|
|
|
/*
|
|
|
|
** upb::json::Parser (upb_json_parser)
|
|
|
|
**
|
|
|
|
** A parser that uses the Ragel State Machine Compiler to generate
|
|
|
|
** the finite automata.
|
|
|
|
**
|
|
|
|
** Ragel only natively handles regular languages, but we can manually
|
|
|
|
** program it a bit to handle context-free languages like JSON, by using
|
|
|
|
** the "fcall" and "fret" constructs.
|
|
|
|
**
|
|
|
|
** This parser can handle the basics, but needs several things to be fleshed
|
|
|
|
** out:
|
|
|
|
**
|
|
|
|
** - handling of unicode escape sequences (including high surrogate pairs).
|
|
|
|
** - properly check and report errors for unknown fields, stack overflow,
|
|
|
|
** improper array nesting (or lack of nesting).
|
|
|
|
** - handling of base64 sequences with padding characters.
|
|
|
|
** - handling of push-back (non-success returns from sink functions).
|
|
|
|
** - handling of keys/escape-sequences/etc that span input buffers.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <assert.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <errno.h>
|
|
|
|
|
|
|
|
#include "upb/json/parser.h"
|
|
|
|
|
|
|
|
#define UPB_JSON_MAX_DEPTH 64
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
upb_sink sink;
|
|
|
|
|
|
|
|
/* The current message in which we're parsing, and the field whose value we're
|
|
|
|
* expecting next. */
|
|
|
|
const upb_msgdef *m;
|
|
|
|
const upb_fielddef *f;
|
|
|
|
|
|
|
|
/* We are in a repeated-field context, ready to emit mapentries as
|
|
|
|
* submessages. This flag alters the start-of-object (open-brace) behavior to
|
|
|
|
* begin a sequence of mapentry messages rather than a single submessage. */
|
|
|
|
bool is_map;
|
|
|
|
|
|
|
|
/* We are in a map-entry message context. This flag is set when parsing the
|
|
|
|
* value field of a single map entry and indicates to all value-field parsers
|
|
|
|
* (subobjects, strings, numbers, and bools) that the map-entry submessage
|
|
|
|
* should end as soon as the value is parsed. */
|
|
|
|
bool is_mapentry;
|
|
|
|
|
|
|
|
/* If |is_map| or |is_mapentry| is true, |mapfield| refers to the parent
|
|
|
|
* message's map field that we're currently parsing. This differs from |f|
|
|
|
|
* because |f| is the field in the *current* message (i.e., the map-entry
|
|
|
|
* message itself), not the parent's field that leads to this map. */
|
|
|
|
const upb_fielddef *mapfield;
|
|
|
|
} upb_jsonparser_frame;
|
|
|
|
|
|
|
|
struct upb_json_parser {
|
|
|
|
upb_env *env;
|
|
|
|
upb_byteshandler input_handler_;
|
|
|
|
upb_bytessink input_;
|
|
|
|
|
|
|
|
/* Stack to track the JSON scopes we are in. */
|
|
|
|
upb_jsonparser_frame stack[UPB_JSON_MAX_DEPTH];
|
|
|
|
upb_jsonparser_frame *top;
|
|
|
|
upb_jsonparser_frame *limit;
|
|
|
|
|
|
|
|
upb_status *status;
|
|
|
|
|
|
|
|
/* Ragel's internal parsing stack for the parsing state machine. */
|
|
|
|
int current_state;
|
|
|
|
int parser_stack[UPB_JSON_MAX_DEPTH];
|
|
|
|
int parser_top;
|
|
|
|
|
|
|
|
/* The handle for the current buffer. */
|
|
|
|
const upb_bufhandle *handle;
|
|
|
|
|
|
|
|
/* Accumulate buffer. See details in parser.rl. */
|
|
|
|
const char *accumulated;
|
|
|
|
size_t accumulated_len;
|
|
|
|
char *accumulate_buf;
|
|
|
|
size_t accumulate_buf_size;
|
|
|
|
|
|
|
|
/* Multi-part text data. See details in parser.rl. */
|
|
|
|
int multipart_state;
|
|
|
|
upb_selector_t string_selector;
|
|
|
|
|
|
|
|
/* Input capture. See details in parser.rl. */
|
|
|
|
const char *capture;
|
|
|
|
|
|
|
|
/* Intermediate result of parsing a unicode escape sequence. */
|
|
|
|
uint32_t digit;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define PARSER_CHECK_RETURN(x) if (!(x)) return false
|
|
|
|
|
|
|
|
/* Used to signal that a capture has been suspended. */
|
|
|
|
static char suspend_capture;
|
|
|
|
|
|
|
|
static upb_selector_t getsel_for_handlertype(upb_json_parser *p,
|
|
|
|
upb_handlertype_t type) {
|
|
|
|
upb_selector_t sel;
|
|
|
|
bool ok = upb_handlers_getselector(p->top->f, type, &sel);
|
|
|
|
UPB_ASSERT_VAR(ok, ok);
|
|
|
|
return sel;
|
|
|
|
}
|
|
|
|
|
|
|
|
static upb_selector_t parser_getsel(upb_json_parser *p) {
|
|
|
|
return getsel_for_handlertype(
|
|
|
|
p, upb_handlers_getprimitivehandlertype(p->top->f));
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool check_stack(upb_json_parser *p) {
|
|
|
|
if ((p->top + 1) == p->limit) {
|
|
|
|
upb_status_seterrmsg(p->status, "Nesting too deep");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* There are GCC/Clang built-ins for overflow checking which we could start
|
|
|
|
* using if there was any performance benefit to it. */
|
|
|
|
|
|
|
|
static bool checked_add(size_t a, size_t b, size_t *c) {
|
|
|
|
if (SIZE_MAX - a < b) return false;
|
|
|
|
*c = a + b;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static size_t saturating_multiply(size_t a, size_t b) {
|
|
|
|
/* size_t is unsigned, so this is defined behavior even on overflow. */
|
|
|
|
size_t ret = a * b;
|
|
|
|
if (b != 0 && ret / b != a) {
|
|
|
|
ret = SIZE_MAX;
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Base64 decoding ************************************************************/
|
|
|
|
|
|
|
|
/* TODO(haberman): make this streaming. */
|
|
|
|
|
|
|
|
static const signed char b64table[] = {
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, 62/*+*/, -1, -1, -1, 63/*/ */,
|
|
|
|
52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/,
|
|
|
|
60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/,
|
|
|
|
07/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/,
|
