:00Z"})");
ExpectParseFailureForJson("TimestampJsonInputMissingZ", REQUIRED,
R"({"optionalTimestamp": "0001-01-01T00:00:00"})");
ExpectParseFailureForJson("TimestampJsonInputMissingT", REQUIRED,
R"({"optionalTimestamp": "0001-01-01 00:00:00Z"})");
ExpectParseFailureForJson("TimestampJsonInputLowercaseZ", REQUIRED,
R"({"optionalTimestamp": "0001-01-01T00:00:00z"})");
ExpectParseFailureForJson("TimestampJsonInputLowercaseT", REQUIRED,
R"({"optionalTimestamp": "0001-01-01t00:00:00Z"})");
ExpectSerializeFailureForJson("TimestampProtoInputTooSmall", REQUIRED,
"optional_timestamp: {seconds: -62135596801}");
ExpectSerializeFailureForJson("TimestampProtoInputTooLarge", REQUIRED,
"optional_timestamp: {seconds: 253402300800}");
RunValidJsonTestWithValidator(
"TimestampZeroNormalized", RECOMMENDED,
R"({"optionalTimestamp": "1969-12-31T16:00:00-08:00"})",
[](const Json::Value& value) {
return value["optionalTimestamp"].asString() == "1970-01-01T00:00:00Z";
},
true);
RunValidJsonTestWithValidator(
"TimestampHasZeroFractionalDigit", RECOMMENDED,
R"({"optionalTimestamp": "1970-01-01T00:00:00.000000000Z"})",
[](const Json::Value& value) {
return value["optionalTimestamp"].asString() == "1970-01-01T00:00:00Z";
},
true);
RunValidJsonTestWithValidator(
"TimestampHas3FractionalDigits", RECOMMENDED,
R"({"optionalTimestamp": "1970-01-01T00:00:00.010000000Z"})",
[](const Json::Value& value) {
return value["optionalTimestamp"].asString() ==
"1970-01-01T00:00:00.010Z";
},
true);
RunValidJsonTestWithValidator(
"TimestampHas6FractionalDigits", RECOMMENDED,
R"({"optionalTimestamp": "1970-01-01T00:00:00.000010000Z"})",
[](const Json::Value& value) {
return value["optionalTimestamp"].asString() ==
"1970-01-01T00:00:00.000010Z";
},
true);
RunValidJsonTestWithValidator(
"TimestampHas9FractionalDigits", RECOMMENDED,
R"({"optionalTimestamp": "1970-01-01T00:00:00.000000010Z"})",
[](const Json::Value& value) {
return value["optionalTimestamp"].asString() ==
"1970-01-01T00:00:00.000000010Z";
},
true);
}
void BinaryAndJsonConformanceSuite::RunJsonTestsForFieldMask() {
RunValidJsonTest("FieldMask", REQUIRED,
R"({"optionalFieldMask": "foo,barBaz"})",
R"(optional_field_mask: {paths: "foo" paths: "bar_baz"})");
RunValidJsonTest("EmptyFieldMask", REQUIRED, R"({"optionalFieldMask": ""})",
R"(optional_field_mask: {})");
ExpectParseFailureForJson("FieldMaskInvalidCharacter", RECOMMENDED,
R"({"optionalFieldMask": "foo,bar_bar"})");
ExpectSerializeFailureForJson("FieldMaskPathsDontRoundTrip", RECOMMENDED,
R"(optional_field_mask: {paths: "fooBar"})");
ExpectSerializeFailureForJson("FieldMaskNumbersDontRoundTrip", RECOMMENDED,
R"(optional_field_mask: {paths: "foo_3_bar"})");
ExpectSerializeFailureForJson("FieldMaskTooManyUnderscore", RECOMMENDED,
R"(optional_field_mask: {paths: "foo__bar"})");
}
void BinaryAndJsonConformanceSuite::RunJsonTestsForStruct() {
RunValidJsonTest("Struct", REQUIRED,
R"({
"optionalStruct": {
"nullValue": null,
"intValue": 1234,
"boolValue": true,
"doubleValue": 1234.5678,
"stringValue": "Hello world!",
"listValue": [1234, "5678"],
"objectValue": {
"value": 0
}
}
})",
R"(
optional_struct: {
fields: {
key: "nullValue"
value: {null_value: NULL_VALUE}
}
fields: {
key: "intValue"
value: {number_value: 1234}
}
fields: {
key: "boolValue"
value: {bool_value: true}
}
fields: {
key: "doubleValue"
value: {number_value: 1234.5678}
}
fields: {
key: "stringValue"
value: {string_value: "Hello world!"}
}
fields: {
key: "listValue"
value: {
list_value: {
values: {
number_value: 1234
}
values: {
string_value: "5678"
}
}
}
}
fields: {
key: "objectValue"
value: {
struct_value: {
fields: {
key: "value"
value: {
number_value: 0
}
}
}
}
}
}
)");
RunValidJsonTest("StructWithEmptyListValue", REQUIRED,
R"({
"optionalStruct": {
"listValue": []
}
})",
R"(
optional_struct: {
fields: {
key: "listValue"
value: {
list_value: {
}
}
}
}
)");
}
void BinaryAndJsonConformanceSuite::RunJsonTestsForValue() {
RunValidJsonTest("ValueAcceptInteger", REQUIRED, R"({"optionalValue": 1})",
"optional_value: { number_value: 1}");
RunValidJsonTest("ValueAcceptFloat", REQUIRED, R"({"optionalValue": 1.5})",
"optional_value: { number_value: 1.5}");
RunValidJsonTest("ValueAcceptBool", REQUIRED, R"({"optionalValue": false})",
"optional_value: { bool_value: false}");
RunValidJsonTest("ValueAcceptNull", REQUIRED, R"({"optionalValue": null})",
"optional_value: { null_value: NULL_VALUE}");
RunValidJsonTest("ValueAcceptString", REQUIRED,
R"({"optionalValue": "hello"})",
