|
|
|
/*
|
|
|
|
* Copyright (c) 2009-2021, Google LLC
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions are met:
|
|
|
|
* * Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* * Neither the name of Google LLC nor the
|
|
|
|
* names of its contributors may be used to endorse or promote products
|
|
|
|
* derived from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Google LLC BE LIABLE FOR ANY DIRECT,
|
|
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "protos_generator/gen_utils.h"
|
|
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <string>
|
|
|
|
|
|
|
|
#include "absl/log/absl_check.h"
|
|
|
|
#include "absl/strings/str_cat.h"
|
|
|
|
// begin:google_only
|
|
|
|
// #include "absl/strings/str_replace.h"
|
|
|
|
// end:google_only
|
|
|
|
#include "absl/strings/str_split.h"
|
|
|
|
#include "upbc/keywords.h"
|
|
|
|
|
|
|
|
namespace protos_generator {
|
|
|
|
|
|
|
|
namespace protobuf = ::google::protobuf;
|
|
|
|
|
|
|
|
std::string DotsToColons(const std::string& name) {
|
|
|
|
return absl::StrReplaceAll(name, {{".", "::"}});
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string Namespace(const std::string& package) {
|
|
|
|
if (package.empty()) return "";
|
|
|
|
return "::" + DotsToColons(package);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return the qualified C++ name for a file level symbol.
|
|
|
|
std::string QualifiedFileLevelSymbol(const protobuf::FileDescriptor* file,
|
|
|
|
const std::string& name) {
|
|
|
|
if (file->package().empty()) {
|
|
|
|
return absl::StrCat("::", name);
|
|
|
|
}
|
|
|
|
// Append ::protos postfix to package name.
|
|
|
|
return absl::StrCat(Namespace(file->package()), "::protos::", name);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string ClassName(const protobuf::Descriptor* descriptor) {
|
|
|
|
const protobuf::Descriptor* parent = descriptor->containing_type();
|
|
|
|
std::string res;
|
|
|
|
// Classes in global namespace without package names are prefixed
|
|
|
|
// by protos_ to avoid collision with C compiler structs defined in
|
|
|
|
// proto.upb.h.
|
|
|
|
if ((parent && parent->file()->package().empty()) ||
|
|
|
|
descriptor->file()->package().empty()) {
|
|
|
|
res = std::string(kNoPackageNamePrefix);
|
|
|
|
}
|
|
|
|
if (parent) res += ClassName(parent) + "_";
|
|
|
|
absl::StrAppend(&res, descriptor->name());
|
|
|
|
return ::upbc::ResolveKeywordConflict(res);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string QualifiedClassName(const protobuf::Descriptor* descriptor) {
|
|
|
|
return QualifiedFileLevelSymbol(descriptor->file(), ClassName(descriptor));
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string QualifiedInternalClassName(const protobuf::Descriptor* descriptor) {
|
|
|
|
return QualifiedFileLevelSymbol(
|
|
|
|
descriptor->file(), absl::StrCat("internal::", ClassName(descriptor)));
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string CppSourceFilename(const google::protobuf::FileDescriptor* file) {
|
|
|
|
return StripExtension(file->name()) + ".upb.proto.cc";
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string UpbCFilename(const google::protobuf::FileDescriptor* file) {
|
|
|
|
return StripExtension(file->name()) + ".upb.h";
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string ForwardingHeaderFilename(const google::protobuf::FileDescriptor* file) {
|
|
|
|
return StripExtension(file->name()) + ".upb.fwd.h";
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string CppHeaderFilename(const google::protobuf::FileDescriptor* file) {
|
|
|
|
return StripExtension(file->name()) + ".upb.proto.h";
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string NamespaceFromPackageName(absl::string_view package_name) {
|
|
|
|
return absl::StrCat(absl::StrReplaceAll(package_name, {{".", "::"}}),
|
|
|
|
"::protos");
|
|
|
|
}
|
|
|
|
|
|
|
|
void WriteStartNamespace(const protobuf::FileDescriptor* file, Output& output) {
|
|
|
|
// Skip namespace generation if package name is not specified.