|
|
|
15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/,
|
|
|
|
23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, -1,
|
|
|
|
-1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/,
|
|
|
|
33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/,
|
|
|
|
41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/,
|
|
|
|
49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Returns the table value sign-extended to 32 bits. Knowing that the upper
|
|
|
|
* bits will be 1 for unrecognized characters makes it easier to check for
|
|
|
|
* this error condition later (see below). */
|
|
|
|
int32_t b64lookup(unsigned char ch) { return b64table[ch]; }
|
|
|
|
|
|
|
|
/* Returns true if the given character is not a valid base64 character or
|
|
|
|
* padding. */
|
|
|
|
bool nonbase64(unsigned char ch) { return b64lookup(ch) == -1 && ch != '='; }
|
|
|
|
|
|
|
|
static bool base64_push(upb_json_parser *p, upb_selector_t sel, const char *ptr,
|
|
|
|
size_t len) {
|
|
|
|
const char *limit = ptr + len;
|
|
|
|
for (; ptr < limit; ptr += 4) {
|
|
|
|
uint32_t val;
|
|
|
|
char output[3];
|
|
|
|
|
|
|
|
if (limit - ptr < 4) {
|
|
|
|
upb_status_seterrf(p->status,
|
|
|
|
"Base64 input for bytes field not a multiple of 4: %s",
|
|
|
|
upb_fielddef_name(p->top->f));
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
val = b64lookup(ptr[0]) << 18 |
|
|
|
|
b64lookup(ptr[1]) << 12 |
|
|
|
|
b64lookup(ptr[2]) << 6 |
|
|
|
|
b64lookup(ptr[3]);
|
|
|
|
|
|
|
|
/* Test the upper bit; returns true if any of the characters returned -1. */
|
|
|
|
if (val & 0x80000000) {
|
|
|
|
goto otherchar;
|
|
|
|
}
|
|
|
|
|
|
|
|
output[0] = val >> 16;
|
|
|
|
output[1] = (val >> 8) & 0xff;
|
|
|
|
output[2] = val & 0xff;
|
|
|
|
upb_sink_putstring(&p->top->sink, sel, output, 3, NULL);
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
|
|
|
|
otherchar:
|
|
|
|
if (nonbase64(ptr[0]) || nonbase64(ptr[1]) || nonbase64(ptr[2]) ||
|
|
|
|
nonbase64(ptr[3]) ) {
|
|
|
|
upb_status_seterrf(p->status,
|
|
|
|
"Non-base64 characters in bytes field: %s",
|
|
|
|
upb_fielddef_name(p->top->f));
|
|
|
|
return false;
|
|
|
|
} if (ptr[2] == '=') {
|
|
|
|
uint32_t val;
|
|
|
|
char output;
|
|
|
|
|
|
|
|
/* Last group contains only two input bytes, one output byte. */
|
|
|
|
if (ptr[0] == '=' || ptr[1] == '=' || ptr[3] != '=') {
|
|
|
|
goto badpadding;
|
|
|
|
}
|
|
|
|
|
|
|
|
val = b64lookup(ptr[0]) << 18 |
|
|
|
|
b64lookup(ptr[1]) << 12;
|
|
|
|
|
|
|
|
assert(!(val & 0x80000000));
|
|
|
|
output = val >> 16;
|
|
|
|
upb_sink_putstring(&p->top->sink, sel, &output, 1, NULL);
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
uint32_t val;
|
|
|
|
char output[2];
|
|
|
|
|
|
|
|
/* Last group contains only three input bytes, two output bytes. */
|
|
|
|
if (ptr[0] == '=' || ptr[1] == '=' || ptr[2] == '=') {
|
|
|
|
goto badpadding;
|
|
|
|
}
|
|
|
|
|
|
|
|
val = b64lookup(ptr[0]) << 18 |
|
|
|
|
b64lookup(ptr[1]) << 12 |
|
|
|
|
b64lookup(ptr[2]) << 6;
|
|
|
|
|
|
|
|
output[0] = val >> 16;
|
|
|
|
output[1] = (val >> 8) & 0xff;
|
|
|
|
upb_sink_putstring(&p->top->sink, sel, output, 2, NULL);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
badpadding:
|
|
|
|
upb_status_seterrf(p->status,
|
|
|
|
"Incorrect base64 padding for field: %s (%.*s)",
|
|
|
|
upb_fielddef_name(p->top->f),
|
|
|
|
4, ptr);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Accumulate buffer **********************************************************/
|
|
|
|
|
|
|
|
/* Functionality for accumulating a buffer.
|
|
|
|
*
|
|
|
|
* Some parts of the parser need an entire value as a contiguous string. For
|
|
|
|
* example, to look up a member name in a hash table, or to turn a string into
|
|
|
|
* a number, the relevant library routines need the input string to be in
|
|
|
|
* contiguous memory, even if the value spanned two or more buffers in the
|
|
|
|
* input. These routines handle that.
|
|
|
|
*
|
|
|
|
* In the common case we can just point to the input buffer to get this
|
|
|
|
* contiguous string and avoid any actual copy. So we optimistically begin
|
|
|
|
* this way. But there are a few cases where we must instead copy into a
|
|
|
|
* separate buffer:
|
|
|
|
*
|
|
|
|
* 1. The string was not contiguous in the input (it spanned buffers).
|
|
|
|
*
|
|
|
|
* 2. The string included escape sequences that need to be interpreted to get
|
|
|
|
* the true value in a contiguous buffer. */
|
|
|
|
|
|
|
|
static void assert_accumulate_empty(upb_json_parser *p) {
|
|
|
|
UPB_UNUSED(p);
|
|
|
|
assert(p->accumulated == NULL);
|
|
|
|
assert(p->accumulated_len == 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void accumulate_clear(upb_json_parser *p) {
|
|
|
|
p->accumulated = NULL;
|
|
|
|
p->accumulated_len = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Used internally by accumulate_append(). */
|
|
|
|
static bool accumulate_realloc(upb_json_parser *p, size_t need) {
|
|
|
|
void *mem;
|
|
|
|
size_t old_size = p->accumulate_buf_size;
|
|
|
|
size_t new_size = UPB_MAX(old_size, 128);
|
|
|
|
while (new_size < need) {
|
|
|
|
new_size = saturating_multiply(new_size, 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
mem = upb_env_realloc(p->env, p->accumulate_buf, old_size, new_size);
|
|
|
|
if (!mem) {
|
|
|
|
upb_status_seterrmsg(p->status, "Out of memory allocating buffer.");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
p->accumulate_buf = mem;
|
|
|
|
p->accumulate_buf_size = new_size;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Logically appends the given data to the append buffer.