R"(optional_value: { string_value: "hello"})");
RunValidJsonTest("ValueAcceptList", REQUIRED,
R"({"optionalValue": [0, "hello"]})",
R"(
optional_value: {
list_value: {
values: {
number_value: 0
}
values: {
string_value: "hello"
}
}
}
)");
RunValidJsonTest("ValueAcceptObject", REQUIRED,
R"({"optionalValue": {"value": 1}})",
R"(
optional_value: {
struct_value: {
fields: {
key: "value"
value: {
number_value: 1
}
}
}
}
)");
RunValidJsonTest("RepeatedValue", REQUIRED,
R"({
"repeatedValue": [["a"]]
})",
R"(
repeated_value: [
{
list_value: {
values: [
{ string_value: "a"}
]
}
}
]
)");
RunValidJsonTest("RepeatedListValue", REQUIRED,
R"({
"repeatedListValue": [["a"]]
})",
R"(
repeated_list_value: [
{
values: [
{ string_value: "a"}
]
}
]
)");
RunValidJsonTestWithValidator(
"NullValueInOtherOneofOldFormat", RECOMMENDED,
R"({"oneofNullValue": "NULL_VALUE"})",
[](const Json::Value& value) {
return (value.isMember("oneofNullValue") &&
value["oneofNullValue"].isNull());
},
true);
RunValidJsonTestWithValidator(
"NullValueInOtherOneofNewFormat", RECOMMENDED,
R"({"oneofNullValue": null})",
[](const Json::Value& value) {
return (value.isMember("oneofNullValue") &&
value["oneofNullValue"].isNull());
},
true);
RunValidJsonTestWithValidator(
"NullValueInNormalMessage", RECOMMENDED, R"({"optionalNullValue": null})",
[](const Json::Value& value) { return value.empty(); }, true);
ExpectSerializeFailureForJson("ValueRejectNanNumberValue", RECOMMENDED,
"optional_value: { number_value: nan}");
ExpectSerializeFailureForJson("ValueRejectInfNumberValue", RECOMMENDED,
"optional_value: { number_value: inf}");
}
void BinaryAndJsonConformanceSuite::RunJsonTestsForAny() {
RunValidJsonTest("Any", REQUIRED,
R"({
"optionalAny": {
"@type": "type.googleapis.com/protobuf_test_messages.proto3.TestAllTypesProto3",
"optionalInt32": 12345
}
})",
R"(
optional_any: {
[type.googleapis.com/protobuf_test_messages.proto3.TestAllTypesProto3] {
optional_int32: 12345
}
}
)");
RunValidJsonTest("AnyNested", REQUIRED,
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Any",
"value": {
"@type": "type.googleapis.com/protobuf_test_messages.proto3.TestAllTypesProto3",
"optionalInt32": 12345
}
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Any] {
[type.googleapis.com/protobuf_test_messages.proto3.TestAllTypesProto3] {
optional_int32: 12345
}
}
}
)");
// The special "@type" tag is not required to appear first.
RunValidJsonTest("AnyUnorderedTypeTag", REQUIRED,
R"({
"optionalAny": {
"optionalInt32": 12345,
"@type": "type.googleapis.com/protobuf_test_messages.proto3.TestAllTypesProto3"
}
})",
R"(
optional_any: {
[type.googleapis.com/protobuf_test_messages.proto3.TestAllTypesProto3] {
optional_int32: 12345
}
}
)");
// Well-known types in Any.
RunValidJsonTest("AnyWithInt32ValueWrapper", REQUIRED,
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Int32Value",
"value": 12345
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Int32Value] {
value: 12345
}
}
)");
RunValidJsonTest("AnyWithDuration", REQUIRED,
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Duration",
"value": "1.5s"
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Duration] {
seconds: 1
nanos: 500000000
}
}
)");
RunValidJsonTest("AnyWithTimestamp", REQUIRED,
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Timestamp",
"value": "1970-01-01T00:00:00Z"
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Timestamp] {
seconds: 0
nanos: 0
}
}
)");
RunValidJsonTest("AnyWithFieldMask", REQUIRED,
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.FieldMask",
"value": "foo,barBaz"
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.FieldMask] {
paths: ["foo", "bar_baz"]
}
}
)");
RunValidJsonTest("AnyWithStruct", REQUIRED,
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Struct",
"value": {
"foo": 1
}
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Struct] {
fields: {
key: "foo"
value: {
number_value: 1
}
}
}
}
)");
RunValidJsonTest("AnyWithValueForJsonObject", REQUIRED,
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Value",
"value": {
"foo": 1
}
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Value] {
struct_value: {
fields: {
key: "foo"
value: {
number_value: 1
}
}
}
}
}
)");
RunValidJsonTest("AnyWithValueForInteger", REQUIRED,
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Value",
"value": 1
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Value] {
number_value: 1
}
}
)");
}
} // namespace protobuf
} // namespace google