|
|
|
|
if (file->package().empty()) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
output("namespace $0 {\n\n", NamespaceFromPackageName(file->package()));
|
|
|
|
}
|
|
|
|
|
|
|
|
void WriteEndNamespace(const protobuf::FileDescriptor* file, Output& output) {
|
|
|
|
if (file->package().empty()) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
output("} // namespace $0\n\n", NamespaceFromPackageName(file->package()));
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string CppTypeInternal(const protobuf::FieldDescriptor* field,
|
|
|
|
bool is_const, bool is_type_parameter) {
|
|
|
|
std::string maybe_const = is_const ? "const " : "";
|
|
|
|
switch (field->cpp_type()) {
|
|
|
|
case protobuf::FieldDescriptor::CPPTYPE_MESSAGE: {
|
|
|
|
if (is_type_parameter) {
|
|
|
|
return absl::StrCat(maybe_const,
|
|
|
|
QualifiedClassName(field->message_type()));
|
|
|
|
} else {
|
|
|
|
return absl::StrCat(maybe_const,
|
|
|
|
QualifiedClassName(field->message_type()), "*");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
case protobuf::FieldDescriptor::CPPTYPE_BOOL:
|
|
|
|
return "bool";
|
|
|
|
case protobuf::FieldDescriptor::CPPTYPE_FLOAT:
|
|
|
|
return "float";
|
|
|
|
case protobuf::FieldDescriptor::CPPTYPE_INT32:
|
|
|
|
case protobuf::FieldDescriptor::CPPTYPE_ENUM:
|
|
|
|
return "int32_t";
|
|
|
|
case protobuf::FieldDescriptor::CPPTYPE_UINT32:
|
|
|
|
return "uint32_t";
|
|
|
|
case protobuf::FieldDescriptor::CPPTYPE_DOUBLE:
|
|
|
|
return "double";
|
|
|
|
case protobuf::FieldDescriptor::CPPTYPE_INT64:
|
|
|
|
return "int64_t";
|
|
|
|
case protobuf::FieldDescriptor::CPPTYPE_UINT64:
|
|
|
|
return "uint64_t";
|
|
|
|
case protobuf::FieldDescriptor::CPPTYPE_STRING:
|
|
|
|
return "absl::string_view";
|
|
|
|
default:
|
|
|
|
ABSL_LOG(FATAL) << "Unexpected type: " << field->cpp_type();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string CppConstType(const protobuf::FieldDescriptor* field) {
|
|
|
|
return CppTypeInternal(field, /* is_const= */ true,
|
|
|
|
/* is_type_parameter= */ false);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string CppTypeParameterName(const protobuf::FieldDescriptor* field) {
|
|
|
|
return CppTypeInternal(field, /* is_const= */ false,
|
|
|
|
/* is_type_parameter= */ true);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string MessageBaseType(const protobuf::FieldDescriptor* field,
|
|
|
|
bool is_const) {
|
|
|
|
ABSL_DCHECK(field->cpp_type() == protobuf::FieldDescriptor::CPPTYPE_MESSAGE);
|
|
|
|
std::string maybe_const = is_const ? "const " : "";
|
|
|
|
return maybe_const + QualifiedClassName(field->message_type());
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string MessagePtrConstType(const protobuf::FieldDescriptor* field,
|
|
|
|
bool is_const) {
|
|
|
|
ABSL_DCHECK(field->cpp_type() == protobuf::FieldDescriptor::CPPTYPE_MESSAGE);
|
|
|
|
std::string maybe_const = is_const ? "const " : "";
|
|
|
|
return "::protos::Ptr<" + maybe_const +
|
|
|
|
QualifiedClassName(field->message_type()) + ">";
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string MessageCProxyType(const protobuf::FieldDescriptor* field,
|
|
|
|
bool is_const) {
|
|
|
|
ABSL_DCHECK(field->cpp_type() == protobuf::FieldDescriptor::CPPTYPE_MESSAGE);
|
|
|
|
std::string maybe_const = is_const ? "const " : "";
|
|
|
|
return maybe_const + QualifiedInternalClassName(field->message_type()) +
|
|
|
|
"CProxy";
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string MessageProxyType(const protobuf::FieldDescriptor* field,
|
|
|
|
bool is_const) {
|
|
|
|
ABSL_DCHECK(field->cpp_type() == protobuf::FieldDescriptor::CPPTYPE_MESSAGE);
|
|
|
|
std::string maybe_const = is_const ? "const " : "";
|
|
|
|
return maybe_const + QualifiedInternalClassName(field->message_type()) +
|
|
|
|
"Proxy";
|
|
|
|
}
|
|
|
|
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
void AddEnums(const protobuf::Descriptor* message,
|
|
|
|
std::vector<const protobuf::EnumDescriptor*>* enums) {
|
|
|
|
enums->reserve(enums->size() + message->enum_type_count());
