Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

995 lines
31 KiB

/*
** protobuf decoder bytecode compiler
**
** Code to compile a upb::Handlers into bytecode for decoding a protobuf
** according to that specific schema and destination handlers.
**
** Compiling to bytecode is always the first step. If we are using the
** interpreted decoder we leave it as bytecode and interpret that. If we are
** using a JIT decoder we use a code generator to turn the bytecode into native
** code, LLVM IR, etc.
**
** Bytecode definition is in decoder.int.h.
*/
#include <stdarg.h>
#include "upb/pb/decoder.int.h"
#include "upb/pb/varint.int.h"
#ifdef UPB_DUMP_BYTECODE
#include <stdio.h>
#endif
#define MAXLABEL 5
#define EMPTYLABEL -1
/* mgroup *********************************************************************/
static void freegroup(upb_refcounted *r) {
mgroup *g = (mgroup*)r;
upb_inttable_uninit(&g->methods);
#ifdef UPB_USE_JIT_X64
upb_pbdecoder_freejit(g);
#endif
upb_gfree(g->bytecode);
upb_gfree(g);
}
static void visitgroup(const upb_refcounted *r, upb_refcounted_visit *visit,
void *closure) {
const mgroup *g = (const mgroup*)r;
upb_inttable_iter i;
upb_inttable_begin(&i, &g->methods);
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
upb_pbdecodermethod *method = upb_value_getptr(upb_inttable_iter_value(&i));
visit(r, upb_pbdecodermethod_upcast(method), closure);
}
}
mgroup *newgroup(const void *owner) {
mgroup *g = upb_gmalloc(sizeof(*g));
static const struct upb_refcounted_vtbl vtbl = {visitgroup, freegroup};
upb_refcounted_init(mgroup_upcast_mutable(g), &vtbl, owner);
upb_inttable_init(&g->methods, UPB_CTYPE_PTR);
g->bytecode = NULL;
g->bytecode_end = NULL;
return g;
}
/* upb_pbdecodermethod ********************************************************/
static void freemethod(upb_refcounted *r) {
upb_pbdecodermethod *method = (upb_pbdecodermethod*)r;
if (method->dest_handlers_) {
upb_handlers_unref(method->dest_handlers_, method);
}
upb_inttable_uninit(&method->dispatch);
upb_gfree(method);
}
static void visitmethod(const upb_refcounted *r, upb_refcounted_visit *visit,
void *closure) {
const upb_pbdecodermethod *m = (const upb_pbdecodermethod*)r;
visit(r, m->group, closure);
}
static upb_pbdecodermethod *newmethod(const upb_handlers *dest_handlers,
mgroup *group) {
static const struct upb_refcounted_vtbl vtbl = {visitmethod, freemethod};
upb_pbdecodermethod *ret = upb_gmalloc(sizeof(*ret));
upb_refcounted_init(upb_pbdecodermethod_upcast_mutable(ret), &vtbl, &ret);
upb_byteshandler_init(&ret->input_handler_);
/* The method references the group and vice-versa, in a circular reference. */
upb_ref2(ret, group);
upb_ref2(group, ret);
upb_inttable_insertptr(&group->methods, dest_handlers, upb_value_ptr(ret));
upb_pbdecodermethod_unref(ret, &ret);
ret->group = mgroup_upcast_mutable(group);
ret->dest_handlers_ = dest_handlers;
ret->is_native_ = false; /* If we JIT, it will update this later. */
upb_inttable_init(&ret->dispatch, UPB_CTYPE_UINT64);
if (ret->dest_handlers_) {
upb_handlers_ref(ret->dest_handlers_, ret);
}
return ret;
}
const upb_handlers *upb_pbdecodermethod_desthandlers(
const upb_pbdecodermethod *m) {
return m->dest_handlers_;
}
const upb_byteshandler *upb_pbdecodermethod_inputhandler(
const upb_pbdecodermethod *m) {
return &m->input_handler_;
}
bool upb_pbdecodermethod_isnative(const upb_pbdecodermethod *m) {
return m->is_native_;
}
const upb_pbdecodermethod *upb_pbdecodermethod_new(
const upb_pbdecodermethodopts *opts, const void *owner) {
const upb_pbdecodermethod *ret;
upb_pbcodecache cache;
upb_pbcodecache_init(&cache);
