Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1145 lines
40 KiB

/*
* Copyright (c) 2009-2021, Google LLC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Google LLC nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Google LLC BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "upb/mini_table/decode.h"
#include <inttypes.h>
#include <stdlib.h>
#include "upb/base/log2.h"
#include "upb/base/string_view.h"
#include "upb/mem/arena.h"
#include "upb/mini_table/common.h"
#include "upb/mini_table/common_internal.h"
#include "upb/mini_table/enum_internal.h"
#include "upb/mini_table/extension_internal.h"
// Must be last.
#include "upb/port/def.inc"
// Note: we sort by this number when calculating layout order.
typedef enum {
kUpb_LayoutItemType_OneofCase, // Oneof case.
kUpb_LayoutItemType_OneofField, // Oneof field data.
kUpb_LayoutItemType_Field, // Non-oneof field data.
kUpb_LayoutItemType_Max = kUpb_LayoutItemType_Field,
} upb_LayoutItemType;
#define kUpb_LayoutItem_IndexSentinel ((uint16_t)-1)
typedef struct {
// Index of the corresponding field. When this is a oneof field, the field's
// offset will be the index of the next field in a linked list.
uint16_t field_index;
uint16_t offset;
upb_FieldRep rep;
upb_LayoutItemType type;
} upb_LayoutItem;
typedef struct {
upb_LayoutItem* data;
size_t size;
size_t capacity;
} upb_LayoutItemVector;
typedef struct {
const char* end;
upb_MiniTable* table;
upb_MiniTableField* fields;
upb_MiniTablePlatform platform;
upb_LayoutItemVector vec;
upb_Arena* arena;
upb_Status* status;
// When building enums.
upb_MiniTableEnum* enum_table;
uint32_t enum_value_count;
uint32_t enum_data_count;
uint32_t enum_data_capacity;
jmp_buf err;
} upb_MtDecoder;
UPB_PRINTF(2, 3)
UPB_NORETURN static void upb_MtDecoder_ErrorFormat(upb_MtDecoder* d,
const char* fmt, ...) {
if (d->status) {
va_list argp;
upb_Status_SetErrorMessage(d->status, "Error building mini table: ");
va_start(argp, fmt);
upb_Status_VAppendErrorFormat(d->status, fmt, argp);
va_end(argp);
}
UPB_LONGJMP(d->err, 1);
}
static void upb_MtDecoder_CheckOutOfMemory(upb_MtDecoder* d, const void* ptr) {
if (!ptr) upb_MtDecoder_ErrorFormat(d, "Out of memory");
}
// In each field's offset, we temporarily store a presence classifier:
enum PresenceClass {
kNoPresence = 0,
kHasbitPresence = 1,
kRequiredPresence = 2,
kOneofBase = 3,
// Negative values refer to a specific oneof with that number. Positive
// values >= kOneofBase indicate that this field is in a oneof, and specify
// the next field in this oneof's linked list.
};
static const char* upb_MiniTable_DecodeBase92Varint(upb_MtDecoder* d,
const char* ptr,
char first_ch, uint8_t min,
uint8_t max,
uint32_t* out_val) {
uint32_t val = 0;
uint32_t shift = 0;
const int bits_per_char =
upb_Log2Ceiling(_upb_FromBase92(max) - _upb_FromBase92(min));
char ch = first_ch;
while (1) {
uint32_t bits = _upb_FromBase92(ch) - _upb_FromBase92(min);
val |= bits << shift;
if (ptr == d->end || *ptr < min || max < *ptr) {
*out_val = val;
return ptr;
}
ch = *ptr++;
shift += bits_per_char;
if (shift >= 32) upb_MtDecoder_ErrorFormat(d, "Overlong varint");
}
}
static bool upb_MtDecoder_FieldIsPackable(upb_MiniTableField* field) {
return (field->mode & kUpb_FieldMode_Array) &&
upb_FieldType_IsPackable(field->UPB_PRIVATE(descriptortype));
}
typedef struct {
uint16_t submsg_count;
uint16_t subenum_count;
} upb_SubCounts;
static void upb_MiniTable_SetTypeAndSub(upb_MiniTableField* field,
upb_FieldType type,
upb_SubCounts* sub_counts,
uint64_t msg_modifiers,
bool is_proto3_enum) {
if (is_proto3_enum) {
UPB_ASSERT(type == kUpb_FieldType_Enum);
type = kUpb_FieldType_Int32;
field->mode |= kUpb_LabelFlags_IsAlternate;
} else if (type == kUpb_FieldType_String &&
!(msg_modifiers & kUpb_MessageModifier_ValidateUtf8)) {
type = kUpb_FieldType_Bytes;
field->mode |= kUpb_LabelFlags_IsAlternate;
}
field->UPB_PRIVATE(descriptortype) = type;
if (upb_MtDecoder_FieldIsPackable(field) &&
(msg_modifiers & kUpb_MessageModifier_DefaultIsPacked)) {
field->mode |= kUpb_LabelFlags_IsPacked;
}
if (type == kUpb_FieldType_Message || type == kUpb_FieldType_Group) {
field->UPB_PRIVATE(submsg_index) = sub_counts->submsg_count++;
} else if (type == kUpb_FieldType_Enum) {
// We will need to update this later once we know the total number of
// submsg fields.
