|
|
|
/*
|
|
|
|
** upb::Encoder
|
|
|
|
**
|
|
|
|
** Since we are implementing pure handlers (ie. without any out-of-band access
|
|
|
|
** to pre-computed lengths), we have to buffer all submessages before we can
|
|
|
|
** emit even their first byte.
|
|
|
|
**
|
|
|
|
** Not knowing the size of submessages also means we can't write a perfect
|
|
|
|
** zero-copy implementation, even with buffering. Lengths are stored as
|
|
|
|
** varints, which means that we don't know how many bytes to reserve for the
|
|
|
|
** length until we know what the length is.
|
|
|
|
**
|
|
|
|
** This leaves us with three main choices:
|
|
|
|
**
|
|
|
|
** 1. buffer all submessage data in a temporary buffer, then copy it exactly
|
|
|
|
** once into the output buffer.
|
|
|
|
**
|
|
|
|
** 2. attempt to buffer data directly into the output buffer, estimating how
|
|
|
|
** many bytes each length will take. When our guesses are wrong, use
|
|
|
|
** memmove() to grow or shrink the allotted space.
|
|
|
|
**
|
|
|
|
** 3. buffer directly into the output buffer, allocating a max length
|
|
|
|
** ahead-of-time for each submessage length. If we overallocated, we waste
|
|
|
|
** space, but no memcpy() or memmove() is required. This approach requires
|
|
|
|
** defining a maximum size for submessages and rejecting submessages that
|
|
|
|
** exceed that size.
|
|
|
|
**
|
|
|
|
** (2) and (3) have the potential to have better performance, but they are more
|
|
|
|
** complicated and subtle to implement:
|
|
|
|
**
|
|
|
|
** (3) requires making an arbitrary choice of the maximum message size; it
|
|
|
|
** wastes space when submessages are shorter than this and fails
|
|
|
|
** completely when they are longer. This makes it more finicky and
|
|
|
|
** requires configuration based on the input. It also makes it impossible
|
|
|
|
** to perfectly match the output of reference encoders that always use the
|
|
|
|
** optimal amount of space for each length.
|
|
|
|
**
|
|
|
|
** (2) requires guessing the the size upfront, and if multiple lengths are
|
|
|
|
** guessed wrong the minimum required number of memmove() operations may
|
|
|
|
** be complicated to compute correctly. Implemented properly, it may have
|
|
|
|
** a useful amortized or average cost, but more investigation is required
|
|
|
|
** to determine this and what the optimal algorithm is to achieve it.
|
|
|
|
**
|
|
|
|
** (1) makes you always pay for exactly one copy, but its implementation is
|
|
|
|
** the simplest and its performance is predictable.
|
|
|
|
**
|
|
|
|
** So for now, we implement (1) only. If we wish to optimize later, we should
|
|
|
|
** be able to do it without affecting users.
|
|
|
|
**
|
|
|
|
** The strategy is to buffer the segments of data that do *not* depend on
|
|
|
|
** unknown lengths in one buffer, and keep a separate buffer of segment pointers
|
|
|
|
** and lengths. When the top-level submessage ends, we can go beginning to end,
|
|
|
|
** alternating the writing of lengths with memcpy() of the rest of the data.
|
|
|
|
** At the top level though, no buffering is required.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "upb/pb/encoder.h"
|
|
|
|
#include "upb/pb/varint.int.h"
|
|
|
|
|
|
|
|
#include "upb/port_def.inc"
|
|
|
|
|
|
|
|
/* The output buffer is divided into segments; a segment is a string of data
|
|
|
|
* that is "ready to go" -- it does not need any varint lengths inserted into
|
|
|
|
* the middle. The seams between segments are where varints will be inserted
|
|
|
|
* once they are known.
|
|
|
|
*
|
|
|
|
* We also use the concept of a "run", which is a range of encoded bytes that
|
|
|
|
* occur at a single submessage level. Every segment contains one or more runs.
|
|
|
|
*
|
|
|
|
* A segment can span messages. Consider:
|
|
|
|
*
|
|
|
|
* .--Submessage lengths---------.
|
|
|
|
* | | |
|
|
|
|
* | V V
|
|
|
|
* V | |--------------- | |-----------------
|
|
|
|
* Submessages: | |-----------------------------------------------
|
|
|
|
* Top-level msg: ------------------------------------------------------------
|
|
|
|
*
|
|
|
|
* Segments: ----- ------------------- -----------------
|
|
|
|
* Runs: *---- *--------------*--- *----------------
|
|
|
|
* (* marks the start)
|
|
|
|
*
|
|
|
|
* Note that the top-level menssage is not in any segment because it does not
|
|
|
|
* have any length preceding it.