|
|
|
|
* If "can_alias" is true, we will try to avoid actually copying, but the buffer
|
|
|
|
* must be valid until the next accumulate_append() call (if any). */
|
|
|
|
static bool accumulate_append(upb_json_parser *p, const char *buf, size_t len,
|
|
|
|
bool can_alias) {
|
|
|
|
size_t need;
|
|
|
|
|
|
|
|
if (!p->accumulated && can_alias) {
|
|
|
|
p->accumulated = buf;
|
|
|
|
p->accumulated_len = len;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!checked_add(p->accumulated_len, len, &need)) {
|
|
|
|
upb_status_seterrmsg(p->status, "Integer overflow.");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (need > p->accumulate_buf_size && !accumulate_realloc(p, need)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (p->accumulated != p->accumulate_buf) {
|
|
|
|
memcpy(p->accumulate_buf, p->accumulated, p->accumulated_len);
|
|
|
|
p->accumulated = p->accumulate_buf;
|
|
|
|
}
|
|
|
|
|
|
|
|
memcpy(p->accumulate_buf + p->accumulated_len, buf, len);
|
|
|
|
p->accumulated_len += len;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Returns a pointer to the data accumulated since the last accumulate_clear()
|
|
|
|
* call, and writes the length to *len. This with point either to the input
|
|
|
|
* buffer or a temporary accumulate buffer. */
|
|
|
|
static const char *accumulate_getptr(upb_json_parser *p, size_t *len) {
|
|
|
|
assert(p->accumulated);
|
|
|
|
*len = p->accumulated_len;
|
|
|
|
return p->accumulated;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Mult-part text data ********************************************************/
|
|
|
|
|
|
|
|
/* When we have text data in the input, it can often come in multiple segments.
|
|
|
|
* For example, there may be some raw string data followed by an escape
|
|
|
|
* sequence. The two segments are processed with different logic. Also buffer
|
|
|
|
* seams in the input can cause multiple segments.
|
|
|
|
*
|
|
|
|
* As we see segments, there are two main cases for how we want to process them:
|
|
|
|
*
|
|
|
|
* 1. we want to push the captured input directly to string handlers.
|
|
|
|
*
|
|
|
|
* 2. we need to accumulate all the parts into a contiguous buffer for further
|
|
|
|
* processing (field name lookup, string->number conversion, etc). */
|
|
|
|
|
|
|
|
/* This is the set of states for p->multipart_state. */
|
|
|
|
enum {
|
|
|
|
/* We are not currently processing multipart data. */
|
|
|
|
MULTIPART_INACTIVE = 0,
|
|
|
|
|
|
|
|
/* We are processing multipart data by accumulating it into a contiguous
|
|
|
|
* buffer. */
|
|
|
|
MULTIPART_ACCUMULATE = 1,
|
|
|
|
|
|
|
|
/* We are processing multipart data by pushing each part directly to the
|
|
|
|
* current string handlers. */
|
|
|
|
MULTIPART_PUSHEAGERLY = 2
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Start a multi-part text value where we accumulate the data for processing at
|
|
|
|
* the end. */
|
|
|
|
static void multipart_startaccum(upb_json_parser *p) {
|
|
|
|
assert_accumulate_empty(p);
|
|
|
|
assert(p->multipart_state == MULTIPART_INACTIVE);
|
|
|
|
p->multipart_state = MULTIPART_ACCUMULATE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Start a multi-part text value where we immediately push text data to a string
|
|
|
|
* value with the given selector. */
|
|
|
|
static void multipart_start(upb_json_parser *p, upb_selector_t sel) {
|
|
|
|
assert_accumulate_empty(p);
|
|
|
|
assert(p->multipart_state == MULTIPART_INACTIVE);
|
|
|
|
p->multipart_state = MULTIPART_PUSHEAGERLY;
|
|
|
|
p->string_selector = sel;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool multipart_text(upb_json_parser *p, const char *buf, size_t len,
|
|
|
|
bool can_alias) {
|
|
|
|
switch (p->multipart_state) {
|
|
|
|
case MULTIPART_INACTIVE:
|
|
|
|
upb_status_seterrmsg(
|
|
|
|
p->status, "Internal error: unexpected state MULTIPART_INACTIVE");
|
|
|
|
return false;
|
|
|
|
|
|
|
|
case MULTIPART_ACCUMULATE:
|
|
|
|
if (!accumulate_append(p, buf, len, can_alias)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case MULTIPART_PUSHEAGERLY: {
|
|
|
|
const upb_bufhandle *handle = can_alias ? p->handle : NULL;
|
|
|
|
upb_sink_putstring(&p->top->sink, p->string_selector, buf, len, handle);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Note: this invalidates the accumulate buffer! Call only after reading its
|
|
|
|
* contents. */
|
|
|
|
static void multipart_end(upb_json_parser *p) {
|
|
|
|
assert(p->multipart_state != MULTIPART_INACTIVE);
|
|
|
|
p->multipart_state = MULTIPART_INACTIVE;
|
|
|
|
accumulate_clear(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Input capture **************************************************************/
|
|
|
|
|
|
|
|
/* Functionality for capturing a region of the input as text. Gracefully
|
|
|
|
* handles the case where a buffer seam occurs in the middle of the captured
|
|
|
|
* region. */
|
|
|
|
|
|
|
|
static void capture_begin(upb_json_parser *p, const char *ptr) {
|
|
|
|
assert(p->multipart_state != MULTIPART_INACTIVE);
|
|
|
|
assert(p->capture == NULL);
|
|
|
|
p->capture = ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool capture_end(upb_json_parser *p, const char *ptr) {
|
|
|
|
assert(p->capture);
|
|
|
|
if (multipart_text(p, p->capture, ptr - p->capture, true)) {
|
|
|
|
p->capture = NULL;
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This is called at the end of each input buffer (ie. when we have hit a
|
|
|
|
* buffer seam). If we are in the middle of capturing the input, this
|
|
|
|
* processes the unprocessed capture region. */
|
|
|
|
static void capture_suspend(upb_json_parser *p, const char **ptr) {
|
|
|
|
if (!p->capture) return;
|
|
|
|
|
|
|
|
if (multipart_text(p, p->capture, *ptr - p->capture, false)) {
|
|
|
|
/* We use this as a signal that we were in the middle of capturing, and
|
|
|
|
* that capturing should resume at the beginning of the next buffer.
|
|
|
|
*
|
|
|
|
* We can't use *ptr here, because we have no guarantee that this pointer
|
|
|
|
* will be valid when we resume (if the underlying memory is freed, then
|
|
|
|
* using the pointer at all, even to compare to NULL, is likely undefined
|
|
|
|
* behavior). */
|
|
|
|
p->capture = &suspend_capture;
|
|
|
|
} else {
|
|
|
|
/* Need to back up the pointer to the beginning of the capture, since
|
|
|
|
* we were not able to actually preserve it. */
|
|
|
|
*ptr = p->capture;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void capture_resume(upb_json_parser *p, const char *ptr) {
|
|
|
|
if (p->capture) {
|
|
|
|
assert(p->capture == &suspend_capture);
|
|
|
|
p->capture = ptr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Callbacks from the parser **************************************************/
|
|
|
|
|
|
|
|
/* These are the functions called directly from the parser itself.