ret = upb_pbcodecache_getdecodermethod(&cache, opts);
upb_pbdecodermethod_ref(ret, owner);
upb_pbcodecache_uninit(&cache);
return ret;
}
/* bytecode compiler **********************************************************/
/* Data used only at compilation time. */
typedef struct {
mgroup *group;
uint32_t *pc;
int fwd_labels[MAXLABEL];
int back_labels[MAXLABEL];
/* For fields marked "lazy", parse them lazily or eagerly? */
bool lazy;
} compiler;
static compiler *newcompiler(mgroup *group, bool lazy) {
compiler *ret = upb_gmalloc(sizeof(*ret));
int i;
ret->group = group;
ret->lazy = lazy;
for (i = 0; i < MAXLABEL; i++) {
ret->fwd_labels[i] = EMPTYLABEL;
ret->back_labels[i] = EMPTYLABEL;
}
return ret;
}
static void freecompiler(compiler *c) {
upb_gfree(c);
}
const size_t ptr_words = sizeof(void*) / sizeof(uint32_t);
/* How many words an instruction is. */
static int instruction_len(uint32_t instr) {
switch (getop(instr)) {
case OP_SETDISPATCH: return 1 + ptr_words;
case OP_TAGN: return 3;
case OP_SETBIGGROUPNUM: return 2;
default: return 1;
}
}
bool op_has_longofs(int32_t instruction) {
switch (getop(instruction)) {
case OP_CALL:
case OP_BRANCH:
case OP_CHECKDELIM:
return true;
/* The "tag" instructions only have 8 bytes available for the jump target,
* but that is ok because these opcodes only require short jumps. */
case OP_TAG1:
case OP_TAG2:
case OP_TAGN:
return false;
default:
UPB_ASSERT(false);
return false;
}
}
static int32_t getofs(uint32_t instruction) {
if (op_has_longofs(instruction)) {
return (int32_t)instruction >> 8;
} else {
return (int8_t)(instruction >> 8);
}
}
static void setofs(uint32_t *instruction, int32_t ofs) {
if (op_has_longofs(*instruction)) {
*instruction = getop(*instruction) | ofs << 8;
} else {
*instruction = (*instruction & ~0xff00) | ((ofs & 0xff) << 8);
}
UPB_ASSERT(getofs(*instruction) == ofs); /* Would fail in cases of overflow. */
}
static uint32_t pcofs(compiler *c) { return c->pc - c->group->bytecode; }
/* Defines a local label at the current PC location. All previous forward
* references are updated to point to this location. The location is noted
* for any future backward references. */
static void label(compiler *c, unsigned int label) {
int val;
uint32_t *codep;
UPB_ASSERT(label < MAXLABEL);
val = c->fwd_labels[label];
codep = (val == EMPTYLABEL) ? NULL : c->group->bytecode + val;
while (codep) {
int ofs = getofs(*codep);
setofs(codep, c->pc - codep - instruction_len(*codep));
codep = ofs ? codep + ofs : NULL;
}
c->fwd_labels[label] = EMPTYLABEL;
c->back_labels[label] = pcofs(c);
}
/* Creates a reference to a numbered label; either a forward reference
* (positive arg) or backward reference (negative arg). For forward references
* the value returned now is actually a "next" pointer into a linked list of all
* instructions that use this label and will be patched later when the label is
* defined with label().
*
* The returned value is the offset that should be written into the instruction.
*/
static int32_t labelref(compiler *c, int label) {
UPB_ASSERT(label < MAXLABEL);
if (label == LABEL_DISPATCH) {
/* No resolving required. */
return 0;
} else if (label < 0) {
/* Backward local label. Relative to the next instruction. */
uint32_t from = (c->pc + 1) - c->group->bytecode;
return c->back_labels[-label] - from;
} else {
/* Forward local label: prepend to (possibly-empty) linked list. */
int *lptr = &c->fwd_labels[label];
int32_t ret = (*lptr == EMPTYLABEL) ? 0 : *lptr - pcofs(c);
*lptr = pcofs(c);
return ret;
}
}
static void put32(compiler *c, uint32_t v) {
mgroup *g = c->group;
if (c->pc == g->bytecode_end) {