|
|
|
|
*
|
|
|
|
* A segment is only interrupted when another length needs to be inserted. So
|
|
|
|
* observe how the second segment spans both the inner submessage and part of
|
|
|
|
* the next enclosing message. */
|
|
|
|
typedef struct {
|
|
|
|
uint32_t msglen; /* The length to varint-encode before this segment. */
|
|
|
|
uint32_t seglen; /* Length of the segment. */
|
|
|
|
} upb_pb_encoder_segment;
|
|
|
|
|
|
|
|
struct upb_pb_encoder {
|
|
|
|
upb_arena *arena;
|
|
|
|
|
|
|
|
/* Our input and output. */
|
|
|
|
upb_sink input_;
|
|
|
|
upb_bytessink output_;
|
|
|
|
|
|
|
|
/* The "subclosure" -- used as the inner closure as part of the bytessink
|
|
|
|
* protocol. */
|
|
|
|
void *subc;
|
|
|
|
|
|
|
|
/* The output buffer and limit, and our current write position. "buf"
|
|
|
|
* initially points to "initbuf", but is dynamically allocated if we need to
|
|
|
|
* grow beyond the initial size. */
|
|
|
|
char *buf, *ptr, *limit;
|
|
|
|
|
|
|
|
/* The beginning of the current run, or undefined if we are at the top
|
|
|
|
* level. */
|
|
|
|
char *runbegin;
|
|
|
|
|
|
|
|
/* The list of segments we are accumulating. */
|
|
|
|
upb_pb_encoder_segment *segbuf, *segptr, *seglimit;
|
|
|
|
|
|
|
|
/* The stack of enclosing submessages. Each entry in the stack points to the
|
|
|
|
* segment where this submessage's length is being accumulated. */
|
|
|
|
int *stack, *top, *stacklimit;
|
|
|
|
|
|
|
|
/* Depth of startmsg/endmsg calls. */
|
|
|
|
int depth;
|
|
|
|
};
|
|
|
|
|
|
|
|
/* low-level buffering ********************************************************/
|
|
|
|
|
|
|
|
/* Low-level functions for interacting with the output buffer. */
|
|
|
|
|
|
|
|
/* TODO(haberman): handle pushback */
|
|
|
|
static void putbuf(upb_pb_encoder *e, const char *buf, size_t len) {
|
|
|
|
size_t n = upb_bytessink_putbuf(e->output_, e->subc, buf, len, NULL);
|
|
|
|
UPB_ASSERT(n == len);
|
|
|
|
}
|
|
|
|
|
|
|
|
static upb_pb_encoder_segment *top(upb_pb_encoder *e) {
|
|
|
|
return &e->segbuf[*e->top];
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Call to ensure that at least "bytes" bytes are available for writing at
|
|
|
|
* e->ptr. Returns false if the bytes could not be allocated. */
|
|
|
|
static bool reserve(upb_pb_encoder *e, size_t bytes) {
|
|
|
|
if ((size_t)(e->limit - e->ptr) < bytes) {
|
|
|
|
/* Grow buffer. */
|
|
|
|
char *new_buf;
|
|
|
|
size_t needed = bytes + (e->ptr - e->buf);
|
|
|
|
size_t old_size = e->limit - e->buf;
|
|
|
|
|
|
|
|
size_t new_size = old_size;
|
|
|
|
|
|
|
|
while (new_size < needed) {
|
|
|
|
new_size *= 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
new_buf = upb_arena_realloc(e->arena, e->buf, old_size, new_size);
|
|
|
|
|
|
|
|
if (new_buf == NULL) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
e->ptr = new_buf + (e->ptr - e->buf);
|
|
|
|
e->runbegin = new_buf + (e->runbegin - e->buf);
|
|
|
|
e->limit = new_buf + new_size;
|
|
|
|
e->buf = new_buf;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Call when "bytes" bytes have been writte at e->ptr. The caller *must* have
|
|
|
|
* previously called reserve() with at least this many bytes. */
|
|
|
|
static void encoder_advance(upb_pb_encoder *e, size_t bytes) {
|
|
|
|
UPB_ASSERT((size_t)(e->limit - e->ptr) >= bytes);
|
|
|
|
e->ptr += bytes;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Call when all of the bytes for a handler have been written. Flushes the
|
|
|
|
* bytes if possible and necessary, returning false if this failed. */
|
|
|
|
static bool commit(upb_pb_encoder *e) {
|
|
|
|
if (!e->top) {
|
|
|
|
/* We aren't inside a delimited region. Flush our accumulated bytes to
|
|
|
|
* the output.