|
|
|
|
* We define these in the same order as their declarations in the parser. */
|
|
|
|
|
|
|
|
static char escape_char(char in) {
|
|
|
|
switch (in) {
|
|
|
|
case 'r': return '\r';
|
|
|
|
case 't': return '\t';
|
|
|
|
case 'n': return '\n';
|
|
|
|
case 'f': return '\f';
|
|
|
|
case 'b': return '\b';
|
|
|
|
case '/': return '/';
|
|
|
|
case '"': return '"';
|
|
|
|
case '\\': return '\\';
|
|
|
|
default:
|
|
|
|
assert(0);
|
|
|
|
return 'x';
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool escape(upb_json_parser *p, const char *ptr) {
|
|
|
|
char ch = escape_char(*ptr);
|
|
|
|
return multipart_text(p, &ch, 1, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void start_hex(upb_json_parser *p) {
|
|
|
|
p->digit = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hexdigit(upb_json_parser *p, const char *ptr) {
|
|
|
|
char ch = *ptr;
|
|
|
|
|
|
|
|
p->digit <<= 4;
|
|
|
|
|
|
|
|
if (ch >= '0' && ch <= '9') {
|
|
|
|
p->digit += (ch - '0');
|
|
|
|
} else if (ch >= 'a' && ch <= 'f') {
|
|
|
|
p->digit += ((ch - 'a') + 10);
|
|
|
|
} else {
|
|
|
|
assert(ch >= 'A' && ch <= 'F');
|
|
|
|
p->digit += ((ch - 'A') + 10);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool end_hex(upb_json_parser *p) {
|
|
|
|
uint32_t codepoint = p->digit;
|
|
|
|
|
|
|
|
/* emit the codepoint as UTF-8. */
|
|
|
|
char utf8[3]; /* support \u0000 -- \uFFFF -- need only three bytes. */
|
|
|
|
int length = 0;
|
|
|
|
if (codepoint <= 0x7F) {
|
|
|
|
utf8[0] = codepoint;
|
|
|
|
length = 1;
|
|
|
|
} else if (codepoint <= 0x07FF) {
|
|
|
|
utf8[1] = (codepoint & 0x3F) | 0x80;
|
|
|
|
codepoint >>= 6;
|
|
|
|
utf8[0] = (codepoint & 0x1F) | 0xC0;
|
|
|
|
length = 2;
|
|
|
|
} else /* codepoint <= 0xFFFF */ {
|
|
|
|
utf8[2] = (codepoint & 0x3F) | 0x80;
|
|
|
|
codepoint >>= 6;
|
|
|
|
utf8[1] = (codepoint & 0x3F) | 0x80;
|
|
|
|
codepoint >>= 6;
|
|
|
|
utf8[0] = (codepoint & 0x0F) | 0xE0;
|
|
|
|
length = 3;
|
|
|
|
}
|
|
|
|
/* TODO(haberman): Handle high surrogates: if codepoint is a high surrogate
|
|
|
|
* we have to wait for the next escape to get the full code point). */
|
|
|
|
|
|
|
|
return multipart_text(p, utf8, length, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void start_text(upb_json_parser *p, const char *ptr) {
|
|
|
|
capture_begin(p, ptr);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool end_text(upb_json_parser *p, const char *ptr) {
|
|
|
|
return capture_end(p, ptr);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void start_number(upb_json_parser *p, const char *ptr) {
|
|
|
|
multipart_startaccum(p);
|
|
|
|
capture_begin(p, ptr);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool parse_number(upb_json_parser *p);
|
|
|
|
|
|
|
|
static bool end_number(upb_json_parser *p, const char *ptr) {
|
|
|
|
if (!capture_end(p, ptr)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return parse_number(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool parse_number(upb_json_parser *p) {
|
|
|
|
size_t len;
|
|
|
|
const char *buf;
|
|
|
|
const char *myend;
|
|
|
|
char *end;
|
|
|
|
|
|
|
|
/* strtol() and friends unfortunately do not support specifying the length of
|
|
|
|
* the input string, so we need to force a copy into a NULL-terminated buffer. */
|
|
|
|
if (!multipart_text(p, "\0", 1, false)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
buf = accumulate_getptr(p, &len);
|
|
|
|
myend = buf + len - 1; /* One for NULL. */
|
|
|
|
|
|
|
|
/* XXX: We are using strtol to parse integers, but this is wrong as even
|
|
|
|
* integers can be represented as 1e6 (for example), which strtol can't
|
|
|
|
* handle correctly.
|
|
|
|
*
|
|
|
|
* XXX: Also, we can't handle large integers properly because strto[u]ll
|
|
|
|
* isn't in C89.
|
|
|
|
*
|
|
|
|
* XXX: Also, we don't properly check floats for overflow, since strtof
|
|
|
|
* isn't in C89. */
|
|
|
|
switch (upb_fielddef_type(p->top->f)) {
|
|
|
|
case UPB_TYPE_ENUM:
|
|
|
|
case UPB_TYPE_INT32: {
|
|
|
|
long val = strtol(p->accumulated, &end, 0);
|
|
|
|
if (val > INT32_MAX || val < INT32_MIN || errno == ERANGE || end != myend)
|
|
|
|
goto err;
|
|
|
|
else
|
|
|
|
upb_sink_putint32(&p->top->sink, parser_getsel(p), val);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case UPB_TYPE_INT64: {
|
|
|
|
long long val = strtol(p->accumulated, &end, 0);
|
|
|
|
if (val > INT64_MAX || val < INT64_MIN || errno == ERANGE || end != myend)
|
|
|
|
goto err;
|
|
|
|
else
|
|
|
|
upb_sink_putint64(&p->top->sink, parser_getsel(p), val);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case UPB_TYPE_UINT32: {
|
|
|
|
unsigned long val = strtoul(p->accumulated, &end, 0);
|
|
|
|
if (val > UINT32_MAX || errno == ERANGE || end != myend)
|
|
|
|
goto err;
|
|
|
|
else
|
|
|
|
upb_sink_putuint32(&p->top->sink, parser_getsel(p), val);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case UPB_TYPE_UINT64: {
|
|
|
|
unsigned long long val = strtoul(p->accumulated, &end, 0);
|
|
|
|
if (val > UINT64_MAX || errno == ERANGE || end != myend)
|
|
|
|
goto err;
|
|
|
|
else
|
|
|
|
upb_sink_putuint64(&p->top->sink, parser_getsel(p), val);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case UPB_TYPE_DOUBLE: {
|
|
|
|
double val = strtod(p->accumulated, &end);
|
|
|
|
if (errno == ERANGE || end != myend)
|
|
|
|
goto err;
|
|
|
|
else
|
|
|
|
upb_sink_putdouble(&p->top->sink, parser_getsel(p), val);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case UPB_TYPE_FLOAT: {
|
|
|
|
