|
|
|
/*
|
|
|
|
* upb - a minimalist implementation of protocol buffers.
|
|
|
|
*
|
|
|
|
* Copyright (c) 2009 Google Inc. See LICENSE for details.
|
|
|
|
* Author: Josh Haberman <jhaberman@gmail.com>
|
|
|
|
*
|
|
|
|
* Implementation is heavily inspired by Lua's ltable.c.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "upb/table.h"
|
|
|
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
#define UPB_MAXARRSIZE 16 // 64k.
|
|
|
|
|
|
|
|
static const double MAX_LOAD = 0.85;
|
|
|
|
|
|
|
|
// The minimum percentage of an array part that we will allow. This is a
|
|
|
|
// speed/memory-usage tradeoff (though it's not straightforward because of
|
|
|
|
// cache effects). The lower this is, the more memory we'll use.
|
|
|
|
static const double MIN_DENSITY = 0.1;
|
|
|
|
|
|
|
|
int upb_log2(uint64_t v) {
|
|
|
|
int ret = 0;
|
|
|
|
while (v >>= 1) ret++;
|
|
|
|
return UPB_MIN(UPB_MAXARRSIZE, ret);
|
|
|
|
}
|
|
|
|
|
|
|
|
char *upb_strdup(const char *s) {
|
|
|
|
size_t n = strlen(s) + 1;
|
|
|
|
char *p = malloc(n);
|
|
|
|
if (p) memcpy(p, s, n);
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
static upb_tabkey strkey(const char *str) {
|
|
|
|
upb_tabkey k;
|
|
|
|
k.str = (char*)str;
|
|
|
|
return k;
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef const upb_tabent *hashfunc_t(const upb_table *t, upb_tabkey key);
|
|
|
|
typedef bool eqlfunc_t(upb_tabkey k1, upb_tabkey k2);
|
|
|
|
|
|
|
|
/* Base table (shared code) ***************************************************/
|
|
|
|
|
|
|
|
static bool isfull(upb_table *t) {
|
|
|
|
return (double)(t->count + 1) / upb_table_size(t) > MAX_LOAD;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool init(upb_table *t, upb_ctype_t type, uint8_t size_lg2) {
|
|
|
|
t->count = 0;
|
|
|
|
t->type = type;
|
|
|
|
t->size_lg2 = size_lg2;
|
|
|
|
t->mask = upb_table_size(t) ? upb_table_size(t) - 1 : 0;
|
|
|
|
size_t bytes = upb_table_size(t) * sizeof(upb_tabent);
|
|
|
|
if (bytes > 0) {
|
|
|
|
t->entries = malloc(bytes);
|
|
|
|
if (!t->entries) return false;
|
|
|
|
memset((void*)t->entries, 0, bytes);
|
|
|
|
} else {
|
|
|
|
t->entries = NULL;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void uninit(upb_table *t) { free((void*)t->entries); }
|
|
|
|
|
|
|
|
static upb_tabent *emptyent(upb_table *t) {
|
|
|
|
upb_tabent *e = (upb_tabent*)t->entries + upb_table_size(t);
|
|
|
|
while (1) { if (upb_tabent_isempty(--e)) return e; assert(e > t->entries); }
|
|
|
|
}
|
|
|
|
|
|
|
|
static const upb_tabent *findentry(const upb_table *t, upb_tabkey key,
|
|
|
|
hashfunc_t *hash, eqlfunc_t *eql) {
|
|
|
|
if (t->size_lg2 == 0) return NULL;
|
|
|
|
const upb_tabent *e = hash(t, key);
|
|
|
|
if (upb_tabent_isempty(e)) return NULL;
|
|
|
|
while (1) {
|
|
|
|
if (eql(e->key, key)) return e;
|
|
|
|
if ((e = e->next) == NULL) return NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool lookup(const upb_table *t, upb_tabkey key, upb_value *v,
|
|
|
|
hashfunc_t *hash, eqlfunc_t *eql) {
|
|
|
|
const upb_tabent *e = findentry(t, key, hash, eql);
|
|
|
|
if (e) {
|
|
|
|
if (v) {
|
|
|
|
_upb_value_setval(v, e->val, t->type);
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// The given key must not already exist in the table.
