|
|
|
/*
|
|
|
|
* Copyright (c) 2009-2021, Google LLC
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions are met:
|
|
|
|
* * Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* * Neither the name of Google LLC nor the
|
|
|
|
* names of its contributors may be used to endorse or promote products
|
|
|
|
* derived from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Google LLC BE LIABLE FOR ANY DIRECT,
|
|
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
// We encode backwards, to avoid pre-computing lengths (one-pass encode).
|
|
|
|
|
|
|
|
#include "upb/wire/encode.h"
|
|
|
|
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
#include "upb/collections/array_internal.h"
|
|
|
|
#include "upb/collections/map_sorter_internal.h"
|
|
|
|
#include "upb/wire/common_internal.h"
|
|
|
|
#include "upb/wire/swap_internal.h"
|
|
|
|
#include "upb/wire/types.h"
|
|
|
|
|
|
|
|
// Must be last.
|
|
|
|
#include "upb/port/def.inc"
|
|
|
|
|
|
|
|
#define UPB_PB_VARINT_MAX_LEN 10
|
|
|
|
|
|
|
|
UPB_NOINLINE
|
|
|
|
static size_t encode_varint64(uint64_t val, char* buf) {
|
|
|
|
size_t i = 0;
|
|
|
|
do {
|
|
|
|
uint8_t byte = val & 0x7fU;
|
|
|
|
val >>= 7;
|
|
|
|
if (val) byte |= 0x80U;
|
|
|
|
buf[i++] = byte;
|
|
|
|
} while (val);
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
static uint32_t encode_zz32(int32_t n) {
|
|
|
|
return ((uint32_t)n << 1) ^ (n >> 31);
|
|
|
|
}
|
|
|
|
static uint64_t encode_zz64(int64_t n) {
|
|
|
|
return ((uint64_t)n << 1) ^ (n >> 63);
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
jmp_buf err;
|
|
|
|
upb_Arena* arena;
|
|
|
|
char *buf, *ptr, *limit;
|
|
|
|
int options;
|
|
|
|
int depth;
|
|
|
|
_upb_mapsorter sorter;
|
|
|
|
} upb_encstate;
|
|
|
|
|
|
|
|
static size_t upb_roundup_pow2(size_t bytes) {
|
|
|
|
size_t ret = 128;
|
|
|
|
while (ret < bytes) {
|
|
|
|
ret *= 2;
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
UPB_NORETURN static void encode_err(upb_encstate* e, upb_EncodeStatus s) {
|
|
|
|
UPB_LONGJMP(e->err, s);
|
|
|
|
}
|
|
|
|
|
|
|
|
UPB_NOINLINE
|
|
|
|
static void encode_growbuffer(upb_encstate* e, size_t bytes) {
|
|
|
|
size_t old_size = e->limit - e->buf;
|
|
|
|
size_t new_size = upb_roundup_pow2(bytes + (e->limit - e->ptr));
|
|
|
|
char* new_buf = upb_Arena_Realloc(e->arena, e->buf, old_size, new_size);
|
|
|
|
|
|
|
|
if (!new_buf) encode_err(e, kUpb_EncodeStatus_OutOfMemory);
|
|
|
|
|
|
|
|
// We want previous data at the end, realloc() put it at the beginning.
|
|
|
|
// TODO(salo): This is somewhat inefficient since we are copying twice.
|
|
|
|
// Maybe create a realloc() that copies to the end of the new buffer?
