|
|
|
/*
|
|
|
|
* upb - a minimalist implementation of protocol buffers.
|
|
|
|
*
|
|
|
|
* Copyright (c) 2012 Google Inc. See LICENSE for details.
|
|
|
|
* Author: Josh Haberman <jhaberman@gmail.com>
|
|
|
|
*
|
|
|
|
* Our key invariants are:
|
|
|
|
* 1. reference cycles never span groups
|
|
|
|
* 2. for ref2(to, from), we increment to's count iff group(from) != group(to)
|
|
|
|
*
|
|
|
|
* The previous two are how we avoid leaking cycles. Other important
|
|
|
|
* invariants are:
|
|
|
|
* 3. for mutable objects "from" and "to", if there exists a ref2(to, from)
|
|
|
|
* this implies group(from) == group(to). (In practice, what we implement
|
|
|
|
* is even stronger; "from" and "to" will share a group if there has *ever*
|
|
|
|
* been a ref2(to, from), but all that is necessary for correctness is the
|
|
|
|
* weaker one).
|
|
|
|
* 4. mutable and immutable objects are never in the same group.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "upb/refcounted.h"
|
|
|
|
|
|
|
|
#include <setjmp.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
|
|
uint32_t static_refcount = 1;
|
|
|
|
|
|
|
|
/* arch-specific atomic primitives *******************************************/
|
|
|
|
|
|
|
|
#ifdef UPB_THREAD_UNSAFE //////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
static void atomic_inc(uint32_t *a) { (*a)++; }
|
|
|
|
static bool atomic_dec(uint32_t *a) { return --(*a) == 0; }
|
|
|
|
|
|
|
|
#elif (__GNUC__ == 4 && __GNUC_MINOR__ >= 1) || __GNUC__ > 4 ///////////////////
|
|
|
|
|
|
|
|
static void atomic_inc(uint32_t *a) { __sync_fetch_and_add(a, 1); }
|
|
|
|
static bool atomic_dec(uint32_t *a) { return __sync_sub_and_fetch(a, 1) == 0; }
|
|
|
|
|
|
|
|
#elif defined(WIN32) ///////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
#include <Windows.h>
|
|
|
|
|
|
|
|
static void atomic_inc(upb_atomic_t *a) { InterlockedIncrement(&a->val); }
|
|
|
|
static bool atomic_dec(upb_atomic_t *a) {
|
|
|
|
return InterlockedDecrement(&a->val) == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
#error Atomic primitives not defined for your platform/CPU. \
|
|
|
|
Implement them or compile with UPB_THREAD_UNSAFE.
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
/* Reference tracking (debug only) ********************************************/
|
|
|
|
|
|
|
|
#ifdef UPB_DEBUG_REFS
|
|
|
|
|
|
|
|
#ifdef UPB_THREAD_UNSAFE
|
|
|
|
|
|
|
|
static void upb_lock() {}
|
|
|
|
static void upb_unlock() {}
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
// User must define functions that lock/unlock a global mutex and link this
|
|
|
|
// file against them.
|
|
|
|
void upb_lock();
|
|
|
|
void upb_unlock();
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// UPB_DEBUG_REFS mode counts on being able to malloc() memory in some
|
|
|
|
// code-paths that can normally never fail, like upb_refcounted_ref(). Since
|
|
|
|
// we have no way to propagage out-of-memory errors back to the user, and since
|
|
|
|
// these errors can only occur in UPB_DEBUG_REFS mode, we immediately fail.
|
|
|
|
#define CHECK_OOM(predicate) assert(predicate)
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
const upb_refcounted *obj; // Object we are taking a ref on.
|
|
|
|
int count; // How many refs there are (duplicates only allowed for ref2).
|
|
|
|
bool is_ref2;
|
|
|
|
} trackedref;
|
|
|
|
|
|
|
|
trackedref *trackedref_new(const upb_refcounted *obj, bool is_ref2) {
|
|
|
|
trackedref *ret = malloc(sizeof(*ret));
|
|
|
|
CHECK_OOM(ret);
|
|
|
|
ret->obj = obj;
|
|
|
|
ret->count = 1;
|
|
|
|
ret->is_ref2 = is_ref2;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
// A reversible function for obfuscating a uintptr_t.
|
|
|
|
// This depends on sizeof(uintptr_t) <= sizeof(uint64_t), so would fail
|
|
|
|
// on 128-bit machines.