|
|
|
|
for (int i = 0; i < message->enum_type_count(); i++) {
|
|
|
|
enums->push_back(message->enum_type(i));
|
|
|
|
}
|
|
|
|
for (int i = 0; i < message->nested_type_count(); i++) {
|
|
|
|
AddEnums(message->nested_type(i), enums);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<const protobuf::EnumDescriptor*> SortedEnums(
|
|
|
|
const protobuf::FileDescriptor* file) {
|
|
|
|
std::vector<const protobuf::EnumDescriptor*> enums;
|
|
|
|
enums.reserve(file->enum_type_count());
|
|
|
|
for (int i = 0; i < file->enum_type_count(); i++) {
|
|
|
|
enums.push_back(file->enum_type(i));
|
|
|
|
}
|
|
|
|
for (int i = 0; i < file->message_type_count(); i++) {
|
|
|
|
AddEnums(file->message_type(i), &enums);
|
|
|
|
}
|
|
|
|
return enums;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AddMessages(const protobuf::Descriptor* message,
|
|
|
|
std::vector<const protobuf::Descriptor*>* messages) {
|
|
|
|
messages->push_back(message);
|
|
|
|
for (int i = 0; i < message->nested_type_count(); i++) {
|
|
|
|
AddMessages(message->nested_type(i), messages);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<const protobuf::Descriptor*> SortedMessages(
|
|
|
|
const protobuf::FileDescriptor* file) {
|
|
|
|
std::vector<const protobuf::Descriptor*> messages;
|
|
|
|
for (int i = 0; i < file->message_type_count(); i++) {
|
|
|
|
AddMessages(file->message_type(i), &messages);
|
|
|
|
}
|
|
|
|
return messages;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AddExtensionsFromMessage(
|
|
|
|
const protobuf::Descriptor* message,
|
|
|
|
std::vector<const protobuf::FieldDescriptor*>* exts) {
|
|
|
|
for (int i = 0; i < message->extension_count(); i++) {
|
|
|
|
exts->push_back(message->extension(i));
|
|
|
|
}
|
|
|
|
for (int i = 0; i < message->nested_type_count(); i++) {
|
|
|
|
AddExtensionsFromMessage(message->nested_type(i), exts);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<const protobuf::FieldDescriptor*> SortedExtensions(
|
|
|
|
const protobuf::FileDescriptor* file) {
|
|
|
|
std::vector<const protobuf::FieldDescriptor*> ret;
|
|
|
|
for (int i = 0; i < file->extension_count(); i++) {
|
|
|
|
ret.push_back(file->extension(i));
|
|
|
|
}
|
|
|
|
for (int i = 0; i < file->message_type_count(); i++) {
|
|
|
|
AddExtensionsFromMessage(file->message_type(i), &ret);
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<const protobuf::FieldDescriptor*> FieldNumberOrder(
|
|
|
|
const protobuf::Descriptor* message) {
|
|
|
|
std::vector<const protobuf::FieldDescriptor*> fields;
|
|
|
|
fields.reserve(message->field_count());
|
upb is self-hosting!
This CL changes the upb compiler to no longer depend on C++ protobuf libraries. upb now uses its own reflection libraries to implement its code generator.
# Key Benefits
1. upb can now use its own reflection libraries throughout the compiler. This makes upb more consistent and principled, and gives us more chances to dogfood our own C++ reflection API. This highlighted several parts of the C++ reflection API that were incomplete.
2. This CL removes code duplication that previously existed in the compiler. The upb reflection library has code to build MiniDescriptors and MiniTables out of descriptors, but prior to this CL the upb compiler could not use it. The upb compiler had a separate copy of this logic, and the compiler's copy of this logic was especially tricky and hard to maintain. This CL removes the separate copy of that logic.
3. This CL (mostly) removes upb's dependency on the C++ protobuf library. We still depend on `protoc` (the binary), but the runtime and compiler no longer link against C++'s libraries. This opens up the possibility of speeding up some builds significantly if we can use a prebuilt `protoc` binary.
# Bootstrap Stages
To bootstrap, we check in a copy of our generated code for `descriptor.proto` and `plugin.proto`. This allows the compiler to depend on the generated code for these two protos without creating a circular dependency. This code is checked in to the `stage0` directory.