|
|
|
|
*
|
|
|
|
* TODO(haberman): in the future we may want to delay flushing for
|
|
|
|
* efficiency reasons. */
|
|
|
|
putbuf(e, e->buf, e->ptr - e->buf);
|
|
|
|
e->ptr = e->buf;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Writes the given bytes to the buffer, handling reserve/advance. */
|
|
|
|
static bool encode_bytesval(upb_pb_encoder *e, const void *data, size_t len) {
|
|
|
|
if (!reserve(e, len)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
memcpy(e->ptr, data, len);
|
|
|
|
encoder_advance(e, len);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Finish the current run by adding the run totals to the segment and message
|
|
|
|
* length. */
|
|
|
|
static void accumulate(upb_pb_encoder *e) {
|
|
|
|
size_t run_len;
|
|
|
|
UPB_ASSERT(e->ptr >= e->runbegin);
|
|
|
|
run_len = e->ptr - e->runbegin;
|
|
|
|
e->segptr->seglen += run_len;
|
|
|
|
top(e)->msglen += run_len;
|
|
|
|
e->runbegin = e->ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Call to indicate the start of delimited region for which the full length is
|
|
|
|
* not yet known. All data will be buffered until the length is known.
|
|
|
|
* Delimited regions may be nested; their lengths will all be tracked properly. */
|
|
|
|
static bool start_delim(upb_pb_encoder *e) {
|
|
|
|
if (e->top) {
|
|
|
|
/* We are already buffering, advance to the next segment and push it on the
|
|
|
|
* stack. */
|
|
|
|
accumulate(e);
|
|
|
|
|
|
|
|
if (++e->top == e->stacklimit) {
|
|
|
|
/* TODO(haberman): grow stack? */
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (++e->segptr == e->seglimit) {
|
|
|
|
/* Grow segment buffer. */
|
|
|
|
size_t old_size =
|
|
|
|
(e->seglimit - e->segbuf) * sizeof(upb_pb_encoder_segment);
|
|
|
|
size_t new_size = old_size * 2;
|
|
|
|
upb_pb_encoder_segment *new_buf =
|
|
|
|
upb_arena_realloc(e->arena, e->segbuf, old_size, new_size);
|
|
|
|
|
|
|
|
if (new_buf == NULL) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
e->segptr = new_buf + (e->segptr - e->segbuf);
|
|
|
|
e->seglimit = new_buf + (new_size / sizeof(upb_pb_encoder_segment));
|
|
|
|
e->segbuf = new_buf;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* We were previously at the top level, start buffering. */
|
|
|
|
e->segptr = e->segbuf;
|
|
|
|
e->top = e->stack;
|
|
|
|
e->runbegin = e->ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
*e->top = (int)(e->segptr - e->segbuf);
|
|
|
|
e->segptr->seglen = 0;
|
|
|
|
e->segptr->msglen = 0;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Call to indicate the end of a delimited region. We now know the length of
|
|
|
|
* the delimited region. If we are not nested inside any other delimited
|
|
|
|
* regions, we can now emit all of the buffered data we accumulated. */
|
|
|
|
static bool end_delim(upb_pb_encoder *e) {
|
|
|
|
size_t msglen;
|
|
|
|
accumulate(e);
|
|
|
|
msglen = top(e)->msglen;
|
|
|
|
|
|
|
|
if (e->top == e->stack) {
|
|
|
|
/* All lengths are now available, emit all buffered data. */
|
|
|
|
char buf[UPB_PB_VARINT_MAX_LEN];
|
|
|
|
upb_pb_encoder_segment *s;
|
|
|
|
const char *ptr = e->buf;
|
|
|
|
for (s = e->segbuf; s <= e->segptr; s++) {
|
|
|
|
size_t lenbytes = upb_vencode64(s->msglen, buf);
|
|
|
|
putbuf(e, buf, lenbytes);
|
|
|
|
putbuf(e, ptr, s->seglen);
|
|
|
|
ptr += s->seglen;
|
|
|
|
}
|
|
|
|
|
|
|
|
e->ptr = e->buf;
|
|
|
|