field->UPB_PRIVATE(submsg_index) = sub_counts->subenum_count++;
} else {
field->UPB_PRIVATE(submsg_index) = kUpb_NoSub;
}
}
static const char kUpb_EncodedToType[] = {
[kUpb_EncodedType_Double] = kUpb_FieldType_Double,
[kUpb_EncodedType_Float] = kUpb_FieldType_Float,
[kUpb_EncodedType_Int64] = kUpb_FieldType_Int64,
[kUpb_EncodedType_UInt64] = kUpb_FieldType_UInt64,
[kUpb_EncodedType_Int32] = kUpb_FieldType_Int32,
[kUpb_EncodedType_Fixed64] = kUpb_FieldType_Fixed64,
[kUpb_EncodedType_Fixed32] = kUpb_FieldType_Fixed32,
[kUpb_EncodedType_Bool] = kUpb_FieldType_Bool,
[kUpb_EncodedType_String] = kUpb_FieldType_String,
[kUpb_EncodedType_Group] = kUpb_FieldType_Group,
[kUpb_EncodedType_Message] = kUpb_FieldType_Message,
[kUpb_EncodedType_Bytes] = kUpb_FieldType_Bytes,
[kUpb_EncodedType_UInt32] = kUpb_FieldType_UInt32,
[kUpb_EncodedType_OpenEnum] = kUpb_FieldType_Enum,
[kUpb_EncodedType_SFixed32] = kUpb_FieldType_SFixed32,
[kUpb_EncodedType_SFixed64] = kUpb_FieldType_SFixed64,
[kUpb_EncodedType_SInt32] = kUpb_FieldType_SInt32,
[kUpb_EncodedType_SInt64] = kUpb_FieldType_SInt64,
[kUpb_EncodedType_ClosedEnum] = kUpb_FieldType_Enum,
};
static void upb_MiniTable_SetField(upb_MtDecoder* d, uint8_t ch,
upb_MiniTableField* field,
uint64_t msg_modifiers,
upb_SubCounts* sub_counts) {
static const char kUpb_EncodedToFieldRep[] = {
[kUpb_EncodedType_Double] = kUpb_FieldRep_8Byte,
[kUpb_EncodedType_Float] = kUpb_FieldRep_4Byte,
[kUpb_EncodedType_Int64] = kUpb_FieldRep_8Byte,
[kUpb_EncodedType_UInt64] = kUpb_FieldRep_8Byte,
[kUpb_EncodedType_Int32] = kUpb_FieldRep_4Byte,
[kUpb_EncodedType_Fixed64] = kUpb_FieldRep_8Byte,
[kUpb_EncodedType_Fixed32] = kUpb_FieldRep_4Byte,
[kUpb_EncodedType_Bool] = kUpb_FieldRep_1Byte,
[kUpb_EncodedType_String] = kUpb_FieldRep_StringView,
[kUpb_EncodedType_Bytes] = kUpb_FieldRep_StringView,
[kUpb_EncodedType_UInt32] = kUpb_FieldRep_4Byte,
[kUpb_EncodedType_OpenEnum] = kUpb_FieldRep_4Byte,
[kUpb_EncodedType_SFixed32] = kUpb_FieldRep_4Byte,
[kUpb_EncodedType_SFixed64] = kUpb_FieldRep_8Byte,
[kUpb_EncodedType_SInt32] = kUpb_FieldRep_4Byte,
[kUpb_EncodedType_SInt64] = kUpb_FieldRep_8Byte,
[kUpb_EncodedType_ClosedEnum] = kUpb_FieldRep_4Byte,
};
char pointer_rep = d->platform == kUpb_MiniTablePlatform_32Bit
? kUpb_FieldRep_4Byte
: kUpb_FieldRep_8Byte;
int8_t type = _upb_FromBase92(ch);
if (ch >= _upb_ToBase92(kUpb_EncodedType_RepeatedBase)) {
type -= kUpb_EncodedType_RepeatedBase;
field->mode = kUpb_FieldMode_Array;
field->mode |= pointer_rep << kUpb_FieldRep_Shift;
field->offset = kNoPresence;
} else {
field->mode = kUpb_FieldMode_Scalar;
field->offset = kHasbitPresence;
if (type == kUpb_EncodedType_Group || type == kUpb_EncodedType_Message) {
field->mode |= pointer_rep << kUpb_FieldRep_Shift;
} else if ((unsigned long)type >= sizeof(kUpb_EncodedToFieldRep)) {
upb_MtDecoder_ErrorFormat(d, "Invalid field type: %d", (int)type);
UPB_UNREACHABLE();
} else {
field->mode |= kUpb_EncodedToFieldRep[type] << kUpb_FieldRep_Shift;
}
}
if ((unsigned long)type >= sizeof(kUpb_EncodedToType)) {
upb_MtDecoder_ErrorFormat(d, "Invalid field type: %d", (int)type);
UPB_UNREACHABLE();
}
upb_MiniTable_SetTypeAndSub(field, kUpb_EncodedToType[type], sub_counts,
msg_modifiers, type == kUpb_EncodedType_OpenEnum);
}
3 years ago
static void upb_MtDecoder_ModifyField(upb_MtDecoder* d,
uint32_t message_modifiers,
uint32_t field_modifiers,
upb_MiniTableField* field) {
if (field_modifiers & kUpb_EncodedFieldModifier_FlipPacked) {
if (!upb_MtDecoder_FieldIsPackable(field)) {
upb_MtDecoder_ErrorFormat(
d, "Cannot flip packed on unpackable field %" PRIu32, field->number);
UPB_UNREACHABLE();
}
field->mode ^= kUpb_LabelFlags_IsPacked;
}
bool singular = field_modifiers & kUpb_EncodedFieldModifier_IsProto3Singular;
bool required = field_modifiers & kUpb_EncodedFieldModifier_IsRequired;
// Validate.
if ((singular || required) && field->offset != kHasbitPresence) {
upb_MtDecoder_ErrorFormat(
d, "Invalid modifier(s) for repeated field %" PRIu32, field->number);
UPB_UNREACHABLE();
}
if (singular && required) {
upb_MtDecoder_ErrorFormat(
d, "Field %" PRIu32 " cannot be both singular and required",
field->number);
UPB_UNREACHABLE();
}
if (singular) field->offset = kNoPresence;
if (required) {
field->offset = kRequiredPresence;
}
}
static void upb_MtDecoder_PushItem(upb_MtDecoder* d, upb_LayoutItem item) {
if (d->vec.size == d->vec.capacity) {
size_t new_cap = UPB_MAX(8, d->vec.size * 2);
d->vec.data = realloc(d->vec.data, new_cap * sizeof(*d->vec.data));
upb_MtDecoder_CheckOutOfMemory(d, d->vec.data);
d->vec.capacity = new_cap;
}
d->vec.data[d->vec.size++] = item;
}
static void upb_MtDecoder_PushOneof(upb_MtDecoder* d, upb_LayoutItem item) {
if (item.field_index == kUpb_LayoutItem_IndexSentinel) {
upb_MtDecoder_ErrorFormat(d, "Empty oneof");
UPB_UNREACHABLE();
}
item.field_index -= kOneofBase;
// Push oneof data.
item.type = kUpb_LayoutItemType_OneofField;
upb_MtDecoder_PushItem(d, item);
// Push oneof case.
item.rep = kUpb_FieldRep_4Byte; // Field Number.