|
|
|
|
static uintptr_t obfuscate(const void *x) { return ~(uintptr_t)x; }
|
|
|
|
|
|
|
|
static upb_value obfuscate_v(const void *x) {
|
|
|
|
return upb_value_uint64(obfuscate(x));
|
|
|
|
}
|
|
|
|
|
|
|
|
static const void *unobfuscate_v(upb_value x) {
|
|
|
|
return (void*)~upb_value_getuint64(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Stores tracked references according to the following scheme:
|
|
|
|
// (upb_inttable)reftracks = {
|
|
|
|
// (void*)owner -> (upb_inttable*) = {
|
|
|
|
// obfuscate((upb_refcounted*)obj) -> obfuscate((trackedref*)is_ref2)
|
|
|
|
// }
|
|
|
|
// }
|
|
|
|
//
|
|
|
|
// obfuscate() is a function that hides the link from the heap checker, so
|
|
|
|
// that it is not followed for the purposes of deciding what has "indirectly
|
|
|
|
// leaked." Even though we have a pointer to the trackedref*, we want it to
|
|
|
|
// appear leaked if it is not freed.
|
|
|
|
//
|
|
|
|
// This scheme gives us the following desirable properties:
|
|
|
|
//
|
|
|
|
// 1. We can easily determine whether an (owner->obj) ref already exists
|
|
|
|
// and error out if a duplicate ref is taken.
|
|
|
|
//
|
|
|
|
// 2. Because the trackedref is allocated with malloc() at the point that
|
|
|
|
// the ref is taken, that memory will be leaked if the ref is not released.
|
|
|
|
// Because the malloc'd memory points to the refcounted object, the object
|
|
|
|
// itself will only be considered "indirectly leaked" by smart memory
|
|
|
|
// checkers like Valgrind. This will correctly blame the ref leaker
|
|
|
|
// instead of the innocent code that allocated the object to begin with.
|
|
|
|
//
|
|
|
|
// 3. We can easily enumerate all of the ref2 refs for a given owner, which
|
|
|
|
// allows us to double-check that the object's visit() function is
|
|
|
|
// correctly implemented.
|
|
|
|
//
|
|
|
|
static upb_inttable reftracks = UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR);
|
|
|
|
|
|
|
|
static upb_inttable *trygettab(const void *p) {
|
|
|
|
upb_value v;
|
|
|
|
return upb_inttable_lookupptr(&reftracks, p, &v) ? upb_value_getptr(v) : NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Gets or creates the tracking table for the given owner.
|
|
|
|
static upb_inttable *gettab(const void *p) {
|
|
|
|
upb_inttable *tab = trygettab(p);
|
|
|
|
if (tab == NULL) {
|
|
|
|
tab = malloc(sizeof(*tab));
|
|
|
|
CHECK_OOM(tab);
|
|
|
|
upb_inttable_init(tab, UPB_CTYPE_UINT64);
|
|
|
|
upb_inttable_insertptr(&reftracks, p, upb_value_ptr(tab));
|
|
|
|
}
|
|
|
|
return tab;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void track(const upb_refcounted *r, const void *owner, bool ref2) {
|
|
|
|
upb_lock();
|
|
|
|
upb_inttable *refs = gettab(owner);
|
|
|
|
upb_value v;
|
|
|
|
if (upb_inttable_lookup(refs, obfuscate(r), &v)) {
|
|
|
|
trackedref *ref = (trackedref*)unobfuscate_v(v);
|
|
|
|
// Since we allow multiple ref2's for the same to/from pair without
|
|
|
|
// allocating separate memory for each one, we lose the fine-grained
|
|
|
|
// tracking behavior we get with regular refs. Since ref2s only happen
|
|
|
|
// inside upb, we'll accept this limitation until/unless there is a really
|
|
|
|
// difficult upb-internal bug that can't be figured out without it.
|
|
|
|
assert(ref2);
|
|
|
|
assert(ref->is_ref2);
|
|
|
|
ref->count++;
|
|
|
|
} else {
|
|
|
|
trackedref *ref = trackedref_new(r, ref2);
|
|
|
|
bool ok = upb_inttable_insert(refs, obfuscate(r), obfuscate_v(ref));
|
|
|
|
CHECK_OOM(ok);
|
|
|
|
}
|
|
|
|
upb_unlock();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void untrack(const upb_refcounted *r, const void *owner, bool ref2) {
|
|
|
|
upb_lock();
|
|
|
|
upb_inttable *refs = gettab(owner);
|
|
|
|
upb_value v;
|
|
|
|
bool found = upb_inttable_lookup(refs, obfuscate(r), &v);
|
|
|
|
// This assert will fail if an owner attempts to release a ref it didn't have.