|
|
|
|
if (old_size > 0) {
|
|
|
|
memmove(new_buf + new_size - old_size, e->buf, old_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
e->ptr = new_buf + new_size - (e->limit - e->ptr);
|
|
|
|
e->limit = new_buf + new_size;
|
|
|
|
e->buf = new_buf;
|
|
|
|
|
|
|
|
e->ptr -= bytes;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Call to ensure that at least "bytes" bytes are available for writing at
|
|
|
|
* e->ptr. Returns false if the bytes could not be allocated. */
|
|
|
|
UPB_FORCEINLINE
|
|
|
|
static void encode_reserve(upb_encstate* e, size_t bytes) {
|
|
|
|
if ((size_t)(e->ptr - e->buf) < bytes) {
|
|
|
|
encode_growbuffer(e, bytes);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
e->ptr -= bytes;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Writes the given bytes to the buffer, handling reserve/advance. */
|
|
|
|
static void encode_bytes(upb_encstate* e, const void* data, size_t len) {
|
|
|
|
if (len == 0) return; /* memcpy() with zero size is UB */
|
|
|
|
encode_reserve(e, len);
|
|
|
|
memcpy(e->ptr, data, len);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void encode_fixed64(upb_encstate* e, uint64_t val) {
|
|
|
|
val = _upb_BigEndian_Swap64(val);
|
|
|
|
encode_bytes(e, &val, sizeof(uint64_t));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void encode_fixed32(upb_encstate* e, uint32_t val) {
|
|
|
|
val = _upb_BigEndian_Swap32(val);
|
|
|
|
encode_bytes(e, &val, sizeof(uint32_t));
|
|
|
|
}
|
|
|
|
|
|
|
|
UPB_NOINLINE
|
|
|
|
static void encode_longvarint(upb_encstate* e, uint64_t val) {
|
|
|
|
size_t len;
|
|
|
|
char* start;
|
|
|
|
|
|
|
|
encode_reserve(e, UPB_PB_VARINT_MAX_LEN);
|
|
|
|
len = encode_varint64(val, e->ptr);
|
|
|
|
start = e->ptr + UPB_PB_VARINT_MAX_LEN - len;
|
|
|
|
memmove(start, e->ptr, len);
|
|
|
|
e->ptr = start;
|
|
|
|
}
|
|
|
|
|
|
|
|
UPB_FORCEINLINE
|
|
|
|
static void encode_varint(upb_encstate* e, uint64_t val) {
|
|
|
|
if (val < 128 && e->ptr != e->buf) {
|
|
|
|
--e->ptr;
|
|
|
|
*e->ptr = val;
|
|
|
|
} else {
|
|
|
|
encode_longvarint(e, val);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void encode_double(upb_encstate* e, double d) {
|
|
|
|
uint64_t u64;
|
|
|
|
UPB_ASSERT(sizeof(double) == sizeof(uint64_t));
|
|
|
|
memcpy(&u64, &d, sizeof(uint64_t));
|
|
|
|
encode_fixed64(e, u64);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void encode_float(upb_encstate* e, float d) {
|
|
|
|
uint32_t u32;
|
|
|
|
UPB_ASSERT(sizeof(float) == sizeof(uint32_t));
|
|
|
|
memcpy(&u32, &d, sizeof(uint32_t));
|
|
|
|
encode_fixed32(e, u32);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void encode_tag(upb_encstate* e, uint32_t field_number,
|
|
|
|
uint8_t wire_type) {
|
|
|
|
encode_varint(e, (field_number << 3) | wire_type);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void encode_fixedarray(upb_encstate* e, const upb_Array* arr,
|
|
|
|
size_t elem_size, uint32_t tag) {
|
|
|
|
size_t bytes = arr->size * elem_size;
|
|
|
|
const char* data = _upb_array_constptr(arr);
|
|
|
|
const char* ptr = data + bytes - elem_size;
|
|
|
|
|
|
|
|
if (tag || !_upb_IsLittleEndian()) {
|
|
|
|
while (true) {
|
|
|
|
if (elem_size == 4) {
|
|
|
|
uint32_t val;
|
|
|
|
memcpy(&val, ptr, sizeof(val));
|
|
|
|
val = _upb_BigEndian_Swap32(val);
|
|
|
|
encode_bytes(e, &val, elem_size);
|
|
|
|
} else {
|
|
|
|
UPB_ASSERT(elem_size == 8);
|
|
|
|
uint64_t val;
|
|
|
|
memcpy(&val, ptr, sizeof(val));