The bootstrapping process is divided into a few stages. All `cc_library()`, `upb_proto_library()`, and `cc_binary()` targets that would otherwise be circular participate in this staging process. That currently includes:
* `//third_party/upb:descriptor_upb_proto`
* `//third_party/upb:plugin_upb_proto`
* `//third_party/upb:reflection`
* `//third_party/upb:reflection_internal`
* `//third_party/upbc:common`
* `//third_party/upbc:file_layout`
* `//third_party/upbc:plugin`
* `//third_party/upbc:protoc-gen-upb`
For each of these targets, we produce a rule for each stage (the logic for this is nicely encapsulated in Blaze/Bazel macros like `bootstrap_cc_library()` and `bootstrap_upb_proto_library()`, so the `BUILD` file remains readable). For example:
* `//third_party/upb:descriptor_upb_proto_stage0`
* `//third_party/upb:descriptor_upb_proto_stage1`
* `//third_party/upb:descriptor_upb_proto`
The stages are:
1. `stage0`: This uses the checked-in version of the generated code. The stage0 compiler is correct and outputs the same code as all other compilers, but it is unnecessarily slow because its protos were compiled in bootstrap mode. The stage0 compiler is used to generate protos for stage1.
2. `stage1`: The stage1 compiler is correct and fast, and therefore we use it in almost all cases (eg. `upb_proto_library()`). However its own protos were not generated using `upb_proto_library()`, so its `cc_library()` targets cannot be safely mixed with `upb_proto_library()`, as this would lead to duplicate symbols.
3. final (no stage): The final compiler is identical to the `stage1` compiler. The only difference is that its protos were built with `upb_proto_library()`. This doesn't matter very much for the compiler binary, but for the `cc_library()` targets like `//third_party/upb:reflection`, only the final targets can be safely linked in by other applications.
# "Bootstrap Mode" Protos
The checked-in generated code is generated in a special "bootstrap" mode that is a bit different than normal generated code. Bootstrap mode avoids depending on the internal representation of MiniTables or the messages, at the cost of slower runtime performance.
Bootstrap mode only interacts with MiniTables and messages using public APIs such as `upb_MiniTable_Build()`, `upb_Message_GetInt32()`, etc. This is very important as it allows us to change the internal representation without needing to regenerate our bootstrap protos. This will make it far easier to write CLs that change the internal representation, because it avoids the awkward dance of trying to regenerate the bootstrap protos when the compiler itself is broken due to bootstrap protos being out of date.
The bootstrap generated code does have two downsides:
1. The accessors are less efficient, because they look up MiniTable fields by number instead of hard-coding the MiniTableField into the generated code.
2. It requires runtime initialization of the MiniTables, which costs CPU cycles at startup, and also allocates memory which is never freed. Per google3 rules this is not really a leak, since this memory is still reachable via static variables, but it is undesirable in many contexts. We could fix this part by introducing the equivalent of `google::protobuf::ShutdownProtobufLibrary()`).
These downsides are fine for the bootstrapping process, but they are reason enough not to enable bootstrap mode in general for all protos.
# Bootstrapping Always Uses OSS Protos
To enable smooth syncing between Google3 and OSS, we always use an OSS version of the checked in generated code for `stage0`, even in google3.
This requires that the google3 code can be switched to reference the OSS proto names using a preprocessor define. We introduce the `UPB_DESC(xyz)` macro for this, which will expand into either `proto2_xyz` or `google_protobuf_xyz`. Any libraries used in `stage0` must use `UPB_DESC(xyz)` rather than refer to the symbol names directly.
PiperOrigin-RevId: 501458451
2 years ago
|
|
|
for (int i = 0; i < message->field_count(); i++) {
|
|
|
|
fields.push_back(message->field(i));
|
|
|
|
}
|
|
|
|
std::sort(fields.begin(), fields.end(),
|
|
|
|
[](const protobuf::FieldDescriptor* a,
|
|
|
|
const protobuf::FieldDescriptor* b) {
|
|
|
|
return a->number() < b->number();
|
|
|
|
});
|
|
|
|
return fields;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string ToCamelCase(const std::string& input, bool lower_first) {
|
|
|
|
bool capitalize_next = !lower_first;
|
|
|
|
std::string result;
|
|
|
|
result.reserve(input.size());
|
|
|
|
|
|
|
|
for (char character : input) {
|
|
|
|
if (character == '_') {
|
|
|
|
capitalize_next = true;
|
|
|
|
} else if (capitalize_next) {
|
|
|
|
result.push_back(absl::ascii_toupper(character));
|
|
|
|
capitalize_next = false;
|
|
|
|
} else {
|
|
|
|
result.push_back(character);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Lower-case the first letter.
|
|
|
|
if (lower_first && !result.empty()) {
|
|
|
|
result[0] = absl::ascii_tolower(result[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace protos_generator
|