|
|
|
|
UPB_ASSERT_VAR(found, found);
|
|
|
|
trackedref *ref = (trackedref*)unobfuscate_v(v);
|
|
|
|
assert(ref->is_ref2 == ref2);
|
|
|
|
if (--ref->count == 0) {
|
|
|
|
free(ref);
|
|
|
|
upb_inttable_remove(refs, obfuscate(r), NULL);
|
|
|
|
if (upb_inttable_count(refs) == 0) {
|
|
|
|
upb_inttable_uninit(refs);
|
|
|
|
free(refs);
|
|
|
|
upb_inttable_removeptr(&reftracks, owner, NULL);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
upb_unlock();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void checkref(const upb_refcounted *r, const void *owner, bool ref2) {
|
|
|
|
upb_lock();
|
|
|
|
upb_inttable *refs = gettab(owner);
|
|
|
|
upb_value v;
|
|
|
|
bool found = upb_inttable_lookup(refs, obfuscate(r), &v);
|
|
|
|
UPB_ASSERT_VAR(found, found);
|
|
|
|
trackedref *ref = (trackedref*)unobfuscate_v(v);
|
|
|
|
assert(ref->obj == r);
|
|
|
|
assert(ref->is_ref2 == ref2);
|
|
|
|
upb_unlock();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Populates the given UPB_CTYPE_INT32 inttable with counts of ref2's that
|
|
|
|
// originate from the given owner.
|
|
|
|
static void getref2s(const upb_refcounted *owner, upb_inttable *tab) {
|
|
|
|
upb_lock();
|
|
|
|
upb_inttable *refs = trygettab(owner);
|
|
|
|
if (refs) {
|
|
|
|
upb_inttable_iter i;
|
|
|
|
upb_inttable_begin(&i, refs);
|
|
|
|
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
|
|
|
|
trackedref *ref = (trackedref*)unobfuscate_v(upb_inttable_iter_value(&i));
|
|
|
|
if (ref->is_ref2) {
|
|
|
|
upb_value count = upb_value_int32(ref->count);
|
|
|
|
bool ok = upb_inttable_insertptr(tab, ref->obj, count);
|
|
|
|
CHECK_OOM(ok);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
upb_unlock();
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
upb_inttable ref2;
|
|
|
|
const upb_refcounted *obj;
|
|
|
|
} check_state;
|
|
|
|
|
|
|
|
static void visit_check(const upb_refcounted *obj, const upb_refcounted *subobj,
|
|
|
|
void *closure) {
|
|
|
|
check_state *s = closure;
|
|
|
|
assert(obj == s->obj);
|
|
|
|
assert(subobj);
|
|
|
|
upb_inttable *ref2 = &s->ref2;
|
|
|
|
upb_value v;
|
|
|
|
bool removed = upb_inttable_removeptr(ref2, subobj, &v);
|
|
|
|
// The following assertion will fail if the visit() function visits a subobj
|
|
|
|
// that it did not have a ref2 on, or visits the same subobj too many times.
|
|
|
|
assert(removed);
|
|
|
|
int32_t newcount = upb_value_getint32(v) - 1;
|
|
|
|
if (newcount > 0) {
|
|
|
|
upb_inttable_insert(ref2, (uintptr_t)subobj, upb_value_int32(newcount));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void visit(const upb_refcounted *r, upb_refcounted_visit *v,
|
|
|
|
void *closure) {
|
|
|
|
// In DEBUG_REFS mode we know what existing ref2 refs there are, so we know
|
|
|
|
// exactly the set of nodes that visit() should visit. So we verify visit()'s
|
|
|
|
// correctness here.
|
|
|
|
check_state state;
|
|
|
|
state.obj = r;
|
|
|
|
bool ok = upb_inttable_init(&state.ref2, UPB_CTYPE_INT32);
|
|
|
|
CHECK_OOM(ok);
|
|
|
|
getref2s(r, &state.ref2);
|
|
|
|
|
|
|
|
// This should visit any children in the ref2 table.
|
|
|
|
if (r->vtbl->visit) r->vtbl->visit(r, visit_check, &state);
|
|
|
|
|
|
|
|
// This assertion will fail if the visit() function missed any children.
|
|
|
|
assert(upb_inttable_count(&state.ref2) == 0);
|
|
|
|
upb_inttable_uninit(&state.ref2);
|
|
|
|
if (r->vtbl->visit) r->vtbl->visit(r, v, closure);
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
static void track(const upb_refcounted *r, const void *owner, bool ref2) {
|
|
|
|
UPB_UNUSED(r);
|
|
|
|
UPB_UNUSED(owner);
|
|
|
|
UPB_UNUSED(ref2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void untrack(const upb_refcounted *r, const void *owner, bool ref2) {
|
|
|
|
UPB_UNUSED(r);
|
|
|
|
UPB_UNUSED(owner);
|
|
|
|
UPB_UNUSED(ref2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void checkref(const upb_refcounted *r, const void *owner, bool ref2) {
|
|
|
|
UPB_UNUSED(r);
|
|
|
|
UPB_UNUSED(owner);
|
|
|
|
UPB_UNUSED(ref2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void visit(const upb_refcounted *r, upb_refcounted_visit *v,
|
|
|
|
void *closure) {
|
|
|
|
if (r->vtbl->visit) r->vtbl->visit(r, v, closure);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // UPB_DEBUG_REFS
|
|
|
|
|
|
|
|
|
|
|
|
/* freeze() *******************************************************************/
|
|
|
|
|
|
|
|
// The freeze() operation is by far the most complicated part of this scheme.