item.type = kUpb_LayoutItemType_OneofCase;
upb_MtDecoder_PushItem(d, item);
}
size_t upb_MtDecoder_SizeOfRep(upb_FieldRep rep,
upb_MiniTablePlatform platform) {
static const uint8_t kRepToSize32[] = {
[kUpb_FieldRep_1Byte] = 1,
[kUpb_FieldRep_4Byte] = 4,
[kUpb_FieldRep_StringView] = 8,
[kUpb_FieldRep_8Byte] = 8,
};
static const uint8_t kRepToSize64[] = {
[kUpb_FieldRep_1Byte] = 1,
[kUpb_FieldRep_4Byte] = 4,
[kUpb_FieldRep_StringView] = 16,
[kUpb_FieldRep_8Byte] = 8,
};
UPB_ASSERT(sizeof(upb_StringView) ==
UPB_SIZE(kRepToSize32, kRepToSize64)[kUpb_FieldRep_StringView]);
return platform == kUpb_MiniTablePlatform_32Bit ? kRepToSize32[rep]
: kRepToSize64[rep];
}
size_t upb_MtDecoder_AlignOfRep(upb_FieldRep rep,
upb_MiniTablePlatform platform) {
static const uint8_t kRepToAlign32[] = {
[kUpb_FieldRep_1Byte] = 1,
[kUpb_FieldRep_4Byte] = 4,
[kUpb_FieldRep_StringView] = 4,
[kUpb_FieldRep_8Byte] = 8,
};
static const uint8_t kRepToAlign64[] = {
[kUpb_FieldRep_1Byte] = 1,
[kUpb_FieldRep_4Byte] = 4,
[kUpb_FieldRep_StringView] = 8,
[kUpb_FieldRep_8Byte] = 8,
};
UPB_ASSERT(UPB_ALIGN_OF(upb_StringView) ==
UPB_SIZE(kRepToAlign32, kRepToAlign64)[kUpb_FieldRep_StringView]);
return platform == kUpb_MiniTablePlatform_32Bit ? kRepToAlign32[rep]
: kRepToAlign64[rep];
}
static const char* upb_MtDecoder_DecodeOneofField(upb_MtDecoder* d,
const char* ptr,
char first_ch,
upb_LayoutItem* item) {
uint32_t field_num;
ptr = upb_MiniTable_DecodeBase92Varint(
d, ptr, first_ch, kUpb_EncodedValue_MinOneofField,
kUpb_EncodedValue_MaxOneofField, &field_num);
upb_MiniTableField* f =
(void*)upb_MiniTable_FindFieldByNumber(d->table, field_num);
if (!f) {
upb_MtDecoder_ErrorFormat(d,
"Couldn't add field number %" PRIu32
" to oneof, no such field number.",
field_num);
UPB_UNREACHABLE();
}
if (f->offset != kHasbitPresence) {
upb_MtDecoder_ErrorFormat(
d,
"Cannot add repeated, required, or singular field %" PRIu32
" to oneof.",
field_num);
UPB_UNREACHABLE();
}
// Oneof storage must be large enough to accommodate the largest member.
int rep = f->mode >> kUpb_FieldRep_Shift;
if (upb_MtDecoder_SizeOfRep(rep, d->platform) >
upb_MtDecoder_SizeOfRep(item->rep, d->platform)) {
item->rep = rep;
}
// Prepend this field to the linked list.
f->offset = item->field_index;
item->field_index = (f - d->fields) + kOneofBase;
return ptr;
}
static const char* upb_MtDecoder_DecodeOneofs(upb_MtDecoder* d,
const char* ptr) {
upb_LayoutItem item = {.rep = 0,
.field_index = kUpb_LayoutItem_IndexSentinel};
while (ptr < d->end) {
char ch = *ptr++;
if (ch == kUpb_EncodedValue_FieldSeparator) {
// Field separator, no action needed.
} else if (ch == kUpb_EncodedValue_OneofSeparator) {
// End of oneof.
upb_MtDecoder_PushOneof(d, item);
item.field_index = kUpb_LayoutItem_IndexSentinel; // Move to next oneof.
} else {
ptr = upb_MtDecoder_DecodeOneofField(d, ptr, ch, &item);
}
}
// Push final oneof.
upb_MtDecoder_PushOneof(d, item);
return ptr;
}
static const char* upb_MtDecoder_ParseModifier(upb_MtDecoder* d,
const char* ptr, char first_ch,
upb_MiniTableField* last_field,
uint64_t* msg_modifiers) {
uint32_t mod;
ptr = upb_MiniTable_DecodeBase92Varint(d, ptr, first_ch,
kUpb_EncodedValue_MinModifier,
kUpb_EncodedValue_MaxModifier, &mod);
if (last_field) {
upb_MtDecoder_ModifyField(d, *msg_modifiers, mod, last_field);
} else {
if (!d->table) {
upb_MtDecoder_ErrorFormat(d, "Extensions cannot have message modifiers");
UPB_UNREACHABLE();
}
*msg_modifiers = mod;
}
return ptr;
}
static void upb_MtDecoder_AllocateSubs(upb_MtDecoder* d,
upb_SubCounts sub_counts) {
uint32_t total_count = sub_counts.submsg_count + sub_counts.subenum_count;
size_t subs_bytes = sizeof(*d->table->subs) * total_count;
upb_MiniTableSub* subs = upb_Arena_Malloc(d->arena, subs_bytes);
upb_MtDecoder_CheckOutOfMemory(d, subs);
uint32_t i = 0;
for (; i < sub_counts.submsg_count; i++) {
Added a new dynamic tree shaking model to upb, with the intention of removing the old model once YouTube has migrated. The `kUpb_DecodeOption_ExperimentalAllowUnlinked` flag to the decoder will enable the new behavior. When that flag is not passed, tree shaking with the old model will still be possible. "Dynamic tree shaking" in upb is a feature that allows messages to be parsed even if the MiniTables have not been fully linked. Unlinked sub-message fields can be parsed by preserving their data in the unknown fields. If the application later discovers that the message field is actually needed, the MiniTable can be patched to properly link that field, and existing message instances can "promote" the data from the unknown fields to an actual message of the correct type. Before this change, dynamic tree shaking stored unparsed message data in the unknown fields of the *parent*. In effect, we were treating the field as if it did not exist at all. This meant that parsing an unlinked field did not affect the hasbits or oneof cases of the parent, nor did it create a `upb_Array` or `upb_Map` for array/map fields. Only when a message was linked and promoted did any of these things occur. While this model had some amount of conceptual simplicity, it caused significant problems with oneofs. When multiple fields inside a single oneof are parsed from the wire, order matters, because later oneof fields must overwrite earlier ones. Dynamic tree shaking can mean that some fields in a oneof are linked while others are not. It is essential that we preserve this ordering semantic even when dynamic tree shaking is being used, but it is difficult to do if the oneof's data can be split between linked fields (which have been reified into parsed field data) and unlinked fields (whose data lives in the unknown fields of the parent). To solve this