Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

213 lines
7.6 KiB

/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2009-2012 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* A symtab (symbol table) stores a name->def map of upb_defs. Clients could
* always create such tables themselves, but upb_symtab has logic for resolving
* symbolic references, and in particular, for keeping a whole set of consistent
* defs when replacing some subset of those defs. This logic is nontrivial.
*
* This is a mixed C/C++ interface that offers a full API to both languages.
* See the top-level README for more information.
*/
#ifndef UPB_SYMTAB_H_
#define UPB_SYMTAB_H_
#ifdef __cplusplus
#include <vector>
namespace upb { class SymbolTable; }
typedef upb::SymbolTable upb_symtab;
#else
struct upb_symtab;
typedef struct upb_symtab upb_symtab;
#endif
#include "upb/def.h"
#ifdef __cplusplus
class upb::SymbolTable {
public:
// Returns a new symbol table with a single ref owned by "owner."
// Returns NULL if memory allocation failed.
static reffed_ptr<SymbolTable> New();
// Functionality from upb::RefCounted.
bool IsFrozen() const;
void Ref(const void* owner) const;
void Unref(const void* owner) const;
void DonateRef(const void *from, const void *to) const;
void CheckRef(const void *owner) const;
// Resolves the given symbol using the rules described in descriptor.proto,
// namely:
//
// If the name starts with a '.', it is fully-qualified. Otherwise,
// C++-like scoping rules are used to find the type (i.e. first the nested
// types within this message are searched, then within the parent, on up
// to the root namespace).
//
// If not found, returns NULL.
reffed_ptr<const Def> Resolve(const char* base, const char* sym) const;
// Finds an entry in the symbol table with this exact name. If not found,
// returns NULL.
reffed_ptr<const Def> Lookup(const char *sym) const;
reffed_ptr<const MessageDef> LookupMessage(const char *sym) const;
// Gets an array of pointers to all currently active defs in this symtab.
// The caller owns the returned array (which is of length *n) as well as a
// ref to each symbol inside (owned by owner). If type is UPB_DEF_ANY then
// defs of all types are returned, otherwise only defs of the required type
// are returned.
const Def** GetDefs(upb_deftype_t type, const void *owner, int *n) const;
// Adds the given mutable defs to the symtab, resolving all symbols
// (including enum default values) and finalizing the defs. Only one def per
// name may be in the list, but defs can replace existing defs in the symtab.
// All defs must have a name -- anonymous defs are not allowed. Anonymous
// defs can still be frozen by calling upb_def_freeze() directly.
//
// Any existing defs that can reach defs that are being replaced will
// themselves be replaced also, so that the resulting set of defs is fully
// consistent.
//
// This logic implemented in this method is a convenience; ultimately it
// calls some combination of upb_fielddef_setsubdef(), upb_def_dup(), and
// upb_freeze(), any of which the client could call themself. However, since
// the logic for doing so is nontrivial, we provide it here.
//
// The entire operation either succeeds or fails. If the operation fails,
// the symtab is unchanged, false is returned, and status indicates the
// error. The caller passes a ref on all defs to the symtab (even if the
// operation fails).
//
// TODO(haberman): currently failure will leave the symtab unchanged, but may
// leave the defs themselves partially resolved. Does this matter? If so we
// could do a prepass that ensures that all symbols are resolvable and bail
// if not, so we don't mutate anything until we know the operation will
// succeed.
//
// TODO(haberman): since the defs must be mutable, refining a frozen def
// requires making mutable copies of the entire tree. This is wasteful if
// only a few messages are changing. We may want to add a way of adding a
// tree of frozen defs to the symtab (perhaps an alternate constructor where
// you pass the root of the tree?)
bool Add(Def*const* defs, int n, void* ref_donor, upb_status* status);
bool Add(const std::vector<Def*>& defs, void *owner, Status* status) {
return Add((Def*const*)&defs[0], defs.size(), owner, status);
}
private:
UPB_DISALLOW_POD_OPS(SymbolTable, upb::SymbolTable);
#else
struct upb_symtab {
#endif
upb_refcounted base;
upb_strtable symtab;
};
// Native C API.