|
|
|
|
static void insert(upb_table *t, upb_tabkey key, upb_value val,
|
|
|
|
hashfunc_t *hash, eqlfunc_t *eql) {
|
|
|
|
assert(findentry(t, key, hash, eql) == NULL);
|
|
|
|
assert(val.type == t->type);
|
|
|
|
t->count++;
|
|
|
|
upb_tabent *mainpos_e = (upb_tabent*)hash(t, key);
|
|
|
|
upb_tabent *our_e = mainpos_e;
|
|
|
|
if (upb_tabent_isempty(mainpos_e)) {
|
|
|
|
// Our main position is empty; use it.
|
|
|
|
our_e->next = NULL;
|
|
|
|
} else {
|
|
|
|
// Collision.
|
|
|
|
upb_tabent *new_e = emptyent(t);
|
|
|
|
// Head of collider's chain.
|
|
|
|
upb_tabent *chain = (upb_tabent*)hash(t, mainpos_e->key);
|
|
|
|
if (chain == mainpos_e) {
|
|
|
|
// Existing ent is in its main posisiton (it has the same hash as us, and
|
|
|
|
// is the head of our chain). Insert to new ent and append to this chain.
|
|
|
|
new_e->next = mainpos_e->next;
|
|
|
|
mainpos_e->next = new_e;
|
|
|
|
our_e = new_e;
|
|
|
|
} else {
|
|
|
|
// Existing ent is not in its main position (it is a node in some other
|
|
|
|
// chain). This implies that no existing ent in the table has our hash.
|
|
|
|
// Evict it (updating its chain) and use its ent for head of our chain.
|
|
|
|
*new_e = *mainpos_e; // copies next.
|
|
|
|
while (chain->next != mainpos_e) {
|
|
|
|
chain = (upb_tabent*)chain->next;
|
|
|
|
assert(chain);
|
|
|
|
}
|
|
|
|
chain->next = new_e;
|
|
|
|
our_e = mainpos_e;
|
|
|
|
our_e->next = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
our_e->key = key;
|
|
|
|
our_e->val = val.val;
|
|
|
|
assert(findentry(t, key, hash, eql) == our_e);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool rm(upb_table *t, upb_tabkey key, upb_value *val,
|
|
|
|
upb_tabkey *removed, hashfunc_t *hash, eqlfunc_t *eql) {
|
|
|
|
upb_tabent *chain = (upb_tabent*)hash(t, key);
|
|
|
|
if (upb_tabent_isempty(chain)) return false;
|
|
|
|
if (eql(chain->key, key)) {
|
|
|
|
// Element to remove is at the head of its chain.
|
|
|
|
t->count--;
|
|
|
|
if (val) {
|
|
|
|
_upb_value_setval(val, chain->val, t->type);
|
|
|
|
}
|
|
|
|
if (chain->next) {
|
|
|
|
upb_tabent *move = (upb_tabent*)chain->next;
|
|
|
|
*chain = *move;
|
|
|
|
if (removed) *removed = move->key;
|
|
|
|
move->key.num = 0; // Make the slot empty.
|
|
|
|
} else {
|
|
|
|
if (removed) *removed = chain->key;
|
|
|
|
chain->key.num = 0; // Make the slot empty.
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
// Element to remove is either in a non-head position or not in the table.
|
|
|
|
while (chain->next && !eql(chain->next->key, key))
|
|
|
|
chain = (upb_tabent*)chain->next;
|
|
|
|
if (chain->next) {
|
|
|
|
// Found element to remove.
|
|
|
|
if (val) {
|
|
|
|
_upb_value_setval(val, chain->next->val, t->type);
|
|
|
|
}
|
|
|
|
upb_tabent *rm = (upb_tabent*)chain->next;
|
|
|
|
if (removed) *removed = rm->key;
|
|
|
|
rm->key.num = 0;
|
|
|
|
chain->next = rm->next;
|
|
|
|
t->count--;
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static const upb_tabent *next(const upb_table *t, const upb_tabent *e) {
|
|
|
|
const upb_tabent *end = t->entries + upb_table_size(t);
|
|
|
|
do { if (++e == end) return NULL; } while(e->key.num == 0);
|
|
|
|
return e;
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: is calculating t->entries - 1 undefined behavior? If so find a better
|
|
|
|
// solution.
|
|
|
|
static const upb_tabent *begin(const upb_table *t) {
|
|
|
|
return next(t, t->entries - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* upb_strtable ***************************************************************/
|
|
|
|
|
|
|
|
// A simple "subclass" of upb_table that only adds a hash function for strings.