e->top = NULL;
|
|
|
|
} else {
|
|
|
|
/* Need to keep buffering; propagate length info into enclosing
|
|
|
|
* submessages. */
|
|
|
|
--e->top;
|
|
|
|
top(e)->msglen += msglen + upb_varint_size(msglen);
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* tag_t **********************************************************************/
|
|
|
|
|
|
|
|
/* A precomputed (pre-encoded) tag and length. */
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
uint8_t bytes;
|
|
|
|
char tag[7];
|
|
|
|
} tag_t;
|
|
|
|
|
|
|
|
/* Allocates a new tag for this field, and sets it in these handlerattr. */
|
|
|
|
static void new_tag(upb_handlers *h, const upb_fielddef *f, upb_wiretype_t wt,
|
|
|
|
upb_handlerattr *attr) {
|
|
|
|
uint32_t n = upb_fielddef_number(f);
|
|
|
|
|
|
|
|
tag_t *tag = upb_gmalloc(sizeof(tag_t));
|
|
|
|
tag->bytes = upb_vencode64((n << 3) | wt, tag->tag);
|
|
|
|
|
|
|
|
attr->handler_data = tag;
|
|
|
|
upb_handlers_addcleanup(h, tag, upb_gfree);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool encode_tagval(upb_pb_encoder *e, const tag_t *tag) {
|
|
|
|
return encode_bytesval(e, tag->tag, tag->bytes);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* encoding of wire types *****************************************************/
|
|
|
|
|
|
|
|
static bool doencode_fixed64(upb_pb_encoder *e, uint64_t val) {
|
|
|
|
/* TODO(haberman): byte-swap for big endian. */
|
|
|
|
return encode_bytesval(e, &val, sizeof(uint64_t));
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool doencode_fixed32(upb_pb_encoder *e, uint32_t val) {
|
|
|
|
/* TODO(haberman): byte-swap for big endian. */
|
|
|
|
return encode_bytesval(e, &val, sizeof(uint32_t));
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool doencode_varint(upb_pb_encoder *e, uint64_t val) {
|
|
|
|
if (!reserve(e, UPB_PB_VARINT_MAX_LEN)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
encoder_advance(e, upb_vencode64(val, e->ptr));
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static uint64_t dbl2uint64(double d) {
|
|
|
|
uint64_t ret;
|
|
|
|
memcpy(&ret, &d, sizeof(uint64_t));
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static uint32_t flt2uint32(float d) {
|
|
|
|
uint32_t ret;
|
|
|
|
memcpy(&ret, &d, sizeof(uint32_t));
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* encoding of proto types ****************************************************/
|
|
|
|
|
|
|
|
static bool startmsg(void *c, const void *hd) {
|
|
|
|
upb_pb_encoder *e = c;
|
|
|
|
UPB_UNUSED(hd);
|
|
|
|
if (e->depth++ == 0) {
|
|
|
|
upb_bytessink_start(e->output_, 0, &e->subc);
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool endmsg(void *c, const void *hd, upb_status *status) {
|
|
|
|
upb_pb_encoder *e = c;
|
|
|
|
UPB_UNUSED(hd);
|
|
|
|
UPB_UNUSED(status);
|
|
|
|
if (--e->depth == 0) {
|
|
|
|
upb_bytessink_end(e->output_);
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void *encode_startdelimfield(void *c, const void *hd) {
|
|
|
|
bool ok = encode_tagval(c, hd) && commit(c) && start_delim(c);
|
|
|
|
return ok ? c : UPB_BREAK;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool encode_unknown(void *c, const void *hd, const char *buf,
|
|
|
|
size_t len) {
|
|
|
|
UPB_UNUSED(hd);
|
|
|
|
return encode_bytesval(c, buf, len) && commit(c);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool encode_enddelimfield(void *c, const void *hd) {