problem, this CL changes the representation for unlinked fields. Instead of being placed in the parent's unknown fields, we create an actual message instance for each unlinked message we parse, but we use a placeholder "empty message" MiniTable as the message's type. All of the message's data will therefore be placed into the "empty message's" unknown fields. But unlike before, this "empty message" is actually present according to the hasbits, oneof case, and `upb_Array`/`upb_Map` of the parent. This means that all of the oneof presence logic works as normal. Since the MiniTable can be patched at any time, we need a bit in the message instance itself to signal whether a pointer to a sub-message is an "empty message" or not. When dynamic tree shaking is in use, all users must be capable of recognizing an empty message and acting accordingly (promoting, etc) even if the MiniTable itself says that the field is linked. Because dynamic tree shaking imposes this extra requirement on users, we require that users pass an extra option to the decoder to allow parsing of unlinked sub-messages. Many existing users of upb (Ruby, PHP, Python, etc) will always have fully-linked MiniTables, so there is no reason for them to add extra logic to handle empty messages. By omitting the `kUpb_DecodeOption_ExperimentalAllowUnlinked` option, they will be relieved of the duty to check the tagged pointer that would indicate an empty, unlinked message. For existing users of dynamic tree shaking, there are three main changes: 1. The APIs in message/promote.h have changed, and users will need to update to the new interfaces. 2. The model for maps has changed slightly. Before, we required that map entries always had their values linked; for dynamic tree shaking to apply to maps, we required that the *entry* was left unlinked, not the entry's value. In the new model, that is reversed: map entries must always be linked, but a map entry's value can be unlinked. 3. The presence model for unlinked fields has changed. Unlinked fields will now register as "present" from the perspective of hasbits, oneof cases, and array/map entries. Users must test the tagged pointer to know if a message is of the correct, linked type or whether it is a placeholder "empty" message. There is a new function `upb_Message_GetTaggedMessagePtr()`, as well as a new accessor `upb_MessageValue.tagged_msg_val` that can be used to read and test the tagged pointer directly. PiperOrigin-RevId: 535288031
2 years ago
subs[i].submsg = &_kUpb_MiniTable_Empty;
}
if (sub_counts.subenum_count) {
upb_MiniTableField* f = d->fields;
upb_MiniTableField* end_f = f + d->table->field_count;
for (; f < end_f; f++) {
if (f->UPB_PRIVATE(descriptortype) == kUpb_FieldType_Enum) {
f->UPB_PRIVATE(submsg_index) += sub_counts.submsg_count;
}
}
for (; i < sub_counts.submsg_count + sub_counts.subenum_count; i++) {
subs[i].subenum = NULL;
}
}
d->table->subs = subs;
}
static const char* upb_MtDecoder_Parse(upb_MtDecoder* d, const char* ptr,
size_t len, void* fields,
size_t field_size, uint16_t* field_count,
upb_SubCounts* sub_counts) {
uint64_t msg_modifiers = 0;
uint32_t last_field_number = 0;
upb_MiniTableField* last_field = NULL;
bool need_dense_below = d->table != NULL;
d->end = UPB_PTRADD(ptr, len);
while (ptr < d->end) {
char ch = *ptr++;
if (ch <= kUpb_EncodedValue_MaxField) {
if (!d->table && last_field) {
// For extensions, consume only a single field and then return.
return --ptr;
}
upb_MiniTableField* field = fields;
*field_count += 1;
fields = (char*)fields + field_size;
field->number = ++last_field_number;
last_field = field;
upb_MiniTable_SetField(d, ch, field, msg_modifiers, sub_counts);
} else if (kUpb_EncodedValue_MinModifier <= ch &&
ch <= kUpb_EncodedValue_MaxModifier) {
ptr = upb_MtDecoder_ParseModifier(d, ptr, ch, last_field, &msg_modifiers);
if (msg_modifiers & kUpb_MessageModifier_IsExtendable) {
d->table->ext |= kUpb_ExtMode_Extendable;
}
} else if (ch == kUpb_EncodedValue_End) {
if (!d->table) {
upb_MtDecoder_ErrorFormat(d, "Extensions cannot have oneofs.");
UPB_UNREACHABLE();
}
ptr = upb_MtDecoder_DecodeOneofs(d, ptr);
} else if (kUpb_EncodedValue_MinSkip <= ch &&
ch <= kUpb_EncodedValue_MaxSkip) {
if (need_dense_below) {
d->table->dense_below = d->table->field_count;
need_dense_below = false;
}
uint32_t skip;
ptr = upb_MiniTable_DecodeBase92Varint(d, ptr, ch,
kUpb_EncodedValue_MinSkip,
kUpb_EncodedValue_MaxSkip, &skip);
last_field_number += skip;
last_field_number--; // Next field seen will increment.
} else {
upb_MtDecoder_ErrorFormat(d, "Invalid char: %c", ch);
UPB_UNREACHABLE();
}
}
if (need_dense_below) {
d->table->dense_below = d->table->field_count;
}
return ptr;
}
static void upb_MtDecoder_ParseMessage(upb_MtDecoder* d, const char* data,
size_t len) {
// Buffer length is an upper bound on the number of fields. We will return
// what we don't use.
d->fields = upb_Arena_Malloc(d->arena, sizeof(*d->fields) * len);
upb_MtDecoder_CheckOutOfMemory(d, d->fields);
upb_SubCounts sub_counts = {0, 0};
d->table->field_count = 0;
d->table->fields = d->fields;
upb_MtDecoder_Parse(d, data, len, d->fields, sizeof(*d->fields),
&d->table->field_count, &sub_counts);
upb_Arena_ShrinkLast(d->arena, d->fields, sizeof(*d->fields) * len,
sizeof(*d->fields) * d->table->field_count);
d->table->fields = d->fields;
upb_MtDecoder_AllocateSubs(d, sub_counts);
}
int upb_MtDecoder_CompareFields(const void* _a, const void* _b) {
const upb_LayoutItem* a = _a;
const upb_LayoutItem* b = _b;
// Currently we just sort by:
// 1. rep (smallest fields first)
// 2. type (oneof cases first)
// 2. field_index (smallest numbers first)
// The main goal of this is to reduce space lost to padding.