float val = strtod(p->accumulated, &end);
|
|
|
|
if (errno == ERANGE || end != myend)
|
|
|
|
goto err;
|
|
|
|
else
|
|
|
|
upb_sink_putfloat(&p->top->sink, parser_getsel(p), val);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
assert(false);
|
|
|
|
}
|
|
|
|
|
|
|
|
multipart_end(p);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
err:
|
|
|
|
upb_status_seterrf(p->status, "error parsing number: %s", buf);
|
|
|
|
multipart_end(p);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool parser_putbool(upb_json_parser *p, bool val) {
|
|
|
|
bool ok;
|
|
|
|
|
|
|
|
if (upb_fielddef_type(p->top->f) != UPB_TYPE_BOOL) {
|
|
|
|
upb_status_seterrf(p->status,
|
|
|
|
"Boolean value specified for non-bool field: %s",
|
|
|
|
upb_fielddef_name(p->top->f));
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
ok = upb_sink_putbool(&p->top->sink, parser_getsel(p), val);
|
|
|
|
UPB_ASSERT_VAR(ok, ok);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool start_stringval(upb_json_parser *p) {
|
|
|
|
assert(p->top->f);
|
|
|
|
|
|
|
|
if (upb_fielddef_isstring(p->top->f)) {
|
|
|
|
upb_jsonparser_frame *inner;
|
|
|
|
upb_selector_t sel;
|
|
|
|
|
|
|
|
if (!check_stack(p)) return false;
|
|
|
|
|
|
|
|
/* Start a new parser frame: parser frames correspond one-to-one with
|
|
|
|
* handler frames, and string events occur in a sub-frame. */
|
|
|
|
inner = p->top + 1;
|
|
|
|
sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR);
|
|
|
|
upb_sink_startstr(&p->top->sink, sel, 0, &inner->sink);
|
|
|
|
inner->m = p->top->m;
|
|
|
|
inner->f = p->top->f;
|
|
|
|
inner->is_map = false;
|
|
|
|
inner->is_mapentry = false;
|
|
|
|
p->top = inner;
|
|
|
|
|
|
|
|
if (upb_fielddef_type(p->top->f) == UPB_TYPE_STRING) {
|
|
|
|
/* For STRING fields we push data directly to the handlers as it is
|
|
|
|
* parsed. We don't do this yet for BYTES fields, because our base64
|
|
|
|
* decoder is not streaming.
|
|
|
|
*
|
|
|
|
* TODO(haberman): make base64 decoding streaming also. */
|
|
|
|
multipart_start(p, getsel_for_handlertype(p, UPB_HANDLER_STRING));
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
multipart_startaccum(p);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
} else if (upb_fielddef_type(p->top->f) == UPB_TYPE_ENUM) {
|
|
|
|
/* No need to push a frame -- symbolic enum names in quotes remain in the
|
|
|
|
* current parser frame.
|
|
|
|
*
|
|
|
|
* Enum string values must accumulate so we can look up the value in a table
|
|
|
|
* once it is complete. */
|
|
|
|
multipart_startaccum(p);
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
upb_status_seterrf(p->status,
|
|
|
|
"String specified for non-string/non-enum field: %s",
|
|
|
|
upb_fielddef_name(p->top->f));
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool end_stringval(upb_json_parser *p) {
|
|
|
|
bool ok = true;
|
|
|
|
|
|
|
|
switch (upb_fielddef_type(p->top->f)) {
|
|
|
|
case UPB_TYPE_BYTES:
|
|
|
|
if (!base64_push(p, getsel_for_handlertype(p, UPB_HANDLER_STRING),
|
|
|
|
p->accumulated, p->accumulated_len)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
/* Fall through. */
|
|
|
|
|
|
|
|
case UPB_TYPE_STRING: {
|
|
|
|
upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR);
|
|
|
|
upb_sink_endstr(&p->top->sink, sel);
|
|
|
|
p->top--;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case UPB_TYPE_ENUM: {
|
|
|
|
/* Resolve enum symbolic name to integer value. */
|
|
|
|
const upb_enumdef *enumdef =
|
|
|
|
(const upb_enumdef*)upb_fielddef_subdef(p->top->f);
|
|
|
|
|
|
|
|
size_t len;
|
|
|
|
const char *buf = accumulate_getptr(p, &len);
|
|
|
|
|
|
|
|
int32_t int_val = 0;
|
|
|
|
ok = upb_enumdef_ntoi(enumdef, buf, len, &int_val);
|
|
|
|
|
|
|
|
if (ok) {
|
|
|
|
upb_selector_t sel = parser_getsel(p);
|
|
|
|
upb_sink_putint32(&p->top->sink, sel, int_val);
|
|
|
|
} else {
|
|
|
|
upb_status_seterrf(p->status, "Enum value unknown: '%.*s'", len, buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
default:
|
|
|
|
assert(false);
|
|
|
|
upb_status_seterrmsg(p->status, "Internal error in JSON decoder");
|
|
|
|
ok = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
multipart_end(p);
|
|
|
|
|
|
|
|
return ok;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void start_member(upb_json_parser *p) {
|
|
|
|
assert(!p->top->f);
|
|
|
|
multipart_startaccum(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Helper: invoked during parse_mapentry() to emit the mapentry message's key
|
|
|
|
* field based on the current contents of the accumulate buffer. */
|
|
|
|
static bool parse_mapentry_key(upb_json_parser *p) {
|
|
|
|
|
|
|
|
size_t len;
|
|
|
|
const char *buf = accumulate_getptr(p, &len);
|
|
|
|
|
|
|
|
/* Emit the key field. We do a bit of ad-hoc parsing here because the
|
|
|
|
* parser state machine has already decided that this is a string field
|
|
|
|
* name, and we are reinterpreting it as some arbitrary key type. In
|
|
|
|
* particular, integer and bool keys are quoted, so we need to parse the
|
|
|
|
* quoted string contents here. */
|
|
|
|
|
|
|
|
p->top->f = upb_msgdef_itof(p->top->m, UPB_MAPENTRY_KEY);
|
|
|
|
if (p->top->f == NULL) {
|
|
|
|
upb_status_seterrmsg(p->status, "mapentry message has no key");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
switch (upb_fielddef_type(p->top->f)) {
|
|
|
|
case UPB_TYPE_INT32:
|
|
|
|
case UPB_TYPE_INT64:
|
|
|
|
case UPB_TYPE_UINT32:
|
|
|
|
case UPB_TYPE_UINT64:
|
|
|
|