|
|
|
|
|
|
|
|
static const upb_tabent *strhash(const upb_table *t, upb_tabkey key) {
|
|
|
|
// Could avoid the strlen() by using a hash function that terminates on NULL.
|
|
|
|
return t->entries + (MurmurHash2(key.str, strlen(key.str), 0) & t->mask);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool streql(upb_tabkey k1, upb_tabkey k2) {
|
|
|
|
return strcmp(k1.str, k2.str) == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_strtable_init(upb_strtable *t, upb_ctype_t type) {
|
|
|
|
return init(&t->t, type, 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_strtable_uninit(upb_strtable *t) {
|
|
|
|
for (size_t i = 0; i < upb_table_size(&t->t); i++)
|
|
|
|
free((void*)t->t.entries[i].key.str);
|
|
|
|
uninit(&t->t);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_strtable_insert(upb_strtable *t, const char *k, upb_value v) {
|
|
|
|
if (isfull(&t->t)) {
|
|
|
|
// Need to resize. New table of double the size, add old elements to it.
|
|
|
|
upb_strtable new_table;
|
|
|
|
if (!init(&new_table.t, t->t.type, t->t.size_lg2 + 1))
|
|
|
|
return false;
|
|
|
|
upb_strtable_iter i;
|
|
|
|
upb_strtable_begin(&i, t);
|
|
|
|
for ( ; !upb_strtable_done(&i); upb_strtable_next(&i)) {
|
|
|
|
upb_strtable_insert(
|
|
|
|
&new_table, upb_strtable_iter_key(&i), upb_strtable_iter_value(&i));
|
|
|
|
}
|
|
|
|
upb_strtable_uninit(t);
|
|
|
|
*t = new_table;
|
|
|
|
}
|
|
|
|
if ((k = upb_strdup(k)) == NULL) return false;
|
|
|
|
insert(&t->t, strkey(k), v, &strhash, &streql);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_strtable_lookup(const upb_strtable *t, const char *key, upb_value *v) {
|
|
|
|
return lookup(&t->t, strkey(key), v, &strhash, &streql);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_strtable_remove(upb_strtable *t, const char *key, upb_value *val) {
|
|
|
|
upb_tabkey tabkey;
|
|
|
|
if (rm(&t->t, strkey(key), val, &tabkey, &strhash, &streql)) {
|
|
|
|
free((void*)tabkey.str);
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t) {
|
|
|
|
i->t = t;
|
|
|
|
i->e = begin(&t->t);
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_strtable_next(upb_strtable_iter *i) {
|
|
|
|
i->e = next(&i->t->t, i->e);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* upb_inttable ***************************************************************/
|
|
|
|
|
|
|
|
// For inttables we use a hybrid structure where small keys are kept in an
|
|
|
|
// array and large keys are put in the hash table.
|
|
|
|
|
|
|
|
static bool inteql(upb_tabkey k1, upb_tabkey k2) {
|
|
|
|
return k1.num == k2.num;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t upb_inttable_count(const upb_inttable *t) {
|
|
|
|
return t->t.count + t->array_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void check(upb_inttable *t) {
|
|
|
|
UPB_UNUSED(t);
|
|
|
|
#if defined(UPB_DEBUG_TABLE) && !defined(NDEBUG)
|
|
|
|
// This check is very expensive (makes inserts/deletes O(N)).
|
|
|
|
size_t count = 0;
|
|
|
|
upb_inttable_iter i;
|
|
|
|
upb_inttable_begin(&i, t);
|
|
|
|
for(; !upb_inttable_done(&i); upb_inttable_next(&i), count++) {
|
|
|
|
assert(upb_inttable_lookup(t, upb_inttable_iter_key(&i), NULL));
|
|
|
|
}
|
|
|
|
assert(count == upb_inttable_count(t));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_inttable_sizedinit(upb_inttable *t, upb_ctype_t type,
|
|
|
|
size_t asize, int hsize_lg2) {
|
|
|
|
if (!init(&t->t, type, hsize_lg2)) return false;
|
|
|
|
// Always make the array part at least 1 long, so that we know key 0
|
|
|
|
// won't be in the hash part, which simplifies things.