// Later we may have more subtle reasons to prefer a different ordering.
const int rep_bits = upb_Log2Ceiling(kUpb_FieldRep_Max);
const int type_bits = upb_Log2Ceiling(kUpb_LayoutItemType_Max);
const int idx_bits = (sizeof(a->field_index) * 8);
UPB_ASSERT(idx_bits + rep_bits + type_bits < 32);
#define UPB_COMBINE(rep, ty, idx) (((rep << type_bits) | ty) << idx_bits) | idx
uint32_t a_packed = UPB_COMBINE(a->rep, a->type, a->field_index);
uint32_t b_packed = UPB_COMBINE(b->rep, b->type, b->field_index);
assert(a_packed != b_packed);
#undef UPB_COMBINE
return a_packed < b_packed ? -1 : 1;
}
static bool upb_MtDecoder_SortLayoutItems(upb_MtDecoder* d) {
// Add items for all non-oneof fields (oneofs were already added).
int n = d->table->field_count;
for (int i = 0; i < n; i++) {
upb_MiniTableField* f = &d->fields[i];
if (f->offset >= kOneofBase) continue;
upb_LayoutItem item = {.field_index = i,
.rep = f->mode >> kUpb_FieldRep_Shift,
.type = kUpb_LayoutItemType_Field};
upb_MtDecoder_PushItem(d, item);
}
if (d->vec.size) {
qsort(d->vec.data, d->vec.size, sizeof(*d->vec.data),
upb_MtDecoder_CompareFields);
}
return true;
}
static size_t upb_MiniTable_DivideRoundUp(size_t n, size_t d) {
return (n + d - 1) / d;
}
static void upb_MtDecoder_AssignHasbits(upb_MiniTable* ret) {
int n = ret->field_count;
int last_hasbit = 0; // 0 cannot be used.
// First assign required fields, which must have the lowest hasbits.
for (int i = 0; i < n; i++) {
upb_MiniTableField* field = (upb_MiniTableField*)&ret->fields[i];
if (field->offset == kRequiredPresence) {
field->presence = ++last_hasbit;
3 years ago
} else if (field->offset == kNoPresence) {
field->presence = 0;
}
}
ret->required_count = last_hasbit;
// Next assign non-required hasbit fields.
for (int i = 0; i < n; i++) {
upb_MiniTableField* field = (upb_MiniTableField*)&ret->fields[i];
if (field->offset == kHasbitPresence) {
field->presence = ++last_hasbit;
}
}
ret->size = last_hasbit ? upb_MiniTable_DivideRoundUp(last_hasbit + 1, 8) : 0;
}
size_t upb_MtDecoder_Place(upb_MtDecoder* d, upb_FieldRep rep) {
size_t size = upb_MtDecoder_SizeOfRep(rep, d->platform);
size_t align = upb_MtDecoder_AlignOfRep(rep, d->platform);
size_t ret = UPB_ALIGN_UP(d->table->size, align);
static const size_t max = UINT16_MAX;
size_t new_size = ret + size;
if (new_size > max) {
upb_MtDecoder_ErrorFormat(
d, "Message size exceeded maximum size of %zu bytes", max);
}
d->table->size = new_size;
return ret;
}
3 years ago
static void upb_MtDecoder_AssignOffsets(upb_MtDecoder* d) {
upb_LayoutItem* end = UPB_PTRADD(d->vec.data, d->vec.size);
// Compute offsets.
for (upb_LayoutItem* item = d->vec.data; item < end; item++) {
item->offset = upb_MtDecoder_Place(d, item->rep);
}
// Assign oneof case offsets. We must do these first, since assigning
// actual offsets will overwrite the links of the linked list.
for (upb_LayoutItem* item = d->vec.data; item < end; item++) {
if (item->type != kUpb_LayoutItemType_OneofCase) continue;
upb_MiniTableField* f = &d->fields[item->field_index];
while (true) {
f->presence = ~item->offset;
if (f->offset == kUpb_LayoutItem_IndexSentinel) break;
UPB_ASSERT(f->offset - kOneofBase < d->table->field_count);
f = &d->fields[f->offset - kOneofBase];
}
}
// Assign offsets.
for (upb_LayoutItem* item = d->vec.data; item < end; item++) {
upb_MiniTableField* f = &d->fields[item->field_index];
switch (item->type) {
case kUpb_LayoutItemType_OneofField:
while (true) {
uint16_t next_offset = f->offset;
f->offset = item->offset;
if (next_offset == kUpb_LayoutItem_IndexSentinel) break;
f = &d->fields[next_offset - kOneofBase];
}
break;
case kUpb_LayoutItemType_Field:
f->offset = item->offset;
break;
default:
break;
}
}
3 years ago
// The fasttable parser (supported on 64-bit only) depends on this being a
// multiple of 8 in order to satisfy UPB_MALLOC_ALIGN, which is also 8.
//
// On 32-bit we could potentially make this smaller, but there is no
// compelling reason to optimize this right now.
d->table->size = UPB_ALIGN_UP(d->table->size, 8);
}
static void upb_MtDecoder_ValidateEntryField(upb_MtDecoder* d,
const upb_MiniTableField* f,
uint32_t expected_num) {
const char* name = expected_num == 1 ? "key" : "val";
if (f->number != expected_num) {
upb_MtDecoder_ErrorFormat(d,
"map %s did not have expected number (%d vs %d)",
name, expected_num, (int)f->number);
}
if (upb_IsRepeatedOrMap(f)) {
upb_MtDecoder_ErrorFormat(
d, "map %s cannot be repeated or map, or be in oneof", name);
}
uint32_t not_ok_types;
if (expected_num == 1) {
not_ok_types = (1 << kUpb_FieldType_Float) | (1 << kUpb_FieldType_Double) |
(1 << kUpb_FieldType_Message) | (1 << kUpb_FieldType_Group) |
(1 << kUpb_FieldType_Bytes) | (1 << kUpb_FieldType_Enum);
} else {
not_ok_types = 1 << kUpb_FieldType_Group;
}
if ((1 << upb_MiniTableField_Type(f)) & not_ok_types) {
upb_MtDecoder_ErrorFormat(d, "map %s cannot have type %d", name,
(int)f->UPB_PRIVATE(descriptortype));
}
}
static void upb_MtDecoder_ParseMap(upb_MtDecoder* d, const char* data,
size_t len) {
upb_MtDecoder_ParseMessage(d, data, len);
upb_MtDecoder_AssignHasbits(d->table);
if (UPB_UNLIKELY(d->table->field_count != 2)) {
upb_MtDecoder_ErrorFormat(d, "%hu fields in map", d->table->field_count);
UPB_UNREACHABLE();
}
upb_LayoutItem* end = UPB_PTRADD(d->vec.data, d->vec.size);
for (upb_LayoutItem* item = d->vec.data; item < end; item++) {
if (item->type == kUpb_LayoutItemType_OneofCase) {
upb_MtDecoder_ErrorFormat(d, "Map entry cannot have oneof");
}
}
upb_MtDecoder_ValidateEntryField(d, &d->table->fields[0], 1);
upb_MtDecoder_ValidateEntryField(d, &d->table->fields[1], 2);
// Map entries have a pre-determined layout, regardless of types.