#ifdef __cplusplus
extern "C" {
#endif
// From upb_refcounted.
bool upb_symtab_isfrozen(const upb_symtab *s);
void upb_symtab_ref(const upb_symtab *s, const void *owner);
void upb_symtab_unref(const upb_symtab *s, const void *owner);
void upb_symtab_donateref(
const upb_symtab *s, const void *from, const void *to);
void upb_symtab_checkref(const upb_symtab *s, const void *owner);
upb_symtab *upb_symtab_new(const void *owner);
const upb_def *upb_symtab_resolve(const upb_symtab *s, const char *base,
const char *sym, const void *owner);
const upb_def *upb_symtab_lookup(
const upb_symtab *s, const char *sym, const void *owner);
const upb_msgdef *upb_symtab_lookupmsg(
const upb_symtab *s, const char *sym, const void *owner);
const upb_def **upb_symtab_getdefs(
const upb_symtab *s, upb_deftype_t type, const void *owner, int *n);
bool upb_symtab_add(upb_symtab *s, upb_def *const*defs, int n, void *ref_donor,
upb_status *status);
#ifdef __cplusplus
} /* extern "C" */
// C++ inline wrappers.
namespace upb {
template<>
class Pointer<SymbolTable> {
public:
explicit Pointer(SymbolTable* ptr) : ptr_(ptr) {}
operator SymbolTable*() { return ptr_; }
operator RefCounted*() { return UPB_UPCAST(ptr_); }
private:
SymbolTable* ptr_;
};
template<>
class Pointer<const SymbolTable> {
public:
explicit Pointer(const SymbolTable* ptr) : ptr_(ptr) {}
operator const SymbolTable*() { return ptr_; }
operator const RefCounted*() { return UPB_UPCAST(ptr_); }
private:
const SymbolTable* ptr_;
};
inline reffed_ptr<SymbolTable> SymbolTable::New() {
upb_symtab *s = upb_symtab_new(&s);
return reffed_ptr<SymbolTable>(s, &s);
}
inline bool SymbolTable::IsFrozen() const {
return upb_symtab_isfrozen(this);
}
inline void SymbolTable::Ref(const void *owner) const {
upb_symtab_ref(this, owner);
}
inline void SymbolTable::Unref(const void *owner) const {
upb_symtab_unref(this, owner);
}
inline void SymbolTable::DonateRef(const void *from, const void *to) const {
upb_symtab_donateref(this, from, to);
}
inline void SymbolTable::CheckRef(const void *owner) const {
upb_symtab_checkref(this, owner);
}
inline reffed_ptr<const Def> SymbolTable::Resolve(
const char* base, const char* sym) const {
const upb_def *def = upb_symtab_resolve(this, base, sym, &def);
return reffed_ptr<const Def>(def, &def);
}
inline reffed_ptr<const Def> SymbolTable::Lookup(const char *sym) const {
const upb_def *def = upb_symtab_lookup(this, sym, &def);
return reffed_ptr<const Def>(def, &def);
}
inline reffed_ptr<const MessageDef> SymbolTable::LookupMessage(
const char *sym) const {
const upb_msgdef *m = upb_symtab_lookupmsg(this, sym, &m);
return reffed_ptr<const MessageDef>(m, &m);
}
inline const Def** SymbolTable::GetDefs(
upb_deftype_t type, const void *owner, int *n) const {
return upb_symtab_getdefs(this, type, owner, n);
}
inline bool SymbolTable::Add(
Def*const* defs, int n, void* ref_donor, upb_status* status) {
return upb_symtab_add(this, (upb_def*const*)defs, n, ref_donor, status);
}
} // namespace upb
#endif
#endif /* UPB_SYMTAB_H_ */