|
|
|
|
val = _upb_BigEndian_Swap64(val);
|
|
|
|
encode_bytes(e, &val, elem_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tag) encode_varint(e, tag);
|
|
|
|
if (ptr == data) break;
|
|
|
|
ptr -= elem_size;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
encode_bytes(e, data, bytes);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void encode_message(upb_encstate* e, const upb_Message* msg,
|
|
|
|
const upb_MiniTable* m, size_t* size);
|
|
|
|
|
|
|
|
static void encode_scalar(upb_encstate* e, const void* _field_mem,
|
|
|
|
const upb_MiniTableSub* subs,
|
|
|
|
const upb_MiniTableField* f) {
|
|
|
|
const char* field_mem = _field_mem;
|
|
|
|
int wire_type;
|
|
|
|
|
|
|
|
#define CASE(ctype, type, wtype, encodeval) \
|
|
|
|
{ \
|
|
|
|
ctype val = *(ctype*)field_mem; \
|
|
|
|
encode_##type(e, encodeval); \
|
|
|
|
wire_type = wtype; \
|
|
|
|
break; \
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (f->descriptortype) {
|
|
|
|
case kUpb_FieldType_Double:
|
|
|
|
CASE(double, double, kUpb_WireType_64Bit, val);
|
|
|
|
case kUpb_FieldType_Float:
|
|
|
|
CASE(float, float, kUpb_WireType_32Bit, val);
|
|
|
|
case kUpb_FieldType_Int64:
|
|
|
|
case kUpb_FieldType_UInt64:
|
|
|
|
CASE(uint64_t, varint, kUpb_WireType_Varint, val);
|
|
|
|
case kUpb_FieldType_UInt32:
|
|
|
|
CASE(uint32_t, varint, kUpb_WireType_Varint, val);
|
|
|
|
case kUpb_FieldType_Int32:
|
|
|
|
case kUpb_FieldType_Enum:
|
|
|
|
CASE(int32_t, varint, kUpb_WireType_Varint, (int64_t)val);
|
|
|
|
case kUpb_FieldType_SFixed64:
|
|
|
|
case kUpb_FieldType_Fixed64:
|
|
|
|
CASE(uint64_t, fixed64, kUpb_WireType_64Bit, val);
|
|
|
|
case kUpb_FieldType_Fixed32:
|
|
|
|
case kUpb_FieldType_SFixed32:
|
|
|
|
CASE(uint32_t, fixed32, kUpb_WireType_32Bit, val);
|
|
|
|
case kUpb_FieldType_Bool:
|
|
|
|
CASE(bool, varint, kUpb_WireType_Varint, val);
|
|
|
|
case kUpb_FieldType_SInt32:
|
|
|
|
CASE(int32_t, varint, kUpb_WireType_Varint, encode_zz32(val));
|
|
|
|
case kUpb_FieldType_SInt64:
|
|
|
|
CASE(int64_t, varint, kUpb_WireType_Varint, encode_zz64(val));
|
|
|
|
case kUpb_FieldType_String:
|
|
|
|
case kUpb_FieldType_Bytes: {
|
|
|
|
upb_StringView view = *(upb_StringView*)field_mem;
|
|
|
|
encode_bytes(e, view.data, view.size);
|
|
|
|
encode_varint(e, view.size);
|
|
|
|
wire_type = kUpb_WireType_Delimited;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case kUpb_FieldType_Group: {
|
|
|
|
size_t size;
|
|
|
|
void* submsg = *(void**)field_mem;
|
|
|
|
const upb_MiniTable* subm = subs[f->submsg_index].submsg;
|
|
|
|
if (submsg == NULL) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (--e->depth == 0) encode_err(e, kUpb_EncodeStatus_MaxDepthExceeded);
|
|
|
|
encode_tag(e, f->number, kUpb_WireType_EndGroup);
|
|
|
|
encode_message(e, submsg, subm, &size);
|
|
|
|
wire_type = kUpb_WireType_StartGroup;
|
|
|
|
e->depth++;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case kUpb_FieldType_Message: {
|
|
|
|
size_t size;
|
|
|
|
void* submsg = *(void**)field_mem;
|
|
|
|
const upb_MiniTable* subm = subs[f->submsg_index].submsg;
|
|
|
|
if (submsg == NULL) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (--e->depth == 0) encode_err(e, kUpb_EncodeStatus_MaxDepthExceeded);
|
|
|
|
encode_message(e, submsg, subm, &size);
|
|
|
|
encode_varint(e, size);
|
|
|
|
wire_type = kUpb_WireType_Delimited;
|
|
|
|
e->depth++;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
UPB_UNREACHABLE();