// NOTE: sync with mini_table/message_internal.h.
const size_t kv_size = d->platform == kUpb_MiniTablePlatform_32Bit ? 8 : 16;
const size_t hasbit_size = 8;
d->fields[0].offset = hasbit_size;
d->fields[1].offset = hasbit_size + kv_size;
d->table->size = UPB_ALIGN_UP(hasbit_size + kv_size + kv_size, 8);
// Map entries have a special bit set to signal it's a map entry, used in
// upb_MiniTable_SetSubMessage() below.
d->table->ext |= kUpb_ExtMode_IsMapEntry;
}
static void upb_MtDecoder_ParseMessageSet(upb_MtDecoder* d, const char* data,
size_t len) {
if (len > 0) {
upb_MtDecoder_ErrorFormat(d, "Invalid message set encode length: %zu", len);
UPB_UNREACHABLE();
}
upb_MiniTable* ret = d->table;
ret->size = 0;
ret->field_count = 0;
ret->ext = kUpb_ExtMode_IsMessageSet;
ret->dense_below = 0;
ret->table_mask = -1;
ret->required_count = 0;
}
static upb_MiniTable* upb_MtDecoder_DoBuildMiniTableWithBuf(
upb_MtDecoder* decoder, const char* data, size_t len, void** buf,
size_t* buf_size) {
upb_MtDecoder_CheckOutOfMemory(decoder, decoder->table);
decoder->table->size = 0;
decoder->table->field_count = 0;
decoder->table->ext = kUpb_ExtMode_NonExtendable;
decoder->table->dense_below = 0;
decoder->table->table_mask = -1;
decoder->table->required_count = 0;
// Strip off and verify the version tag.
if (!len--) goto done;
const char vers = *data++;
switch (vers) {
case kUpb_EncodedVersion_MapV1:
upb_MtDecoder_ParseMap(decoder, data, len);
break;
case kUpb_EncodedVersion_MessageV1:
upb_MtDecoder_ParseMessage(decoder, data, len);
upb_MtDecoder_AssignHasbits(decoder->table);
upb_MtDecoder_SortLayoutItems(decoder);
upb_MtDecoder_AssignOffsets(decoder);
break;
case kUpb_EncodedVersion_MessageSetV1:
upb_MtDecoder_ParseMessageSet(decoder, data, len);
break;
default:
upb_MtDecoder_ErrorFormat(decoder, "Invalid message version: %c", vers);
UPB_UNREACHABLE();
}
done:
*buf = decoder->vec.data;
*buf_size = decoder->vec.capacity * sizeof(*decoder->vec.data);
return decoder->table;
}
static upb_MiniTable* upb_MtDecoder_BuildMiniTableWithBuf(
upb_MtDecoder* const decoder, const char* const data, const size_t len,
void** const buf, size_t* const buf_size) {
if (UPB_SETJMP(decoder->err) != 0) {
*buf = decoder->vec.data;
*buf_size = decoder->vec.capacity * sizeof(*decoder->vec.data);
return NULL;
}
return upb_MtDecoder_DoBuildMiniTableWithBuf(decoder, data, len, buf,
buf_size);
}
upb_MiniTable* upb_MiniTable_BuildWithBuf(const char* data, size_t len,
upb_MiniTablePlatform platform,
upb_Arena* arena, void** buf,
size_t* buf_size,
upb_Status* status) {
upb_MtDecoder decoder = {
.platform = platform,
.vec =
{
.data = *buf,
.capacity = *buf_size / sizeof(*decoder.vec.data),
.size = 0,
},
.arena = arena,
.status = status,
.table = upb_Arena_Malloc(arena, sizeof(*decoder.table)),
};
return upb_MtDecoder_BuildMiniTableWithBuf(&decoder, data, len, buf,
buf_size);
}
static size_t upb_MiniTableEnum_Size(size_t count) {
return sizeof(upb_MiniTableEnum) + count * sizeof(uint32_t);
}
static upb_MiniTableEnum* _upb_MiniTable_AddEnumDataMember(upb_MtDecoder* d,
uint32_t val) {
if (d->enum_data_count == d->enum_data_capacity) {
size_t old_sz = upb_MiniTableEnum_Size(d->enum_data_capacity);
d->enum_data_capacity = UPB_MAX(2, d->enum_data_capacity * 2);
size_t new_sz = upb_MiniTableEnum_Size(d->enum_data_capacity);
d->enum_table = upb_Arena_Realloc(d->arena, d->enum_table, old_sz, new_sz);
upb_MtDecoder_CheckOutOfMemory(d, d->enum_table);
}
d->enum_table->data[d->enum_data_count++] = val;
return d->enum_table;
}
static void upb_MiniTableEnum_BuildValue(upb_MtDecoder* d, uint32_t val) {
upb_MiniTableEnum* table = d->enum_table;
d->enum_value_count++;
if (table->value_count || (val > 512 && d->enum_value_count < val / 32)) {
if (table->value_count == 0) {
assert(d->enum_data_count == table->mask_limit / 32);
}
table = _upb_MiniTable_AddEnumDataMember(d, val);
table->value_count++;
} else {
uint32_t new_mask_limit = ((val / 32) + 1) * 32;
while (table->mask_limit < new_mask_limit) {
table = _upb_MiniTable_AddEnumDataMember(d, 0);
table->mask_limit += 32;
}
table->data[val / 32] |= 1ULL << (val % 32);
}
}
static upb_MiniTableEnum* upb_MtDecoder_DoBuildMiniTableEnum(
upb_MtDecoder* decoder, const char* data, size_t len) {
// If the string is non-empty then it must begin with a version tag.
if (len) {
if (*data != kUpb_EncodedVersion_EnumV1) {
upb_MtDecoder_ErrorFormat(decoder, "Invalid enum version: %c", *data);
UPB_UNREACHABLE();
}
data++;
len--;
}
upb_MtDecoder_CheckOutOfMemory(decoder, decoder->enum_table);
// Guarantee at least 64 bits of mask without checking mask size.