|
|
|
|
t->array_size = UPB_MAX(1, asize);
|
|
|
|
t->array_count = 0;
|
|
|
|
size_t array_bytes = t->array_size * sizeof(upb_value);
|
|
|
|
t->array = malloc(array_bytes);
|
|
|
|
if (!t->array) {
|
|
|
|
uninit(&t->t);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
memset((void*)t->array, 0xff, array_bytes);
|
|
|
|
check(t);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_inttable_init(upb_inttable *t, upb_ctype_t type) {
|
|
|
|
return upb_inttable_sizedinit(t, type, 0, 4);
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_inttable_uninit(upb_inttable *t) {
|
|
|
|
uninit(&t->t);
|
|
|
|
free((void*)t->array);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_inttable_insert(upb_inttable *t, uintptr_t key, upb_value val) {
|
|
|
|
assert(upb_arrhas(val.val));
|
|
|
|
if (key < t->array_size) {
|
|
|
|
assert(!upb_arrhas(t->array[key]));
|
|
|
|
t->array_count++;
|
|
|
|
((_upb_value*)t->array)[key] = val.val;
|
|
|
|
} else {
|
|
|
|
if (isfull(&t->t)) {
|
|
|
|
// Need to resize the hash part, but we re-use the array part.
|
|
|
|
upb_table new_table;
|
|
|
|
if (!init(&new_table, t->t.type, t->t.size_lg2 + 1))
|
|
|
|
return false;
|
|
|
|
const upb_tabent *e;
|
|
|
|
for (e = begin(&t->t); e; e = next(&t->t, e)) {
|
|
|
|
upb_value v;
|
|
|
|
_upb_value_setval(&v, e->val, t->t.type);
|
|
|
|
insert(&new_table, e->key, v, &upb_inthash, &inteql);
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(t->t.count == new_table.count);
|
|
|
|
|
|
|
|
uninit(&t->t);
|
|
|
|
t->t = new_table;
|
|
|
|
}
|
|
|
|
insert(&t->t, upb_intkey(key), val, &upb_inthash, &inteql);
|
|
|
|
}
|
|
|
|
check(t);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v) {
|
|
|
|
if (key < t->array_size) {
|
|
|
|
bool ret = upb_arrhas(t->array[key]);
|
|
|
|
if (ret && v) {
|
|
|
|
_upb_value_setval(v, t->array[key], t->t.type);
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
} else {
|
|
|
|
return lookup(&t->t, upb_intkey(key), v, &upb_inthash, &inteql);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val) {
|
|
|
|
bool success;
|
|
|
|
if (key < t->array_size) {
|
|
|
|
if (upb_arrhas(t->array[key])) {
|
|
|
|
t->array_count--;
|
|
|
|
if (val) {
|
|
|
|
_upb_value_setval(val, t->array[key], t->t.type);
|
|
|
|
}
|
|
|
|
((upb_value*)t->array)[key] = upb_value_uint64(-1);
|
|
|
|
success = true;
|
|
|
|
} else {
|
|
|
|
success = false;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
upb_tabkey removed;
|
|
|
|
success = rm(&t->t, upb_intkey(key), val, &removed, &upb_inthash, &inteql);
|
|
|
|
}
|
|
|
|
check(t);
|
|
|
|
return success;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_inttable_push(upb_inttable *t, upb_value val) {
|
|
|
|
return upb_inttable_insert(t, upb_inttable_count(t), val);
|
|
|
|
}
|
|
|
|
|
|
|
|
upb_value upb_inttable_pop(upb_inttable *t) {
|
|
|
|
upb_value val;
|
|
|
|
bool ok = upb_inttable_remove(t, upb_inttable_count(t) - 1, &val);
|
|
|
|
UPB_ASSERT_VAR(ok, ok);
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_inttable_insertptr(upb_inttable *t, const void *key, upb_value val) {
|
|
|
|
return upb_inttable_insert(t, (uintptr_t)key, val);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_inttable_lookupptr(const upb_inttable *t, const void *key,
|
|
|
|
upb_value *v) {
|
|
|
|
return upb_inttable_lookup(t, (uintptr_t)key, v);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val) {
|
|
|
|
return upb_inttable_remove(t, (uintptr_t)key, val);
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_inttable_compact(upb_inttable *t) {
|
|
|
|
// Find the largest power of two that satisfies the MIN_DENSITY definition.
|
|
|
|
int counts[UPB_MAXARRSIZE + 1] = {0};
|
|
|
|
upb_inttable_iter i;
|
|
|
|
for (upb_inttable_begin(&i, t); !upb_inttable_done(&i); upb_inttable_next(&i))
|
|
|
|
counts[upb_log2(upb_inttable_iter_key(&i))]++;
|
|
|
|
// Int part must always be at least 1 entry large to catch lookups of key 0.