|
|
|
|
}
|
|
|
|
#undef CASE
|
|
|
|
|
|
|
|
encode_tag(e, f->number, wire_type);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void encode_array(upb_encstate* e, const upb_Message* msg,
|
|
|
|
const upb_MiniTableSub* subs,
|
|
|
|
const upb_MiniTableField* f) {
|
|
|
|
const upb_Array* arr = *UPB_PTR_AT(msg, f->offset, upb_Array*);
|
|
|
|
bool packed = f->mode & kUpb_LabelFlags_IsPacked;
|
|
|
|
size_t pre_len = e->limit - e->ptr;
|
|
|
|
|
|
|
|
if (arr == NULL || arr->size == 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define VARINT_CASE(ctype, encode) \
|
|
|
|
{ \
|
|
|
|
const ctype* start = _upb_array_constptr(arr); \
|
|
|
|
const ctype* ptr = start + arr->size; \
|
|
|
|
uint32_t tag = packed ? 0 : (f->number << 3) | kUpb_WireType_Varint; \
|
|
|
|
do { \
|
|
|
|
ptr--; \
|
|
|
|
encode_varint(e, encode); \
|
|
|
|
if (tag) encode_varint(e, tag); \
|
|
|
|
} while (ptr != start); \
|
|
|
|
} \
|
|
|
|
break;
|
|
|
|
|
|
|
|
#define TAG(wire_type) (packed ? 0 : (f->number << 3 | wire_type))
|
|
|
|
|
|
|
|
switch (f->descriptortype) {
|
|
|
|
case kUpb_FieldType_Double:
|
|
|
|
encode_fixedarray(e, arr, sizeof(double), TAG(kUpb_WireType_64Bit));
|
|
|
|
break;
|
|
|
|
case kUpb_FieldType_Float:
|
|
|
|
encode_fixedarray(e, arr, sizeof(float), TAG(kUpb_WireType_32Bit));
|
|
|
|
break;
|
|
|
|
case kUpb_FieldType_SFixed64:
|
|
|
|
case kUpb_FieldType_Fixed64:
|
|
|
|
encode_fixedarray(e, arr, sizeof(uint64_t), TAG(kUpb_WireType_64Bit));
|
|
|
|
break;
|
|
|
|
case kUpb_FieldType_Fixed32:
|
|
|
|
case kUpb_FieldType_SFixed32:
|
|
|
|
encode_fixedarray(e, arr, sizeof(uint32_t), TAG(kUpb_WireType_32Bit));
|
|
|
|
break;
|
|
|
|
case kUpb_FieldType_Int64:
|
|
|
|
case kUpb_FieldType_UInt64:
|
|
|
|
VARINT_CASE(uint64_t, *ptr);
|
|
|
|
case kUpb_FieldType_UInt32:
|
|
|
|
VARINT_CASE(uint32_t, *ptr);
|
|
|
|
case kUpb_FieldType_Int32:
|
|
|
|
case kUpb_FieldType_Enum:
|
|
|
|
VARINT_CASE(int32_t, (int64_t)*ptr);
|
|
|
|
case kUpb_FieldType_Bool:
|
|
|
|
VARINT_CASE(bool, *ptr);
|
|
|
|
case kUpb_FieldType_SInt32:
|
|
|
|
VARINT_CASE(int32_t, encode_zz32(*ptr));
|
|
|
|
case kUpb_FieldType_SInt64:
|
|
|
|
VARINT_CASE(int64_t, encode_zz64(*ptr));
|
|
|
|
case kUpb_FieldType_String:
|
|
|
|
case kUpb_FieldType_Bytes: {
|
|
|
|
const upb_StringView* start = _upb_array_constptr(arr);
|
|
|
|
const upb_StringView* ptr = start + arr->size;
|
|
|
|
do {
|
|
|
|
ptr--;
|
|
|
|
encode_bytes(e, ptr->data, ptr->size);
|
|
|
|
encode_varint(e, ptr->size);
|
|
|
|
encode_tag(e, f->number, kUpb_WireType_Delimited);
|
|
|
|
} while (ptr != start);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case kUpb_FieldType_Group: {
|
|
|
|
const void* const* start = _upb_array_constptr(arr);
|
|
|
|
const void* const* ptr = start + arr->size;
|
|
|
|
const upb_MiniTable* subm = subs[f->submsg_index].submsg;
|
|
|
|
if (--e->depth == 0) encode_err(e, kUpb_EncodeStatus_MaxDepthExceeded);
|
|
|
|
do {
|
|
|
|
size_t size;
|
|
|
|
ptr--;
|
|
|
|
encode_tag(e, f->number, kUpb_WireType_EndGroup);
|
|
|
|
encode_message(e, *ptr, subm, &size);
|
|
|
|
encode_tag(e, f->number, kUpb_WireType_StartGroup);
|
|
|
|
} while (ptr != start);
|
|
|
|
e->depth++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case kUpb_FieldType_Message: {
|
|
|
|
const void* const* start = _upb_array_constptr(arr);
|
|
|
|
const void* const* ptr = start + arr->size;
|
|
|
|
const upb_MiniTable* subm = subs[f->submsg_index].submsg;