|
|
|
|
UPB_UNUSED(hd);
|
|
|
|
return end_delim(c);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void *encode_startgroup(void *c, const void *hd) {
|
|
|
|
return (encode_tagval(c, hd) && commit(c)) ? c : UPB_BREAK;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool encode_endgroup(void *c, const void *hd) {
|
|
|
|
return encode_tagval(c, hd) && commit(c);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void *encode_startstr(void *c, const void *hd, size_t size_hint) {
|
|
|
|
UPB_UNUSED(size_hint);
|
|
|
|
return encode_startdelimfield(c, hd);
|
|
|
|
}
|
|
|
|
|
|
|
|
static size_t encode_strbuf(void *c, const void *hd, const char *buf,
|
|
|
|
size_t len, const upb_bufhandle *h) {
|
|
|
|
UPB_UNUSED(hd);
|
|
|
|
UPB_UNUSED(h);
|
|
|
|
return encode_bytesval(c, buf, len) ? len : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define T(type, ctype, convert, encode) \
|
|
|
|
static bool encode_scalar_##type(void *e, const void *hd, ctype val) { \
|
|
|
|
return encode_tagval(e, hd) && encode(e, (convert)(val)) && commit(e); \
|
|
|
|
} \
|
|
|
|
static bool encode_packed_##type(void *e, const void *hd, ctype val) { \
|
|
|
|
UPB_UNUSED(hd); \
|
|
|
|
return encode(e, (convert)(val)); \
|
|
|
|
}
|
|
|
|
|
|
|
|
T(double, double, dbl2uint64, doencode_fixed64)
|
|
|
|
T(float, float, flt2uint32, doencode_fixed32)
|
|
|
|
T(int64, int64_t, uint64_t, doencode_varint)
|
|
|
|
T(int32, int32_t, int64_t, doencode_varint)
|
|
|
|
T(fixed64, uint64_t, uint64_t, doencode_fixed64)
|
|
|
|
T(fixed32, uint32_t, uint32_t, doencode_fixed32)
|
|
|
|
T(bool, bool, bool, doencode_varint)
|
|
|
|
T(uint32, uint32_t, uint32_t, doencode_varint)
|
|
|
|
T(uint64, uint64_t, uint64_t, doencode_varint)
|
|
|
|
T(enum, int32_t, uint32_t, doencode_varint)
|
|
|
|
T(sfixed32, int32_t, uint32_t, doencode_fixed32)
|
|
|
|
T(sfixed64, int64_t, uint64_t, doencode_fixed64)
|
|
|
|
T(sint32, int32_t, upb_zzenc_32, doencode_varint)
|
|
|
|
T(sint64, int64_t, upb_zzenc_64, doencode_varint)
|
|
|
|
|
|
|
|
#undef T
|
|
|
|
|
|
|
|
|
|
|
|
/* code to build the handlers *************************************************/
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
static void newhandlers_callback(const void *closure, upb_handlers *h) {
|
|
|
|
const upb_msgdef *m;
|
|
|
|
int i, n;
|
|
|
|
|
|
|
|
UPB_UNUSED(closure);
|
|
|
|
|
|
|
|
upb_handlers_setstartmsg(h, startmsg, NULL);
|
|
|
|
upb_handlers_setendmsg(h, endmsg, NULL);
|
|
|
|
upb_handlers_setunknown(h, encode_unknown, NULL);
|
|
|
|
|
|
|
|
m = upb_handlers_msgdef(h);
|
|
|
|
n = upb_msgdef_fieldcount(m);
|
|
|
|
for(i = 0; i < n; i++) {
|
|
|
|
const upb_fielddef *f = upb_msgdef_field(m, i);
|
|
|
|
bool packed = upb_fielddef_isseq(f) && upb_fielddef_isprimitive(f) &&
|
|
|
|
upb_fielddef_packed(f);
|
|
|
|
upb_handlerattr attr = UPB_HANDLERATTR_INIT;
|
|
|
|
upb_wiretype_t wt =
|
|
|
|
packed ? UPB_WIRE_TYPE_DELIMITED
|
|
|
|
: upb_pb_native_wire_types[upb_fielddef_descriptortype(f)];
|
|
|
|
|
|
|
|
/* Pre-encode the tag for this field. */
|
|
|
|
new_tag(h, f, wt, &attr);
|
|
|
|
|
|
|
|
if (packed) {
|
|
|
|
upb_handlers_setstartseq(h, f, encode_startdelimfield, &attr);
|
|
|
|
upb_handlers_setendseq(h, f, encode_enddelimfield, &attr);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define T(upper, lower, upbtype) \
|
|
|
|