|
|
|
|
// We compute strongly-connected components and then mutate the graph such that
|
|
|
|
// we preserve the invariants documented at the top of this file. And we must
|
|
|
|
// handle out-of-memory errors gracefully (without leaving the graph
|
|
|
|
// inconsistent), which adds to the fun.
|
|
|
|
|
|
|
|
// The state used by the freeze operation (shared across many functions).
|
|
|
|
typedef struct {
|
|
|
|
int depth;
|
|
|
|
int maxdepth;
|
|
|
|
uint64_t index;
|
|
|
|
// Maps upb_refcounted* -> attributes (color, etc). attr layout varies by
|
|
|
|
// color.
|
|
|
|
upb_inttable objattr;
|
|
|
|
upb_inttable stack; // stack of upb_refcounted* for Tarjan's algorithm.
|
|
|
|
upb_inttable groups; // array of uint32_t*, malloc'd refcounts for new groups
|
|
|
|
upb_status *status;
|
|
|
|
jmp_buf err;
|
|
|
|
} tarjan;
|
|
|
|
|
|
|
|
static void release_ref2(const upb_refcounted *obj,
|
|
|
|
const upb_refcounted *subobj,
|
|
|
|
void *closure);
|
|
|
|
|
|
|
|
// Node attributes /////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
// After our analysis phase all nodes will be either GRAY or WHITE.
|
|
|
|
|
|
|
|
typedef enum {
|
|
|
|
BLACK = 0, // Object has not been seen.
|
|
|
|
GRAY, // Object has been found via a refgroup but may not be reachable.
|
|
|
|
GREEN, // Object is reachable and is currently on the Tarjan stack.
|
|
|
|
WHITE, // Object is reachable and has been assigned a group (SCC).
|
|
|
|
} color_t;
|
|
|
|
|
|
|
|
UPB_NORETURN static void err(tarjan *t) { longjmp(t->err, 1); }
|
|
|
|
UPB_NORETURN static void oom(tarjan *t) {
|
|
|
|
upb_status_seterrliteral(t->status, "out of memory");
|
|
|
|
err(t);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t trygetattr(const tarjan *t, const upb_refcounted *r) {
|
|
|
|
upb_value v;
|
|
|
|
return upb_inttable_lookupptr(&t->objattr, r, &v) ?
|
|
|
|
upb_value_getuint64(v) : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t getattr(const tarjan *t, const upb_refcounted *r) {
|
|
|
|
upb_value v;
|
|
|
|
bool found = upb_inttable_lookupptr(&t->objattr, r, &v);
|
|
|
|
UPB_ASSERT_VAR(found, found);
|
|
|
|
return upb_value_getuint64(v);
|
|
|
|
}
|
|
|
|
|
|
|
|
void setattr(tarjan *t, const upb_refcounted *r, uint64_t attr) {
|
|
|
|
upb_inttable_removeptr(&t->objattr, r, NULL);
|
|
|
|
upb_inttable_insertptr(&t->objattr, r, upb_value_uint64(attr));
|
|
|
|
}
|
|
|
|
|
|
|
|
static color_t color(tarjan *t, const upb_refcounted *r) {
|
|
|
|
return trygetattr(t, r) & 0x3; // Color is always stored in the low 2 bits.
|
|
|
|
}
|
|
|
|
|
|
|
|
static void set_gray(tarjan *t, const upb_refcounted *r) {
|
|
|
|
assert(color(t, r) == BLACK);
|
|
|
|
setattr(t, r, GRAY);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Pushes an obj onto the Tarjan stack and sets it to GREEN.
|
|
|
|
static void push(tarjan *t, const upb_refcounted *r) {
|
|
|
|
assert(color(t, r) == BLACK || color(t, r) == GRAY);
|
|
|
|
// This defines the attr layout for the GREEN state. "index" and "lowlink"
|
|
|
|
// get 31 bits, which is plenty (limit of 2B objects frozen at a time).