decoder->enum_table->mask_limit = 64;
decoder->enum_table = _upb_MiniTable_AddEnumDataMember(decoder, 0);
decoder->enum_table = _upb_MiniTable_AddEnumDataMember(decoder, 0);
decoder->enum_table->value_count = 0;
3 years ago
const char* ptr = data;
uint32_t base = 0;
while (ptr < decoder->end) {
char ch = *ptr++;
if (ch <= kUpb_EncodedValue_MaxEnumMask) {
uint32_t mask = _upb_FromBase92(ch);
for (int i = 0; i < 5; i++, base++, mask >>= 1) {
if (mask & 1) upb_MiniTableEnum_BuildValue(decoder, base);
}
} else if (kUpb_EncodedValue_MinSkip <= ch &&
ch <= kUpb_EncodedValue_MaxSkip) {
uint32_t skip;
ptr = upb_MiniTable_DecodeBase92Varint(decoder, ptr, ch,
kUpb_EncodedValue_MinSkip,
kUpb_EncodedValue_MaxSkip, &skip);
base += skip;
} else {
upb_MtDecoder_ErrorFormat(decoder, "Unexpected character: %c", ch);
return NULL;
}
}
return decoder->enum_table;
}
static upb_MiniTableEnum* upb_MtDecoder_BuildMiniTableEnum(
upb_MtDecoder* const decoder, const char* const data, size_t const len) {
if (UPB_SETJMP(decoder->err) != 0) return NULL;
return upb_MtDecoder_DoBuildMiniTableEnum(decoder, data, len);
}
upb_MiniTableEnum* upb_MiniTableEnum_Build(const char* data, size_t len,
upb_Arena* arena,
upb_Status* status) {
upb_MtDecoder decoder = {
.enum_table = upb_Arena_Malloc(arena, upb_MiniTableEnum_Size(2)),
.enum_value_count = 0,
.enum_data_count = 0,
.enum_data_capacity = 1,
.status = status,
.end = UPB_PTRADD(data, len),
.arena = arena,
};
return upb_MtDecoder_BuildMiniTableEnum(&decoder, data, len);
}
static const char* upb_MtDecoder_DoBuildMiniTableExtension(
upb_MtDecoder* decoder, const char* data, size_t len,
upb_MiniTableExtension* ext, const upb_MiniTable* extendee,
upb_MiniTableSub sub) {
// If the string is non-empty then it must begin with a version tag.
if (len) {
if (*data != kUpb_EncodedVersion_ExtensionV1) {
upb_MtDecoder_ErrorFormat(decoder, "Invalid ext version: %c", *data);
UPB_UNREACHABLE();
}
data++;
len--;
}
uint16_t count = 0;
upb_SubCounts sub_counts = {0, 0};
const char* ret = upb_MtDecoder_Parse(decoder, data, len, ext, sizeof(*ext),
&count, &sub_counts);
if (!ret || count != 1) return NULL;
upb_MiniTableField* f = &ext->field;
f->mode |= kUpb_LabelFlags_IsExtension;
f->offset = 0;
f->presence = 0;
if (extendee->ext & kUpb_ExtMode_IsMessageSet) {
// Extensions of MessageSet must be messages.
if (!upb_IsSubMessage(f)) return NULL;
// Extensions of MessageSet must be non-repeating.
if ((f->mode & kUpb_FieldMode_Mask) == kUpb_FieldMode_Array) return NULL;
}
ext->extendee = extendee;
ext->sub = sub;
return ret;
}
static const char* upb_MtDecoder_BuildMiniTableExtension(
upb_MtDecoder* const decoder, const char* const data, const size_t len,
upb_MiniTableExtension* const ext, const upb_MiniTable* const extendee,
const upb_MiniTableSub sub) {
if (UPB_SETJMP(decoder->err) != 0) return NULL;
return upb_MtDecoder_DoBuildMiniTableExtension(decoder, data, len, ext,
extendee, sub);
}
const char* _upb_MiniTableExtension_Init(const char* data, size_t len,
upb_MiniTableExtension* ext,
const upb_MiniTable* extendee,
upb_MiniTableSub sub,
upb_MiniTablePlatform platform,
upb_Status* status) {
upb_MtDecoder decoder = {
.arena = NULL,
.status = status,
.table = NULL,
.platform = platform,
};
return upb_MtDecoder_BuildMiniTableExtension(&decoder, data, len, ext,
extendee, sub);
}
upb_MiniTableExtension* _upb_MiniTableExtension_Build(
const char* data, size_t len, const upb_MiniTable* extendee,
upb_MiniTableSub sub, upb_MiniTablePlatform platform, upb_Arena* arena,
upb_Status* status) {
upb_MiniTableExtension* ext =
upb_Arena_Malloc(arena, sizeof(upb_MiniTableExtension));
if (UPB_UNLIKELY(!ext)) return NULL;
const char* ptr = _upb_MiniTableExtension_Init(data, len, ext, extendee, sub,
platform, status);
if (UPB_UNLIKELY(!ptr)) return NULL;
return ext;
}
upb_MiniTable* _upb_MiniTable_Build(const char* data, size_t len,
upb_MiniTablePlatform platform,
upb_Arena* arena, upb_Status* status) {
void* buf = NULL;
size_t size = 0;
upb_MiniTable* ret = upb_MiniTable_BuildWithBuf(data, len, platform, arena,
&buf, &size, status);
free(buf);
return ret;
}
bool upb_MiniTable_SetSubMessage(upb_MiniTable* table,
upb_MiniTableField* field,
const upb_MiniTable* sub) {
UPB_ASSERT((uintptr_t)table->fields <= (uintptr_t)field &&
(uintptr_t)field <
(uintptr_t)(table->fields + table->field_count));
UPB_ASSERT(sub);
const bool sub_is_map = sub->ext & kUpb_ExtMode_IsMapEntry;
switch (field->UPB_PRIVATE(descriptortype)) {
case kUpb_FieldType_Message:
if (sub_is_map) {
const bool table_is_map = table->ext & kUpb_ExtMode_IsMapEntry;
if (UPB_UNLIKELY(table_is_map)) return false;
field->mode = (field->mode & ~kUpb_FieldMode_Mask) | kUpb_FieldMode_Map;
}
break;
case kUpb_FieldType_Group:
if (UPB_UNLIKELY(sub_is_map)) return false;
break;
default:
return false;
}
upb_MiniTableSub* table_sub =
(void*)&table->subs[field->UPB_PRIVATE(submsg_index)];