case UPB_DESCRIPTOR_TYPE_##upper: \
|
|
|
|
if (packed) { \
|
|
|
|
upb_handlers_set##upbtype(h, f, encode_packed_##lower, &attr); \
|
|
|
|
} else { \
|
|
|
|
upb_handlers_set##upbtype(h, f, encode_scalar_##lower, &attr); \
|
|
|
|
} \
|
|
|
|
break;
|
|
|
|
|
|
|
|
switch (upb_fielddef_descriptortype(f)) {
|
|
|
|
T(DOUBLE, double, double);
|
|
|
|
T(FLOAT, float, float);
|
|
|
|
T(INT64, int64, int64);
|
|
|
|
T(INT32, int32, int32);
|
|
|
|
T(FIXED64, fixed64, uint64);
|
|
|
|
T(FIXED32, fixed32, uint32);
|
|
|
|
T(BOOL, bool, bool);
|
|
|
|
T(UINT32, uint32, uint32);
|
|
|
|
T(UINT64, uint64, uint64);
|
|
|
|
T(ENUM, enum, int32);
|
|
|
|
T(SFIXED32, sfixed32, int32);
|
|
|
|
T(SFIXED64, sfixed64, int64);
|
|
|
|
T(SINT32, sint32, int32);
|
|
|
|
T(SINT64, sint64, int64);
|
|
|
|
case UPB_DESCRIPTOR_TYPE_STRING:
|
|
|
|
case UPB_DESCRIPTOR_TYPE_BYTES:
|
|
|
|
upb_handlers_setstartstr(h, f, encode_startstr, &attr);
|
|
|
|
upb_handlers_setendstr(h, f, encode_enddelimfield, &attr);
|
|
|
|
upb_handlers_setstring(h, f, encode_strbuf, &attr);
|
|
|
|
break;
|
|
|
|
case UPB_DESCRIPTOR_TYPE_MESSAGE:
|
|
|
|
upb_handlers_setstartsubmsg(h, f, encode_startdelimfield, &attr);
|
|
|
|
upb_handlers_setendsubmsg(h, f, encode_enddelimfield, &attr);
|
|
|
|
break;
|
|
|
|
case UPB_DESCRIPTOR_TYPE_GROUP: {
|
|
|
|
/* Endgroup takes a different tag (wire_type = END_GROUP). */
|
|
|
|
upb_handlerattr attr2 = UPB_HANDLERATTR_INIT;
|
|
|
|
new_tag(h, f, UPB_WIRE_TYPE_END_GROUP, &attr2);
|
|
|
|
|
|
|
|
upb_handlers_setstartsubmsg(h, f, encode_startgroup, &attr);
|
|
|
|
upb_handlers_setendsubmsg(h, f, encode_endgroup, &attr2);
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#undef T
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_pb_encoder_reset(upb_pb_encoder *e) {
|
|
|
|
e->segptr = NULL;
|
|
|
|
e->top = NULL;
|
|
|
|
e->depth = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* public API *****************************************************************/
|
|
|
|
|
|
|
|
upb_handlercache *upb_pb_encoder_newcache(void) {
|
|
|
|
return upb_handlercache_new(newhandlers_callback, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
upb_pb_encoder *upb_pb_encoder_create(upb_arena *arena, const upb_handlers *h,
|
|
|
|
upb_bytessink output) {
|
|
|
|
const size_t initial_bufsize = 256;
|
|
|
|
const size_t initial_segbufsize = 16;
|
|
|
|
/* TODO(haberman): make this configurable. */
|
|
|
|
const size_t stack_size = 64;
|
|
|
|
|
|
|
|
upb_pb_encoder *e = upb_arena_malloc(arena, sizeof(upb_pb_encoder));
|
|
|
|
if (!e) return NULL;
|
|
|
|
|
|
|
|
e->buf = upb_arena_malloc(arena, initial_bufsize);
|
|
|
|
e->segbuf = upb_arena_malloc(arena, initial_segbufsize * sizeof(*e->segbuf));
|
|
|
|
e->stack = upb_arena_malloc(arena, stack_size * sizeof(*e->stack));
|
|
|
|
|
|
|
|
if (!e->buf || !e->segbuf || !e->stack) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
e->limit = e->buf + initial_bufsize;
|
|
|
|
e->seglimit = e->segbuf + initial_segbufsize;
|
|
|
|
e->stacklimit = e->stack + stack_size;
|
|
|
|
|
|
|
|
upb_pb_encoder_reset(e);
|
|
|
|
upb_sink_reset(&e->input_, h, e);
|
|
|
|
|
|
|
|
e->arena = arena;
|
|
|
|
e->output_ = output;
|
|
|
|
e->subc = output.closure;
|
|
|
|
e->ptr = e->buf;
|
|
|
|
|
|
|
|
return e;
|
|
|
|
}
|
|
|
|
|
|
|
|
upb_sink upb_pb_encoder_input(upb_pb_encoder *e) { return e->input_; }
|