|
|
|
|
// Key 0 must always be in the array part because "0" in the hash part
|
|
|
|
// denotes an empty entry.
|
|
|
|
int count = UPB_MAX(upb_inttable_count(t), 1);
|
|
|
|
int size;
|
|
|
|
for (size = UPB_MAXARRSIZE; size > 1; size--) {
|
|
|
|
count -= counts[size];
|
|
|
|
if (count >= (1 << size) * MIN_DENSITY) break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Insert all elements into new, perfectly-sized table.
|
|
|
|
upb_inttable new_table;
|
|
|
|
int hashsize = (upb_inttable_count(t) - count + 1) / MAX_LOAD;
|
|
|
|
|
|
|
|
upb_inttable_sizedinit(&new_table, t->t.type, size, upb_log2(hashsize));
|
|
|
|
for (upb_inttable_begin(&i, t); !upb_inttable_done(&i); upb_inttable_next(&i))
|
|
|
|
upb_inttable_insert(
|
|
|
|
&new_table, upb_inttable_iter_key(&i), upb_inttable_iter_value(&i));
|
|
|
|
upb_inttable_uninit(t);
|
|
|
|
*t = new_table;
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t) {
|
|
|
|
i->t = t;
|
|
|
|
i->arrkey = -1;
|
|
|
|
i->array_part = true;
|
|
|
|
upb_inttable_next(i);
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_inttable_next(upb_inttable_iter *iter) {
|
|
|
|
const upb_inttable *t = iter->t;
|
|
|
|
if (iter->array_part) {
|
|
|
|
for (size_t i = iter->arrkey; ++i < t->array_size; )
|
|
|
|
if (upb_arrhas(t->array[i])) {
|
|
|
|
iter->ptr.val = &t->array[i];
|
|
|
|
iter->arrkey = i;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
iter->array_part = false;
|
|
|
|
iter->ptr.ent = t->t.entries - 1;
|
|
|
|
}
|
|
|
|
iter->ptr.ent = next(&t->t, iter->ptr.ent);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef UPB_UNALIGNED_READS_OK
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// MurmurHash2, by Austin Appleby (released as public domain).
|
|
|
|
// Reformatted and C99-ified by Joshua Haberman.
|
|
|
|
// Note - This code makes a few assumptions about how your machine behaves -
|
|
|
|
// 1. We can read a 4-byte value from any address without crashing
|
|
|
|
// 2. sizeof(int) == 4 (in upb this limitation is removed by using uint32_t
|
|
|
|
// And it has a few limitations -
|
|
|
|
// 1. It will not work incrementally.
|
|
|
|
// 2. It will not produce the same results on little-endian and big-endian
|
|
|
|
// machines.
|
|
|
|
uint32_t MurmurHash2(const void *key, size_t len, uint32_t seed) {
|
|
|
|
// 'm' and 'r' are mixing constants generated offline.
|
|
|
|
// They're not really 'magic', they just happen to work well.
|
|
|
|
const uint32_t m = 0x5bd1e995;
|
|
|
|
const int32_t r = 24;
|
|
|
|
|
|
|
|
// Initialize the hash to a 'random' value
|
|
|
|
uint32_t h = seed ^ len;
|
|
|
|
|
|
|
|
// Mix 4 bytes at a time into the hash
|
|
|
|
const uint8_t * data = (const uint8_t *)key;
|
|
|
|
while(len >= 4) {
|
|
|
|
uint32_t k = *(uint32_t *)data;
|
|
|
|
|
|
|
|
k *= m;
|
|
|
|
k ^= k >> r;
|
|
|
|
k *= m;
|
|
|
|
|
|
|
|
h *= m;
|
|
|
|
h ^= k;
|
|
|
|
|
|
|
|
data += 4;
|
|
|
|
len -= 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Handle the last few bytes of the input array
|
|
|
|
switch(len) {
|
|
|
|
case 3: h ^= data[2] << 16;
|
|
|
|
case 2: h ^= data[1] << 8;
|
|
|
|
case 1: h ^= data[0]; h *= m;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Do a few final mixes of the hash to ensure the last few
|
|
|
|
// bytes are well-incorporated.