/* Invoke end_number. The accum buffer has the number's text already. */
|
|
|
|
if (!parse_number(p)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case UPB_TYPE_BOOL:
|
|
|
|
if (len == 4 && !strncmp(buf, "true", 4)) {
|
|
|
|
if (!parser_putbool(p, true)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
} else if (len == 5 && !strncmp(buf, "false", 5)) {
|
|
|
|
if (!parser_putbool(p, false)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
upb_status_seterrmsg(p->status,
|
|
|
|
"Map bool key not 'true' or 'false'");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
multipart_end(p);
|
|
|
|
break;
|
|
|
|
case UPB_TYPE_STRING:
|
|
|
|
case UPB_TYPE_BYTES: {
|
|
|
|
upb_sink subsink;
|
|
|
|
upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR);
|
|
|
|
upb_sink_startstr(&p->top->sink, sel, len, &subsink);
|
|
|
|
sel = getsel_for_handlertype(p, UPB_HANDLER_STRING);
|
|
|
|
upb_sink_putstring(&subsink, sel, buf, len, NULL);
|
|
|
|
sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR);
|
|
|
|
upb_sink_endstr(&subsink, sel);
|
|
|
|
multipart_end(p);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
upb_status_seterrmsg(p->status, "Invalid field type for map key");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Helper: emit one map entry (as a submessage in the map field sequence). This
|
|
|
|
* is invoked from end_membername(), at the end of the map entry's key string,
|
|
|
|
* with the map key in the accumulate buffer. It parses the key from that
|
|
|
|
* buffer, emits the handler calls to start the mapentry submessage (setting up
|
|
|
|
* its subframe in the process), and sets up state in the subframe so that the
|
|
|
|
* value parser (invoked next) will emit the mapentry's value field and then
|
|
|
|
* end the mapentry message. */
|
|
|
|
|
|
|
|
static bool handle_mapentry(upb_json_parser *p) {
|
|
|
|
const upb_fielddef *mapfield;
|
|
|
|
const upb_msgdef *mapentrymsg;
|
|
|
|
upb_jsonparser_frame *inner;
|
|
|
|
upb_selector_t sel;
|
|
|
|
|
|
|
|
/* Map entry: p->top->sink is the seq frame, so we need to start a frame
|
|
|
|
* for the mapentry itself, and then set |f| in that frame so that the map
|
|
|
|
* value field is parsed, and also set a flag to end the frame after the
|
|
|
|
* map-entry value is parsed. */
|
|
|
|
if (!check_stack(p)) return false;
|
|
|
|
|
|
|
|
mapfield = p->top->mapfield;
|
|
|
|
mapentrymsg = upb_fielddef_msgsubdef(mapfield);
|
|
|
|
|
|
|
|
inner = p->top + 1;
|
|
|
|
p->top->f = mapfield;
|
|
|
|
sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSUBMSG);
|
|
|
|
upb_sink_startsubmsg(&p->top->sink, sel, &inner->sink);
|
|
|
|
inner->m = mapentrymsg;
|
|
|
|
inner->mapfield = mapfield;
|
|
|
|
inner->is_map = false;
|
|
|
|
|
|
|
|
/* Don't set this to true *yet* -- we reuse parsing handlers below to push
|
|
|
|
* the key field value to the sink, and these handlers will pop the frame
|
|
|
|
* if they see is_mapentry (when invoked by the parser state machine, they
|
|
|
|
* would have just seen the map-entry value, not key). */
|
|
|
|
inner->is_mapentry = false;
|
|
|
|
p->top = inner;
|
|
|
|
|
|
|
|
/* send STARTMSG in submsg frame. */
|
|
|
|
upb_sink_startmsg(&p->top->sink);
|
|
|
|
|
|
|
|
parse_mapentry_key(p);
|
|
|
|
|
|
|
|
/* Set up the value field to receive the map-entry value. */
|
|
|
|
p->top->f = upb_msgdef_itof(p->top->m, UPB_MAPENTRY_VALUE);
|
|
|
|
p->top->is_mapentry = true; /* set up to pop frame after value is parsed. */
|
|
|
|
p->top->mapfield = mapfield;
|
|
|
|
if (p->top->f == NULL) {
|
|
|
|
upb_status_seterrmsg(p->status, "mapentry message has no value");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool end_membername(upb_json_parser *p) {
|
|
|
|
assert(!p->top->f);
|
|
|
|
|
|
|
|
if (p->top->is_map) {
|
|
|
|
return handle_mapentry(p);
|
|
|
|
} else {
|
|
|
|
size_t len;
|
|
|
|
const char *buf = accumulate_getptr(p, &len);
|
|
|
|
const upb_fielddef *f = upb_msgdef_ntof(p->top->m, buf, len);
|
|
|
|
|
|
|
|
if (!f) {
|
|
|
|
/* TODO(haberman): Ignore unknown fields if requested/configured to do
|
|
|
|
* so. */
|
|
|
|
upb_status_seterrf(p->status, "No such field: %.*s\n", (int)len, buf);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
p->top->f = f;
|
|
|
|
multipart_end(p);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void end_member(upb_json_parser *p) {
|
|
|
|
/* If we just parsed a map-entry value, end that frame too. */
|
|
|
|
if (p->top->is_mapentry) {
|
|
|
|
upb_status s = UPB_STATUS_INIT;
|
|
|
|
upb_selector_t sel;
|
|
|
|
bool ok;
|
|
|
|
const upb_fielddef *mapfield;
|
|
|
|
|
|
|
|
assert(p->top > p->stack);
|
|
|
|
/* send ENDMSG on submsg. */
|
|
|
|
upb_sink_endmsg(&p->top->sink, &s);
|
|
|
|
mapfield = p->top->mapfield;
|
|
|
|
|
|
|
|
/* send ENDSUBMSG in repeated-field-of-mapentries frame. */
|
|
|
|
p->top--;
|
|
|
|
ok = upb_handlers_getselector(mapfield, UPB_HANDLER_ENDSUBMSG, &sel);
|
|
|
|
UPB_ASSERT_VAR(ok, ok);
|
|
|
|
upb_sink_endsubmsg(&p->top->sink, sel);
|
|
|
|
}
|
|
|
|
|
|
|
|
p->top->f = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool start_subobject(upb_json_parser *p) {
|
|
|
|
assert(p->top->f);
|
|
|
|
|
|
|
|
if (upb_fielddef_ismap(p->top->f)) {
|
|
|
|
upb_jsonparser_frame *inner;
|
|
|
|
upb_selector_t sel;
|
|
|
|
|
|
|
|
/* Beginning of a map. Start a new parser frame in a repeated-field
|
|
|
|
* context. */
|
|
|
|
if (!check_stack(p)) return false;
|
|
|
|
|
|
|
|
inner = p->top + 1;
|
|
|
|
sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSEQ);
|
|
|
|
upb_sink_startseq(&p->top->sink, sel, &inner->sink);
|
|
|
|
inner->m = upb_fielddef_msgsubdef(p->top->f);
|
|
|
|
inner->mapfield = p->top->f;
|
|
|
|
inner->f = NULL;
|
|
|
|
inner->is_map = true;
|
|
|
|
inner->is_mapentry = false;
|
|
|
|
p->top = inner;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
} else if (upb_fielddef_issubmsg(p->top->f)) {
|
|
|
|
upb_jsonparser_frame *inner;
|
|
|
|
upb_selector_t sel;
|
|
|
|
|
|
|
|
/* Beginning of a subobject. Start a new parser frame in the submsg
|
|
|
|
* context. */
|
|
|
|
if (!check_stack(p)) return false;
|
|
|
|
|
|
|
|
inner = p->top + 1;
|
|
|
|
|
|
|
|
sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSUBMSG);
|
|
|
|
upb_sink_startsubmsg(&p->top->sink, sel, &inner->sink);
|
|
|
|
inner->m = upb_fielddef_msgsubdef(p->top->f);
|
|
|
|
inner->f = NULL;
|
|
|
|
inner->is_map = false;
|
|
|
|
inner->is_mapentry = false;
|
|
|
|
p->top = inner;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
upb_status_seterrf(p->status,
|
|
|
|
"Object specified for non-message/group field: %s",
|
|
|
|
upb_fielddef_name(p->top->f));
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void end_subobject(upb_json_parser *p) {
|
|
|
|
if (p->top->is_map) {
|
|
|
|
upb_selector_t sel;
|
|
|
|
p->top--;
|
|
|
|
sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSEQ);
|
|
|
|
upb_sink_endseq(&p->top->sink, sel);
|
|
|
|
} else {
|
|
|
|
upb_selector_t sel;
|
|
|
|
p->top--;
|
|
|
|
sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSUBMSG);
|
|
|
|
upb_sink_endsubmsg(&p->top->sink, sel);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool start_array(upb_json_parser *p) {
|
|
|
|
upb_jsonparser_frame *inner;
|
|
|
|
upb_selector_t sel;
|
|
|
|
|
|
|
|
assert(p->top->f);
|
|
|
|
|
|
|
|
if (!upb_fielddef_isseq(p->top->f)) {
|
|
|
|
upb_status_seterrf(p->status,
|
|
|
|
"Array specified for non-repeated field: %s",
|
|
|
|
upb_fielddef_name(p->top->f));
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!check_stack(p)) return false;
|
|
|
|
|
|
|
|
inner = p->top + 1;
|
|
|
|
sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSEQ);
|
|
|
|
upb_sink_startseq(&p->top->sink, sel, &inner->sink);
|
|
|
|
inner->m = p->top->m;
|
|
|
|
inner->f = p->top->f;
|
|
|
|
inner->is_map = false;
|
|
|
|
inner->is_mapentry = false;
|
|
|
|
p->top = inner;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void end_array(upb_json_parser *p) {
|
|
|
|
upb_selector_t sel;
|
|
|
|
|
|
|
|
assert(p->top > p->stack);
|
|
|
|
|
|
|
|
p->top--;
|
|
|
|
sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSEQ);
|
|
|
|
upb_sink_endseq(&p->top->sink, sel);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void start_object(upb_json_parser *p) {
|
|
|
|
if (!p->top->is_map) {
|
|
|
|
upb_sink_startmsg(&p->top->sink);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void end_object(upb_json_parser *p) {
|
|
|
|
if (!p->top->is_map) {
|
|
|
|
upb_status status;
|
|
|
|
upb_sink_endmsg(&p->top->sink, &status);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#define CHECK_RETURN_TOP(x) if (!(x)) goto error
|
|
|
|
|
|
|
|
|
|
|
|
/* The actual parser **********************************************************/
|
|
|
|
|
|
|
|
/* What follows is the Ragel parser itself. The language is specified in Ragel
|
|
|
|
* and the actions call our C functions above.
|
|
|
|
*
|
|
|
|
* Ragel has an extensive set of functionality, and we use only a small part of
|
|
|
|
* it. There are many action types but we only use a few:
|
|
|
|
*
|
|
|
|
* ">" -- transition into a machine
|
|
|
|
* "%" -- transition out of a machine
|
|
|
|
* "@" -- transition into a final state of a machine.
|
|
|
|
*
|
|
|
|
* "@" transitions are tricky because a machine can transition into a final
|
|
|
|
* state repeatedly. But in some cases we know this can't happen, for example
|
|
|
|
* a string which is delimited by a final '"' can only transition into its
|
|
|
|
* final state once, when the closing '"' is seen. */
|
|
|
|
|
|
|
|
%%{
|
|
|
|
machine json;
|
|
|
|
|
|
|
|
ws = space*;
|
|
|
|
|
|
|
|
integer = "0" | /[1-9]/ /[0-9]/*;
|
|
|
|
decimal = "." /[0-9]/+;
|
|
|
|
exponent = /[eE]/ /[+\-]/? /[0-9]/+;
|
|
|
|
|
|
|
|
number_machine :=
|
|
|
|
("-"? integer decimal? exponent?)
|
|
|
|
<: any >{ fhold; fret; };
|
|
|
|
number = /[0-9\-]/ >{ fhold; fcall number_machine; };
|
|
|
|
|
|
|
|
text =
|
|
|
|
/[^\\"]/+
|
|
|
|
>{ start_text(parser, p); }
|
|
|
|
%{ CHECK_RETURN_TOP(end_text(parser, p)); }
|
|
|
|
;
|
|
|
|
|
|
|
|
unicode_char =
|
|
|
|
"\\u"
|
|
|
|
/[0-9A-Fa-f]/{4}
|
|
|
|
>{ start_hex(parser); }
|
|
|
|
${ hexdigit(parser, p); }
|
|
|
|
%{ CHECK_RETURN_TOP(end_hex(parser)); }
|
|
|
|
;
|
|
|
|
|
|
|
|
escape_char =
|
|
|
|
"\\"
|
|
|
|
/[rtbfn"\/\\]/
|
|
|
|
>{ CHECK_RETURN_TOP(escape(parser, p)); }
|
|
|
|
;
|
|
|
|
|
|
|
|
string_machine :=
|
|
|
|
(text | unicode_char | escape_char)**
|
|
|
|
'"'
|
|
|
|
@{ fhold; fret; }
|
|
|
|
;
|
|
|
|
|
|
|
|
string = '"' @{ fcall string_machine; } '"';
|
|
|
|
|
|
|
|
value2 = ^(space | "]" | "}") >{ fhold; fcall value_machine; } ;
|
|
|
|
|
|
|
|
member =
|
|
|
|
ws
|
|
|
|
string
|
|
|
|
>{ start_member(parser); }
|
|
|
|
@{ CHECK_RETURN_TOP(end_membername(parser)); }
|
|
|
|
ws ":" ws
|
|
|
|
value2
|
|
|
|
%{ end_member(parser); }
|
|
|
|
ws;
|
|
|
|
|
|
|
|
object =
|
|
|
|
"{"
|
|
|
|
ws
|
|
|
|
>{ start_object(parser); }
|
|
|
|
(member ("," member)*)?