|
|
|
|
setattr(t, r, GREEN | (t->index << 2) | (t->index << 33));
|
|
|
|
if (++t->index == 0x80000000) {
|
|
|
|
upb_status_seterrliteral(t->status, "too many objects to freeze");
|
|
|
|
err(t);
|
|
|
|
}
|
|
|
|
upb_inttable_push(&t->stack, upb_value_ptr((void*)r));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Pops an obj from the Tarjan stack and sets it to WHITE, with a ptr to its
|
|
|
|
// SCC group.
|
|
|
|
static upb_refcounted *pop(tarjan *t) {
|
|
|
|
upb_refcounted *r = upb_value_getptr(upb_inttable_pop(&t->stack));
|
|
|
|
assert(color(t, r) == GREEN);
|
|
|
|
// This defines the attr layout for nodes in the WHITE state.
|
|
|
|
// Top of group stack is [group, NULL]; we point at group.
|
|
|
|
setattr(t, r, WHITE | (upb_inttable_count(&t->groups) - 2) << 8);
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void newgroup(tarjan *t) {
|
|
|
|
uint32_t *group = malloc(sizeof(*group));
|
|
|
|
if (!group) oom(t);
|
|
|
|
// Push group and empty group leader (we'll fill in leader later).
|
|
|
|
if (!upb_inttable_push(&t->groups, upb_value_ptr(group)) ||
|
|
|
|
!upb_inttable_push(&t->groups, upb_value_ptr(NULL))) {
|
|
|
|
free(group);
|
|
|
|
oom(t);
|
|
|
|
}
|
|
|
|
*group = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static uint32_t idx(tarjan *t, const upb_refcounted *r) {
|
|
|
|
assert(color(t, r) == GREEN);
|
|
|
|
return (getattr(t, r) >> 2) & 0x7FFFFFFF;
|
|
|
|
}
|
|
|
|
|
|
|
|
static uint32_t lowlink(tarjan *t, const upb_refcounted *r) {
|
|
|
|
if (color(t, r) == GREEN) {
|
|
|
|
return getattr(t, r) >> 33;
|
|
|
|
} else {
|
|
|
|
return UINT32_MAX;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void set_lowlink(tarjan *t, const upb_refcounted *r, uint32_t lowlink) {
|
|
|
|
assert(color(t, r) == GREEN);
|
|
|
|
setattr(t, r, ((uint64_t)lowlink << 33) | (getattr(t, r) & 0x1FFFFFFFF));
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t *group(tarjan *t, upb_refcounted *r) {
|
|
|
|
assert(color(t, r) == WHITE);
|
|
|
|
uint64_t groupnum = getattr(t, r) >> 8;
|
|
|
|
upb_value v;
|
|
|
|
bool found = upb_inttable_lookup(&t->groups, groupnum, &v);
|
|
|
|
UPB_ASSERT_VAR(found, found);
|
|
|
|
return upb_value_getptr(v);
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the group leader for this object's group has not previously been set,
|
|
|
|
// the given object is assigned to be its leader.
|
|
|
|
static upb_refcounted *groupleader(tarjan *t, upb_refcounted *r) {
|
|
|
|
assert(color(t, r) == WHITE);
|
|
|
|
uint64_t leader_slot = (getattr(t, r) >> 8) + 1;
|
|
|
|
upb_value v;
|
|
|
|
bool found = upb_inttable_lookup(&t->groups, leader_slot, &v);
|
|
|
|
UPB_ASSERT_VAR(found, found);
|
|
|
|
if (upb_value_getptr(v)) {
|
|
|
|
return upb_value_getptr(v);
|
|
|
|
} else {
|
|
|
|
upb_inttable_remove(&t->groups, leader_slot, NULL);
|
|
|
|
upb_inttable_insert(&t->groups, leader_slot, upb_value_ptr(r));
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Tarjan's algorithm //////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
// See:
|
|
|
|
// http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
|
|
|
|
static void do_tarjan(const upb_refcounted *obj, tarjan *t);
|
|
|
|
|
|
|
|
static void tarjan_visit(const upb_refcounted *obj,
|
|
|
|
const upb_refcounted *subobj,
|
|
|
|
void *closure) {
|
|
|
|
tarjan *t = closure;
|
|
|
|
if (++t->depth > t->maxdepth) {
|
|
|
|
upb_status_seterrf(t->status, "graph too deep to freeze (%d)", t->maxdepth);
|
|
|
|
err(t);
|
|
|
|
} else if (subobj->is_frozen || color(t, subobj) == WHITE) {
|
|
|
|
// Do nothing: we don't want to visit or color already-frozen nodes,
|
|
|
|
// and WHITE nodes have already been assigned a SCC.
|
|
|
|
} else if (color(t, subobj) < GREEN) {
|
|
|
|
// Subdef has not yet been visited; recurse on it.