|
|
|
|
h ^= h >> 13;
|
|
|
|
h *= m;
|
|
|
|
h ^= h >> 15;
|
|
|
|
|
|
|
|
return h;
|
|
|
|
}
|
|
|
|
|
|
|
|
#else // !UPB_UNALIGNED_READS_OK
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// MurmurHashAligned2, by Austin Appleby
|
|
|
|
// Same algorithm as MurmurHash2, but only does aligned reads - should be safer
|
|
|
|
// on certain platforms.
|
|
|
|
// Performance will be lower than MurmurHash2
|
|
|
|
|
|
|
|
#define MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; }
|
|
|
|
|
|
|
|
uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed) {
|
|
|
|
const uint32_t m = 0x5bd1e995;
|
|
|
|
const int32_t r = 24;
|
|
|
|
const uint8_t * data = (const uint8_t *)key;
|
|
|
|
uint32_t h = seed ^ len;
|
|
|
|
uint8_t align = (uintptr_t)data & 3;
|
|
|
|
|
|
|
|
if(align && (len >= 4)) {
|
|
|
|
// Pre-load the temp registers
|
|
|
|
uint32_t t = 0, d = 0;
|
|
|
|
|
|
|
|
switch(align) {
|
|
|
|
case 1: t |= data[2] << 16;
|
|
|
|
case 2: t |= data[1] << 8;
|
|
|
|
case 3: t |= data[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
t <<= (8 * align);
|
|
|
|
|
|
|
|
data += 4-align;
|
|
|
|
len -= 4-align;
|
|
|
|
|
|
|
|
int32_t sl = 8 * (4-align);
|
|
|
|
int32_t sr = 8 * align;
|
|
|
|
|
|
|
|
// Mix
|
|
|
|
|
|
|
|
while(len >= 4) {
|
|
|
|
d = *(uint32_t *)data;
|
|
|
|
t = (t >> sr) | (d << sl);
|
|
|
|
|
|
|
|
uint32_t k = t;
|
|
|
|
|
|
|
|
MIX(h,k,m);
|
|
|
|
|
|
|
|
t = d;
|
|
|
|
|
|
|
|
data += 4;
|
|
|
|
len -= 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Handle leftover data in temp registers
|
|
|
|
|
|
|
|
d = 0;
|
|
|
|
|
|
|
|
if(len >= align) {
|
|
|
|
switch(align) {
|
|
|
|
case 3: d |= data[2] << 16;
|
|
|
|
case 2: d |= data[1] << 8;
|
|
|
|
case 1: d |= data[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t k = (t >> sr) | (d << sl);
|
|
|
|
MIX(h,k,m);
|
|
|
|
|
|
|
|
data += align;
|
|
|
|
len -= align;
|
|
|
|
|
|
|
|
//----------
|
|
|
|
// Handle tail bytes
|
|
|
|
|
|
|
|
switch(len) {
|
|
|
|
case 3: h ^= data[2] << 16;
|
|
|
|
case 2: h ^= data[1] << 8;
|
|
|
|
case 1: h ^= data[0]; h *= m;
|
|
|
|
};
|
|
|
|
} else {
|
|
|
|
switch(len) {
|
|
|
|
case 3: d |= data[2] << 16;
|
|
|
|
case 2: d |= data[1] << 8;
|
|
|
|
case 1: d |= data[0];
|
|
|
|
case 0: h ^= (t >> sr) | (d << sl); h *= m;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
h ^= h >> 13;
|
|
|
|
h *= m;
|
|
|
|
h ^= h >> 15;
|
|
|
|
|
|
|
|
return h;
|
|
|
|
} else {
|
|
|
|
while(len >= 4) {
|
|
|
|
uint32_t k = *(uint32_t *)data;
|
|
|
|
|
|
|
|
MIX(h,k,m);
|
|
|
|
|
|
|
|
data += 4;
|
|
|
|
len -= 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
//----------
|
|
|
|
// Handle tail bytes
|
|
|
|
|
|
|
|
switch(len) {
|
|
|
|
case 3: h ^= data[2] << 16;
|
|
|
|
case 2: h ^= data[1] << 8;
|
|
|
|
case 1: h ^= data[0]; h *= m;
|
|
|
|
};
|
|
|
|
|
|
|
|
h ^= h >> 13;
|
|
|
|
h *= m;
|
|
|
|
h ^= h >> 15;
|
|
|
|
|
|
|
|
return h;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#undef MIX
|
|
|
|
|
|
|
|
#endif // UPB_UNALIGNED_READS_OK
|