|
|
|
|
if (--e->depth == 0) encode_err(e, kUpb_EncodeStatus_MaxDepthExceeded);
|
|
|
|
do {
|
|
|
|
size_t size;
|
|
|
|
ptr--;
|
|
|
|
encode_message(e, *ptr, subm, &size);
|
|
|
|
encode_varint(e, size);
|
|
|
|
encode_tag(e, f->number, kUpb_WireType_Delimited);
|
|
|
|
} while (ptr != start);
|
|
|
|
e->depth++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#undef VARINT_CASE
|
|
|
|
|
|
|
|
if (packed) {
|
|
|
|
encode_varint(e, e->limit - e->ptr - pre_len);
|
|
|
|
encode_tag(e, f->number, kUpb_WireType_Delimited);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void encode_mapentry(upb_encstate* e, uint32_t number,
|
|
|
|
const upb_MiniTable* layout,
|
|
|
|
const upb_MapEntry* ent) {
|
|
|
|
const upb_MiniTableField* key_field = &layout->fields[0];
|
|
|
|
const upb_MiniTableField* val_field = &layout->fields[1];
|
|
|
|
size_t pre_len = e->limit - e->ptr;
|
|
|
|
size_t size;
|
|
|
|
encode_scalar(e, &ent->data.v, layout->subs, val_field);
|
|
|
|
encode_scalar(e, &ent->data.k, layout->subs, key_field);
|
|
|
|
size = (e->limit - e->ptr) - pre_len;
|
|
|
|
encode_varint(e, size);
|
|
|
|
encode_tag(e, number, kUpb_WireType_Delimited);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void encode_map(upb_encstate* e, const upb_Message* msg,
|
|
|
|
const upb_MiniTableSub* subs,
|
|
|
|
const upb_MiniTableField* f) {
|
|
|
|
const upb_Map* map = *UPB_PTR_AT(msg, f->offset, const upb_Map*);
|
|
|
|
const upb_MiniTable* layout = subs[f->submsg_index].submsg;
|
|
|
|
UPB_ASSERT(layout->field_count == 2);
|
|
|
|
|
|
|
|
if (map == NULL) return;
|
|
|
|
|
|
|
|
if (e->options & kUpb_EncodeOption_Deterministic) {
|
|
|
|
_upb_sortedmap sorted;
|
|
|
|
_upb_mapsorter_pushmap(&e->sorter, layout->fields[0].descriptortype, map,
|
|
|
|
&sorted);
|
|
|
|
upb_MapEntry ent;
|
|
|
|
while (_upb_sortedmap_next(&e->sorter, map, &sorted, &ent)) {
|
|
|
|
encode_mapentry(e, f->number, layout, &ent);
|
|
|
|
}
|
|
|
|
_upb_mapsorter_popmap(&e->sorter, &sorted);
|
|
|
|
} else {
|
|
|
|
intptr_t iter = UPB_STRTABLE_BEGIN;
|
|
|
|
upb_StringView key;
|
|
|
|
upb_value val;
|
|
|
|
while (upb_strtable_next2(&map->table, &key, &val, &iter)) {
|
|
|
|
upb_MapEntry ent;
|
|
|
|
_upb_map_fromkey(key, &ent.data.k, map->key_size);
|
|
|
|
_upb_map_fromvalue(val, &ent.data.v, map->val_size);
|
|
|
|
encode_mapentry(e, f->number, layout, &ent);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool encode_shouldencode(upb_encstate* e, const upb_Message* msg,
|
|
|
|
const upb_MiniTableSub* subs,
|
|
|
|
const upb_MiniTableField* f) {
|
|
|
|
if (f->presence == 0) {
|
|
|
|
/* Proto3 presence or map/array. */
|
|
|
|
const void* mem = UPB_PTR_AT(msg, f->offset, void);
|
Refactored message accessors to share a common set of functions instead of duplicating logic.
Prior to this CL, there were several different code paths for reading/writing message data. Generated code, MiniTable accessors, and reflection all performed direct manipulation of the bits and bytes in a message, but they all had distinct implementations that did not share much of any code. This divergence meant that they could easily have different behavior, bugs could creep into one but not another, and we would need three different sets of tests to get full test coverage. This also made it very difficult to change the internal representation in any way, since it would require updating many places in the code.