|
|
|
|
do_tarjan(subobj, t);
|
|
|
|
set_lowlink(t, obj, UPB_MIN(lowlink(t, obj), lowlink(t, subobj)));
|
|
|
|
} else if (color(t, subobj) == GREEN) {
|
|
|
|
// Subdef is in the stack and hence in the current SCC.
|
|
|
|
set_lowlink(t, obj, UPB_MIN(lowlink(t, obj), idx(t, subobj)));
|
|
|
|
}
|
|
|
|
--t->depth;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void do_tarjan(const upb_refcounted *obj, tarjan *t) {
|
|
|
|
if (color(t, obj) == BLACK) {
|
|
|
|
// We haven't seen this object's group; mark the whole group GRAY.
|
|
|
|
const upb_refcounted *o = obj;
|
|
|
|
do { set_gray(t, o); } while ((o = o->next) != obj);
|
|
|
|
}
|
|
|
|
|
|
|
|
push(t, obj);
|
|
|
|
visit(obj, tarjan_visit, t);
|
|
|
|
if (lowlink(t, obj) == idx(t, obj)) {
|
|
|
|
newgroup(t);
|
|
|
|
while (pop(t) != obj)
|
|
|
|
;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// freeze() ////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
static void crossref(const upb_refcounted *r, const upb_refcounted *subobj,
|
|
|
|
void *_t) {
|
|
|
|
tarjan *t = _t;
|
|
|
|
assert(color(t, r) > BLACK);
|
|
|
|
if (color(t, subobj) > BLACK && r->group != subobj->group) {
|
|
|
|
// Previously this ref was not reflected in subobj->group because they
|
|
|
|
// were in the same group; now that they are split a ref must be taken.
|
|
|
|
atomic_inc(subobj->group);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool freeze(upb_refcounted *const*roots, int n, upb_status *s) {
|
|
|
|
volatile bool ret = false;
|
|
|
|
|
|
|
|
// We run in two passes so that we can allocate all memory before performing
|
|
|
|
// any mutation of the input -- this allows us to leave the input unchanged
|
|
|
|
// in the case of memory allocation failure.
|
|
|
|
tarjan t;
|
|
|
|
t.index = 0;
|
|
|
|
t.depth = 0;
|
|
|
|
t.maxdepth = UPB_MAX_TYPE_DEPTH * 2; // May want to make this a parameter.
|
|
|
|
t.status = s;
|
|
|
|
if (!upb_inttable_init(&t.objattr, UPB_CTYPE_UINT64)) goto err1;
|
|
|
|
if (!upb_inttable_init(&t.stack, UPB_CTYPE_PTR)) goto err2;
|
|
|
|
if (!upb_inttable_init(&t.groups, UPB_CTYPE_PTR)) goto err3;
|
|
|
|
if (setjmp(t.err) != 0) goto err4;
|
|
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
if (color(&t, roots[i]) < GREEN) {
|
|
|
|
do_tarjan(roots[i], &t);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we've made it this far, no further errors are possible so it's safe to
|
|
|
|
// mutate the objects without risk of leaving them in an inconsistent state.
|
|
|
|
ret = true;
|
|
|
|
|
|
|
|
// The transformation that follows requires care. The preconditions are:
|
|
|
|
// - all objects in attr map are WHITE or GRAY, and are in mutable groups
|
|
|
|
// (groups of all mutable objs)
|
|
|
|
// - no ref2(to, from) refs have incremented count(to) if both "to" and
|
|
|
|
// "from" are in our attr map (this follows from invariants (2) and (3))
|
|
|
|
|
|
|
|
// Pass 1: we remove WHITE objects from their mutable groups, and add them to
|
|
|
|
// new groups according to the SCC's we computed. These new groups will
|
|
|
|
// consist of only frozen objects. None will be immediately collectible,
|
|
|
|
// because WHITE objects are by definition reachable from one of "roots",
|
|
|
|
// which the caller must own refs on.
|
|
|
|
upb_inttable_iter i;
|
|
|
|
upb_inttable_begin(&i, &t.objattr);
|
|
|
|
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
|
|
|
|
upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&i);
|
|
|
|
// Since removal from a singly-linked list requires access to the object's
|
|
|
|
// predecessor, we consider obj->next instead of obj for moving. With the
|
|
|
|
// while() loop we guarantee that we will visit every node's predecessor.
|
|
|
|
// Proof:
|
|
|
|
// 1. every node's predecessor is in our attr map.
|
|
|
|
// 2. though the loop body may change a node's predecessor, it will only
|
|
|
|
// change it to be the node we are currently operating on, so with a
|
|
|
|
// while() loop we guarantee ourselves the chance to remove each node.
|
|
|
|
while (color(&t, obj->next) == WHITE &&
|
|
|
|
group(&t, obj->next) != obj->next->group) {
|
|
|
|
// Remove from old group.