|
|
|
|
"}"
|
|
|
|
>{ end_object(parser); }
|
|
|
|
;
|
|
|
|
|
|
|
|
element = ws value2 ws;
|
|
|
|
array =
|
|
|
|
"["
|
|
|
|
>{ CHECK_RETURN_TOP(start_array(parser)); }
|
|
|
|
ws
|
|
|
|
(element ("," element)*)?
|
|
|
|
"]"
|
|
|
|
>{ end_array(parser); }
|
|
|
|
;
|
|
|
|
|
|
|
|
value =
|
|
|
|
number
|
|
|
|
>{ start_number(parser, p); }
|
|
|
|
%{ CHECK_RETURN_TOP(end_number(parser, p)); }
|
|
|
|
| string
|
|
|
|
>{ CHECK_RETURN_TOP(start_stringval(parser)); }
|
|
|
|
@{ CHECK_RETURN_TOP(end_stringval(parser)); }
|
|
|
|
| "true"
|
|
|
|
%{ CHECK_RETURN_TOP(parser_putbool(parser, true)); }
|
|
|
|
| "false"
|
|
|
|
%{ CHECK_RETURN_TOP(parser_putbool(parser, false)); }
|
|
|
|
| "null"
|
|
|
|
%{ /* null value */ }
|
|
|
|
| object
|
|
|
|
>{ CHECK_RETURN_TOP(start_subobject(parser)); }
|
|
|
|
%{ end_subobject(parser); }
|
|
|
|
| array;
|
|
|
|
|
|
|
|
value_machine :=
|
|
|
|
value
|
|
|
|
<: any >{ fhold; fret; } ;
|
|
|
|
|
|
|
|
main := ws object ws;
|
|
|
|
}%%
|
|
|
|
|
|
|
|
%% write data noerror nofinal;
|
|
|
|
|
|
|
|
size_t parse(void *closure, const void *hd, const char *buf, size_t size,
|
|
|
|
const upb_bufhandle *handle) {
|
|
|
|
upb_json_parser *parser = closure;
|
|
|
|
|
|
|
|
/* Variables used by Ragel's generated code. */
|
|
|
|
int cs = parser->current_state;
|
|
|
|
int *stack = parser->parser_stack;
|
|
|
|
int top = parser->parser_top;
|
|
|
|
|
|
|
|
const char *p = buf;
|
|
|
|
const char *pe = buf + size;
|
|
|
|
|
|
|
|
parser->handle = handle;
|
|
|
|
|
|
|
|
UPB_UNUSED(hd);
|
|
|
|
UPB_UNUSED(handle);
|
|
|
|
|
|
|
|
capture_resume(parser, buf);
|
|
|
|
|
|
|
|
%% write exec;
|
|
|
|
|
|
|
|
if (p != pe) {
|
|
|
|
upb_status_seterrf(parser->status, "Parse error at %s\n", p);
|
|
|
|
} else {
|
|
|
|
capture_suspend(parser, &p);
|
|
|
|
}
|
|
|
|
|
|
|
|
error:
|
|
|
|
/* Save parsing state back to parser. */
|
|
|
|
parser->current_state = cs;
|
|
|
|
parser->parser_top = top;
|
|
|
|
|
|
|
|
return p - buf;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool end(void *closure, const void *hd) {
|
|
|
|
UPB_UNUSED(closure);
|
|
|
|
UPB_UNUSED(hd);
|
|
|
|
|
|
|
|
/* Prevent compile warning on unused static constants. */
|
|
|
|
UPB_UNUSED(json_start);
|
|
|
|
UPB_UNUSED(json_en_number_machine);
|
|
|
|
UPB_UNUSED(json_en_string_machine);
|
|
|
|
UPB_UNUSED(json_en_value_machine);
|
|
|
|
UPB_UNUSED(json_en_main);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void json_parser_reset(upb_json_parser *p) {
|
|
|
|
int cs;
|
|
|
|
int top;
|
|
|
|
|
|
|
|
p->top = p->stack;
|
|
|
|
p->top->f = NULL;
|
|
|
|
p->top->is_map = false;
|
|
|
|
p->top->is_mapentry = false;
|
|
|
|
|
|
|
|
/* Emit Ragel initialization of the parser. */
|
|
|
|
%% write init;
|
|
|
|
p->current_state = cs;
|
|
|
|
p->parser_top = top;
|
|
|
|
accumulate_clear(p);
|
|
|
|
p->multipart_state = MULTIPART_INACTIVE;
|
|
|
|
p->capture = NULL;
|
|
|
|
p->accumulated = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Public API *****************************************************************/
|
|
|
|
|
|
|
|
upb_json_parser *upb_json_parser_create(upb_env *env, upb_sink *output) {
|
|
|
|
#ifndef NDEBUG
|
|
|
|
const size_t size_before = upb_env_bytesallocated(env);
|
|
|
|
#endif
|
|
|
|
upb_json_parser *p = upb_env_malloc(env, sizeof(upb_json_parser));
|
|
|
|
if (!p) return false;
|
|
|
|
|
|
|
|
p->env = env;
|
|
|
|
p->limit = p->stack + UPB_JSON_MAX_DEPTH;
|
|
|
|
p->accumulate_buf = NULL;
|
|
|
|
p->accumulate_buf_size = 0;
|
|
|
|
upb_byteshandler_init(&p->input_handler_);
|
|
|
|
upb_byteshandler_setstring(&p->input_handler_, parse, NULL);
|
|
|
|
upb_byteshandler_setendstr(&p->input_handler_, end, NULL);
|
|
|
|
upb_bytessink_reset(&p->input_, &p->input_handler_, p);
|
|
|
|
|
|
|
|
json_parser_reset(p);
|
|
|
|
upb_sink_reset(&p->top->sink, output->handlers, output->closure);
|
|
|
|
p->top->m = upb_handlers_msgdef(output->handlers);
|
|
|
|
|
|
|
|
/* If this fails, uncomment and increase the value in parser.h.
|
|
|
|
* fprintf(stderr, "%zd\n", upb_env_bytesallocated(env) - size_before); */
|
|
|
|
assert(upb_env_bytesallocated(env) - size_before <= UPB_JSON_PARSER_SIZE);
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
upb_bytessink *upb_json_parser_input(upb_json_parser *p) {
|
|
|
|
return &p->input_;
|
|
|
|
}
|