With this CL, the three different APIs for accessing message data now all share a common set of functions. The common functions all take a `upb_MiniTableField` as the canonical description of a field's type and layout. The lowest-level functions are very branchy, as they must test for every possible variation in the field type (field vs oneof, hasbit vs no-hasbit, different field sizes, whether a nonzero default value exists, extension vs. regular field), however these functions are declared inline and designed to be very optimizable when values are known at compile time.
In generated accessors, for example, we can declare constant `upb_MiniTableField` instances so that all values can constant-propagate, and we can get fully specialized code even though we are calling a generic function. On the other hand, when we use the generic functions from reflection, we get runtime branches since values are not known at compile time. But even the function is written to still be as efficient as possible even when used from reflection. For example, we use memcpy() calls with constant length so that the compiler can optimize these into inline loads/stores without having to make an out-of-line call to memcpy().
In this way, this CL should be a benefit to both correctness and performance. It will also make it easier to change the message representation, for example to optimize the encoder by giving hasbits to all fields.
Note that we have not completely consolidated all access in this CL:
1. Some functions outside of get/set such as clear and hazzers are not yet unified.
2. The encoder and decoder still touch the message without going through the common functions. The encoder and decoder require a bit more specialized code to get good performance when reading/writing fields en masse.
PiperOrigin-RevId: 490016095
2 years ago
|
|
|
switch (_upb_MiniTableField_GetRep(f)) {
|
|
|
|
case kUpb_FieldRep_1Byte: {
|
|
|
|
char ch;
|
|
|
|
memcpy(&ch, mem, 1);
|
|
|
|
return ch != 0;
|
|
|
|
}
|
|
|
|
case kUpb_FieldRep_4Byte: {
|
|
|
|
uint32_t u32;
|
|
|
|
memcpy(&u32, mem, 4);
|
|
|
|
return u32 != 0;
|
|
|
|
}
|
|
|
|
case kUpb_FieldRep_8Byte: {
|
|
|
|
uint64_t u64;
|
|
|
|
memcpy(&u64, mem, 8);
|
|
|
|
return u64 != 0;
|
|
|
|
}
|
|
|
|
case kUpb_FieldRep_StringView: {
|
|
|
|
const upb_StringView* str = (const upb_StringView*)mem;
|
|
|
|
return str->size != 0;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
UPB_UNREACHABLE();
|
|
|
|
}
|
|
|
|
} else if (f->presence > 0) {
|
|
|
|
/* Proto2 presence: hasbit. */
|
|
|
|
return _upb_hasbit_field(msg, f);
|
|
|
|
} else {
|
|
|
|
/* Field is in a oneof. */
|
|
|
|
return _upb_getoneofcase_field(msg, f) == f->number;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void encode_field(upb_encstate* e, const upb_Message* msg,
|
|
|
|
const upb_MiniTableSub* subs,
|
|
|
|
const upb_MiniTableField* field) {
|
|
|
|
switch (upb_FieldMode_Get(field)) {
|
|
|
|
case kUpb_FieldMode_Array:
|
|
|
|
encode_array(e, msg, subs, field);
|
|
|
|
break;
|
|
|
|
case kUpb_FieldMode_Map:
|
|
|
|
encode_map(e, msg, subs, field);
|
|
|
|
break;
|
|
|
|
case kUpb_FieldMode_Scalar:
|
|
|
|
encode_scalar(e, UPB_PTR_AT(msg, field->offset, void), subs, field);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
UPB_UNREACHABLE();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void encode_msgset_item(upb_encstate* e,
|
|
|
|
const upb_Message_Extension* ext) {
|
|
|
|
size_t size;
|
|
|
|
encode_tag(e, kUpb_MsgSet_Item, kUpb_WireType_EndGroup);
|
|
|
|