|
|
|
|
upb_refcounted *move = obj->next;
|
|
|
|
if (obj == move) {
|
|
|
|
// Removing the last object from a group.
|
|
|
|
assert(*obj->group == obj->individual_count);
|
|
|
|
free(obj->group);
|
|
|
|
} else {
|
|
|
|
obj->next = move->next;
|
|
|
|
// This may decrease to zero; we'll collect GRAY objects (if any) that
|
|
|
|
// remain in the group in the third pass.
|
|
|
|
assert(*move->group >= move->individual_count);
|
|
|
|
*move->group -= move->individual_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add to new group.
|
|
|
|
upb_refcounted *leader = groupleader(&t, move);
|
|
|
|
if (move == leader) {
|
|
|
|
// First object added to new group is its leader.
|
|
|
|
move->group = group(&t, move);
|
|
|
|
move->next = move;
|
|
|
|
*move->group = move->individual_count;
|
|
|
|
} else {
|
|
|
|
// Group already has at least one object in it.
|
|
|
|
assert(leader->group == group(&t, move));
|
|
|
|
move->group = group(&t, move);
|
|
|
|
move->next = leader->next;
|
|
|
|
leader->next = move;
|
|
|
|
*move->group += move->individual_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
move->is_frozen = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Pass 2: GRAY and WHITE objects "obj" with ref2(to, obj) references must
|
|
|
|
// increment count(to) if group(obj) != group(to) (which could now be the
|
|
|
|
// case if "to" was just frozen).
|
|
|
|
upb_inttable_begin(&i, &t.objattr);
|
|
|
|
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
|
|
|
|
upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&i);
|
|
|
|
visit(obj, crossref, &t);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Pass 3: GRAY objects are collected if their group's refcount dropped to
|
|
|
|
// zero when we removed its white nodes. This can happen if they had only
|
|
|
|
// been kept alive by virtue of sharing a group with an object that was just
|
|
|
|
// frozen.
|
|
|
|
//
|
|
|
|
// It is important that we do this last, since the GRAY object's free()
|
|
|
|
// function could call unref2() on just-frozen objects, which will decrement
|
|
|
|
// refs that were added in pass 2.
|
|
|
|
upb_inttable_begin(&i, &t.objattr);
|
|
|
|
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
|
|
|
|
upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&i);
|
|
|
|
if (obj->group == NULL || *obj->group == 0) {
|
|
|
|
if (obj->group) {
|
|
|
|
// We eagerly free() the group's count (since we can't easily determine
|
|
|
|
// the group's remaining size it's the easiest way to ensure it gets
|
|
|
|
// done).
|
|
|
|
free(obj->group);
|
|
|
|
|
|
|
|
// Visit to release ref2's (done in a separate pass since release_ref2
|
|
|
|
// depends on o->group being unmodified so it can test merged()).
|
|
|
|
upb_refcounted *o = obj;
|
|
|
|
do { visit(o, release_ref2, NULL); } while ((o = o->next) != obj);
|
|
|
|
|
|
|
|
// Mark "group" fields as NULL so we know to free the objects later in
|
|
|
|
// this loop, but also don't try to delete the group twice.
|
|
|
|
o = obj;
|
|
|
|
do { o->group = NULL; } while ((o = o->next) != obj);
|
|
|
|
}
|
|
|
|
obj->vtbl->free(obj);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
err4:
|
|
|
|
if (!ret) {
|
|
|
|
upb_inttable_begin(&i, &t.groups);
|
|
|
|
for(; !upb_inttable_done(&i); upb_inttable_next(&i))
|
|
|
|
free(upb_value_getptr(upb_inttable_iter_value(&i)));
|
|
|
|
}
|
|
|
|
upb_inttable_uninit(&t.groups);
|
|
|
|
err3:
|
|
|
|
upb_inttable_uninit(&t.stack);
|
|
|
|
err2:
|
|
|
|
upb_inttable_uninit(&t.objattr);
|
|
|
|
err1:
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Misc internal functions ***************************************************/
|
|
|
|
|
|
|
|
static bool merged(const upb_refcounted *r, const upb_refcounted *r2) {
|
|
|
|
return r->group == r2->group;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void merge(upb_refcounted *r, upb_refcounted *from) {
|
|
|
|
if (merged(r, from)) return;
|
|
|
|
*r->group += *from->group;
|
|
|
|
free(from->group);
|
|
|
|
upb_refcounted *base = from;
|
|
|
|
|
|
|
|
// Set all refcount pointers in the "from" chain to the merged refcount.