Added a new dynamic tree shaking model to upb, with the intention of removing the old model once YouTube has migrated. The `kUpb_DecodeOption_ExperimentalAllowUnlinked` flag to the decoder will enable the new behavior. When that flag is not passed, tree shaking with the old model will still be possible. "Dynamic tree shaking" in upb is a feature that allows messages to be parsed even if the MiniTables have not been fully linked. Unlinked sub-message fields can be parsed by preserving their data in the unknown fields. If the application later discovers that the message field is actually needed, the MiniTable can be patched to properly link that field, and existing message instances can "promote" the data from the unknown fields to an actual message of the correct type. Before this change, dynamic tree shaking stored unparsed message data in the unknown fields of the *parent*. In effect, we were treating the field as if it did not exist at all. This meant that parsing an unlinked field did not affect the hasbits or oneof cases of the parent, nor did it create a `upb_Array` or `upb_Map` for array/map fields. Only when a message was linked and promoted did any of these things occur. While this model had some amount of conceptual simplicity, it caused significant problems with oneofs. When multiple fields inside a single oneof are parsed from the wire, order matters, because later oneof fields must overwrite earlier ones. Dynamic tree shaking can mean that some fields in a oneof are linked while others are not. It is essential that we preserve this ordering semantic even when dynamic tree shaking is being used, but it is difficult to do if the oneof's data can be split between linked fields (which have been reified into parsed field data) and unlinked fields (whose data lives in the unknown fields of the parent). To solve this problem, this CL changes the representation for unlinked fields. Instead of being placed in the parent's unknown fields, we create an actual message instance for each unlinked message we parse, but we use a placeholder "empty message" MiniTable as the message's type. All of the message's data will therefore be placed into the "empty message's" unknown fields. But unlike before, this "empty message" is actually present according to the hasbits, oneof case, and `upb_Array`/`upb_Map` of the parent. This means that all of the oneof presence logic works as normal. Since the MiniTable can be patched at any time, we need a bit in the message instance itself to signal whether a pointer to a sub-message is an "empty message" or not. When dynamic tree shaking is in use, all users must be capable of recognizing an empty message and acting accordingly (promoting, etc) even if the MiniTable itself says that the field is linked. Because dynamic tree shaking imposes this extra requirement on users, we require that users pass an extra option to the decoder to allow parsing of unlinked sub-messages. Many existing users of upb (Ruby, PHP, Python, etc) will always have fully-linked MiniTables, so there is no reason for them to add extra logic to handle empty messages. By omitting the `kUpb_DecodeOption_ExperimentalAllowUnlinked` option, they will be relieved of the duty to check the tagged pointer that would indicate an empty, unlinked message. For existing users of dynamic tree shaking, there are three main changes: 1. The APIs in message/promote.h have changed, and users will need to update to the new interfaces. 2. The model for maps has changed slightly. Before, we required that map entries always had their values linked; for dynamic tree shaking to apply to maps, we required that the *entry* was left unlinked, not the entry's value. In the new model, that is reversed: map entries must always be linked, but a map entry's value can be unlinked. 3. The presence model for unlinked fields has changed. Unlinked fields will now register as "present" from the perspective of hasbits, oneof cases, and array/map entries. Users must test the tagged pointer to know if a message is of the correct, linked type or whether it is a placeholder "empty" message. There is a new function `upb_Message_GetTaggedMessagePtr()`, as well as a new accessor `upb_MessageValue.tagged_msg_val` that can be used to read and test the tagged pointer directly. PiperOrigin-RevId: 535288031
2 years ago
// TODO(haberman): Add this assert back once YouTube is updated to not call
// this function repeatedly.
// UPB_ASSERT(table_sub->submsg == &_kUpb_MiniTable_Empty);
table_sub->submsg = sub;
return true;
}
bool upb_MiniTable_SetSubEnum(upb_MiniTable* table, upb_MiniTableField* field,
const upb_MiniTableEnum* sub) {
UPB_ASSERT((uintptr_t)table->fields <= (uintptr_t)field &&
(uintptr_t)field <
(uintptr_t)(table->fields + table->field_count));
UPB_ASSERT(sub);
upb_MiniTableSub* table_sub =
(void*)&table->subs[field->UPB_PRIVATE(submsg_index)];
table_sub->subenum = sub;
return true;
}
uint32_t upb_MiniTable_GetSubList(const upb_MiniTable* mt,
const upb_MiniTableField** subs) {
uint32_t msg_count = 0;
uint32_t enum_count = 0;
for (int i = 0; i < mt->field_count; i++) {
const upb_MiniTableField* f = &mt->fields[i];
if (upb_MiniTableField_CType(f) == kUpb_CType_Message) {
*subs = f;
++subs;
msg_count++;
}
}
for (int i = 0; i < mt->field_count; i++) {
const upb_MiniTableField* f = &mt->fields[i];
if (upb_MiniTableField_CType(f) == kUpb_CType_Enum) {
*subs = f;
++subs;
enum_count++;
}
}
return (msg_count << 16) | enum_count;
}
// The list of sub_tables and sub_enums must exactly match the number and order
// of sub-message fields and sub-enum fields given by upb_MiniTable_GetSubList()
// above.
bool upb_MiniTable_Link(upb_MiniTable* mt, const upb_MiniTable** sub_tables,
size_t sub_table_count,
const upb_MiniTableEnum** sub_enums,
size_t sub_enum_count) {
uint32_t msg_count = 0;
uint32_t enum_count = 0;
for (int i = 0; i < mt->field_count; i++) {
upb_MiniTableField* f = (upb_MiniTableField*)&mt->fields[i];
if (upb_MiniTableField_CType(f) == kUpb_CType_Message) {
const upb_MiniTable* sub = sub_tables[msg_count++];
if (msg_count > sub_table_count) return false;
if (sub != NULL) {
if (!upb_MiniTable_SetSubMessage(mt, f, sub)) return false;
}
}
}
for (int i = 0; i < mt->field_count; i++) {
upb_MiniTableField* f = (upb_MiniTableField*)&mt->fields[i];
if (upb_MiniTableField_CType(f) == kUpb_CType_Enum) {
const upb_MiniTableEnum* sub = sub_enums[enum_count++];
if (enum_count > sub_enum_count) return false;
if (sub != NULL) {
if (!upb_MiniTable_SetSubEnum(mt, f, sub)) return false;
}
}
}
return true;
}