encode_message(e, ext->data.ptr, ext->ext->sub.submsg, &size);
|
|
|
|
encode_varint(e, size);
|
|
|
|
encode_tag(e, kUpb_MsgSet_Message, kUpb_WireType_Delimited);
|
|
|
|
encode_varint(e, ext->ext->field.number);
|
|
|
|
encode_tag(e, kUpb_MsgSet_TypeId, kUpb_WireType_Varint);
|
|
|
|
encode_tag(e, kUpb_MsgSet_Item, kUpb_WireType_StartGroup);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void encode_message(upb_encstate* e, const upb_Message* msg,
|
|
|
|
const upb_MiniTable* m, size_t* size) {
|
|
|
|
size_t pre_len = e->limit - e->ptr;
|
|
|
|
|
|
|
|
if ((e->options & kUpb_EncodeOption_CheckRequired) && m->required_count) {
|
|
|
|
uint64_t msg_head;
|
|
|
|
memcpy(&msg_head, msg, 8);
|
|
|
|
msg_head = _upb_BigEndian_Swap64(msg_head);
|
|
|
|
if (upb_MiniTable_requiredmask(m) & ~msg_head) {
|
|
|
|
encode_err(e, kUpb_EncodeStatus_MissingRequired);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((e->options & kUpb_EncodeOption_SkipUnknown) == 0) {
|
|
|
|
size_t unknown_size;
|
|
|
|
const char* unknown = upb_Message_GetUnknown(msg, &unknown_size);
|
|
|
|
|
|
|
|
if (unknown) {
|
|
|
|
encode_bytes(e, unknown, unknown_size);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (m->ext != kUpb_ExtMode_NonExtendable) {
|
|
|
|
/* Encode all extensions together. Unlike C++, we do not attempt to keep
|
|
|
|
* these in field number order relative to normal fields or even to each
|
|
|
|
* other. */
|
|
|
|
size_t ext_count;
|
|
|
|
const upb_Message_Extension* ext = _upb_Message_Getexts(msg, &ext_count);
|
|
|
|
if (ext_count) {
|
|
|
|
const upb_Message_Extension* end = ext + ext_count;
|
|
|
|
for (; ext != end; ext++) {
|
|
|
|
if (UPB_UNLIKELY(m->ext == kUpb_ExtMode_IsMessageSet)) {
|
|
|
|
encode_msgset_item(e, ext);
|
|
|
|
} else {
|
|
|
|
encode_field(e, &ext->data, &ext->ext->sub, &ext->ext->field);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (m->field_count) {
|
|
|
|
const upb_MiniTableField* f = &m->fields[m->field_count];
|
|
|
|
const upb_MiniTableField* first = &m->fields[0];
|
|
|
|
while (f != first) {
|
|
|
|
f--;
|
|
|
|
if (encode_shouldencode(e, msg, m->subs, f)) {
|
|
|
|
encode_field(e, msg, m->subs, f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
*size = (e->limit - e->ptr) - pre_len;
|
|
|
|
}
|
|
|
|
|
|
|
|
upb_EncodeStatus upb_Encode(const void* msg, const upb_MiniTable* l,
|
|
|
|
int options, upb_Arena* arena, char** buf,
|
|
|
|
size_t* size) {
|
|
|
|
upb_encstate e;
|
|
|
|
unsigned depth = (unsigned)options >> 16;
|
|
|
|
|
|
|
|
e.arena = arena;
|
|
|
|
e.buf = NULL;
|
|
|
|
e.limit = NULL;
|
|
|
|
e.ptr = NULL;
|
|
|
|
e.depth = depth ? depth : 64;
|
|
|
|
e.options = options;
|
|
|
|
_upb_mapsorter_init(&e.sorter);
|
|
|
|
|
|
|
|
upb_EncodeStatus status = UPB_SETJMP(e.err);
|
|
|
|
|
|
|
|
// Unfortunately we must continue to perform hackery here because there are
|
|
|
|
// code paths which blindly copy the returned pointer without bothering to
|
|
|
|
// check for errors until much later (b/235839510). So we still set *buf to
|
|
|
|
// NULL on error and we still set it to non-NULL on a successful empty result.
|
|
|
|
if (status == kUpb_EncodeStatus_Ok) {
|
|
|
|
encode_message(&e, msg, l, size);
|
|
|
|
*size = e.limit - e.ptr;
|
|
|
|
if (*size == 0) {
|
|
|
|
static char ch;
|
|
|
|
*buf = &ch;
|
|
|
|
} else {
|
|
|
|
UPB_ASSERT(e.ptr);
|
|
|
|
*buf = e.ptr;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
*buf = NULL;
|
|
|
|
*size = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
_upb_mapsorter_destroy(&e.sorter);
|
|
|
|
return status;
|
|
|
|
}
|