|
|
|
|
//
|
|
|
|
// TODO(haberman): this linear algorithm can result in an overall O(n^2) bound
|
|
|
|
// if the user continuously extends a group by one object. Prevent this by
|
|
|
|
// using one of the techniques in this paper:
|
|
|
|
// ftp://www.ncedc.org/outgoing/geomorph/dino/orals/p245-tarjan.pdf
|
|
|
|
do { from->group = r->group; } while ((from = from->next) != base);
|
|
|
|
|
|
|
|
// Merge the two circularly linked lists by swapping their next pointers.
|
|
|
|
upb_refcounted *tmp = r->next;
|
|
|
|
r->next = base->next;
|
|
|
|
base->next = tmp;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void unref(const upb_refcounted *r);
|
|
|
|
|
|
|
|
static void release_ref2(const upb_refcounted *obj,
|
|
|
|
const upb_refcounted *subobj,
|
|
|
|
void *closure) {
|
|
|
|
UPB_UNUSED(closure);
|
|
|
|
if (!merged(obj, subobj)) {
|
|
|
|
assert(subobj->is_frozen);
|
|
|
|
unref(subobj);
|
|
|
|
}
|
|
|
|
untrack(subobj, obj, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void unref(const upb_refcounted *r) {
|
|
|
|
if (atomic_dec(r->group)) {
|
|
|
|
free(r->group);
|
|
|
|
|
|
|
|
// In two passes, since release_ref2 needs a guarantee that any subobjs
|
|
|
|
// are alive.
|
|
|
|
const upb_refcounted *o = r;
|
|
|
|
do { visit(o, release_ref2, NULL); } while((o = o->next) != r);
|
|
|
|
|
|
|
|
o = r;
|
|
|
|
do {
|
|
|
|
const upb_refcounted *next = o->next;
|
|
|
|
assert(o->is_frozen || o->individual_count == 0);
|
|
|
|
o->vtbl->free((upb_refcounted*)o);
|
|
|
|
o = next;
|
|
|
|
} while(o != r);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Public interface ***********************************************************/
|
|
|
|
|
|
|
|
bool upb_refcounted_init(upb_refcounted *r,
|
|
|
|
const struct upb_refcounted_vtbl *vtbl,
|
|
|
|
const void *owner) {
|
|
|
|
r->next = r;
|
|
|
|
r->vtbl = vtbl;
|
|
|
|
r->individual_count = 0;
|
|
|
|
r->is_frozen = false;
|
|
|
|
r->group = malloc(sizeof(*r->group));
|
|
|
|
if (!r->group) return false;
|
|
|
|
*r->group = 0;
|
|
|
|
upb_refcounted_ref(r, owner);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_refcounted_isfrozen(const upb_refcounted *r) {
|
|
|
|
return r->is_frozen;
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_refcounted_ref(const upb_refcounted *r, const void *owner) {
|
|
|
|
if (!r->is_frozen)
|
|
|
|
((upb_refcounted*)r)->individual_count++;
|
|
|
|
atomic_inc(r->group);
|
|
|
|
track(r, owner, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_refcounted_unref(const upb_refcounted *r, const void *owner) {
|
|
|
|
if (!r->is_frozen)
|
|
|
|
((upb_refcounted*)r)->individual_count--;
|
|
|
|
unref(r);
|
|
|
|
untrack(r, owner, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_refcounted_ref2(const upb_refcounted *r, upb_refcounted *from) {
|
|
|
|
assert(!from->is_frozen); // Non-const pointer implies this.
|
|
|
|
if (r->is_frozen) {
|
|
|
|
atomic_inc(r->group);
|
|
|
|
} else {
|
|
|
|
merge((upb_refcounted*)r, from);
|
|
|
|
}
|
|
|
|
track(r, from, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_refcounted_unref2(const upb_refcounted *r, upb_refcounted *from) {
|
|
|
|
assert(!from->is_frozen); // Non-const pointer implies this.
|
|
|
|
if (r->is_frozen) {
|
|
|
|
unref(r);
|
|
|
|
} else {
|
|
|
|
assert(merged(r, from));
|
|
|
|
}
|
|
|
|
untrack(r, from, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_refcounted_donateref(
|
|
|
|
const upb_refcounted *r, const void *from, const void *to) {
|
|
|
|
assert(from != to);
|
|
|
|
assert(to != NULL);
|
|
|
|
upb_refcounted_ref(r, to);
|
|
|
|
if (from != NULL)
|
|
|
|
upb_refcounted_unref(r, from);
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_refcounted_checkref(const upb_refcounted *r, const void *owner) {
|
|
|
|
checkref(r, owner, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_refcounted_freeze(upb_refcounted *const*roots, int n, upb_status *s) {
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
assert(!roots[i]->is_frozen);
|
|
|
|
}
|
|
|
|
return freeze(roots, n, s);
|
|
|
|
}
|