int ofs = pcofs(c);
size_t oldsize = g->bytecode_end - g->bytecode;
size_t newsize = UPB_MAX(oldsize * 2, 64);
/* TODO(haberman): handle OOM. */
g->bytecode = upb_grealloc(g->bytecode, oldsize * sizeof(uint32_t),
newsize * sizeof(uint32_t));
g->bytecode_end = g->bytecode + newsize;
c->pc = g->bytecode + ofs;
}
*c->pc++ = v;
}
static void putop(compiler *c, int op, ...) {
va_list ap;
va_start(ap, op);
switch (op) {
case OP_SETDISPATCH: {
uintptr_t ptr = (uintptr_t)va_arg(ap, void*);
put32(c, OP_SETDISPATCH);
put32(c, ptr);
if (sizeof(uintptr_t) > sizeof(uint32_t))
put32(c, (uint64_t)ptr >> 32);
break;
}
case OP_STARTMSG:
case OP_ENDMSG:
case OP_PUSHLENDELIM:
case OP_POP:
case OP_SETDELIM:
case OP_HALT:
case OP_RET:
case OP_DISPATCH:
put32(c, op);
break;
case OP_PARSE_DOUBLE:
case OP_PARSE_FLOAT:
case OP_PARSE_INT64:
case OP_PARSE_UINT64:
case OP_PARSE_INT32:
case OP_PARSE_FIXED64:
case OP_PARSE_FIXED32:
case OP_PARSE_BOOL:
case OP_PARSE_UINT32:
case OP_PARSE_SFIXED32:
case OP_PARSE_SFIXED64:
case OP_PARSE_SINT32:
case OP_PARSE_SINT64:
case OP_STARTSEQ:
case OP_ENDSEQ:
case OP_STARTSUBMSG:
case OP_ENDSUBMSG:
case OP_STARTSTR:
case OP_STRING:
case OP_ENDSTR:
case OP_PUSHTAGDELIM:
put32(c, op | va_arg(ap, upb_selector_t) << 8);
break;
case OP_SETBIGGROUPNUM:
put32(c, op);
put32(c, va_arg(ap, int));
break;
case OP_CALL: {
const upb_pbdecodermethod *method = va_arg(ap, upb_pbdecodermethod *);
put32(c, op | (method->code_base.ofs - (pcofs(c) + 1)) << 8);
break;
}
case OP_CHECKDELIM:
case OP_BRANCH: {
uint32_t instruction = op;
int label = va_arg(ap, int);
setofs(&instruction, labelref(c, label));
put32(c, instruction);
break;
}
case OP_TAG1:
case OP_TAG2: {
int label = va_arg(ap, int);
uint64_t tag = va_arg(ap, uint64_t);
uint32_t instruction = op | (tag << 16);
UPB_ASSERT(tag <= 0xffff);
setofs(&instruction, labelref(c, label));
put32(c, instruction);
break;
}
case OP_TAGN: {
int label = va_arg(ap, int);
uint64_t tag = va_arg(ap, uint64_t);
uint32_t instruction = op | (upb_value_size(tag) << 16);
setofs(&instruction, labelref(c, label));
put32(c, instruction);
put32(c, tag);
put32(c, tag >> 32);
break;
}
}
va_end(ap);
}
#if defined(UPB_USE_JIT_X64) || defined(UPB_DUMP_BYTECODE)
const char *upb_pbdecoder_getopname(unsigned int op) {
#define QUOTE(x) #x
#define EXPAND_AND_QUOTE(x) QUOTE(x)
#define OPNAME(x) OP_##x
#define OP(x) case OPNAME(x): return EXPAND_AND_QUOTE(OPNAME(x));
#define T(x) OP(PARSE_##x)
/* Keep in sync with list in decoder.int.h. */
switch ((opcode)op) {
T(DOUBLE) T(FLOAT) T(INT64) T(UINT64) T(INT32) T(FIXED64) T(FIXED32)
T(BOOL) T(UINT32) T(SFIXED32) T(SFIXED64) T(SINT32) T(SINT64)
OP(STARTMSG) OP(ENDMSG) OP(STARTSEQ) OP(ENDSEQ) OP(STARTSUBMSG)
OP(ENDSUBMSG) OP(STARTSTR) OP(STRING) OP(ENDSTR) OP(CALL) OP(RET)
OP(PUSHLENDELIM) OP(PUSHTAGDELIM) OP(SETDELIM) OP(CHECKDELIM)
OP(BRANCH) OP(TAG1) OP(TAG2) OP(TAGN) OP(SETDISPATCH) OP(POP)
OP(SETBIGGROUPNUM) OP(DISPATCH) OP(HALT)
}
return "<unknown op>";
#undef OP
#undef T
}
#endif
#ifdef UPB_DUMP_BYTECODE
static void dumpbc(uint32_t *p, uint32_t *end, FILE *f) {
uint32_t *begin = p;
while (p < end) {
fprintf(f, "%p %8tx", p, p - begin);
uint32_t instr = *p++;
uint8_t op = getop(instr);
fprintf(f, " %s", upb_pbdecoder_getopname(op));
switch ((opcode)op) {
case OP_SETDISPATCH: {
const upb_inttable *dispatch;
memcpy(&dispatch, p, sizeof(void*));
p += ptr_words;
const upb_pbdecodermethod *method =
(void *)((char *)dispatch -
offsetof(upb_pbdecodermethod, dispatch));
fprintf(f, " %s", upb_msgdef_fullname(
upb_handlers_msgdef(method->dest_handlers_)));
break;
}
case OP_DISPATCH:
case OP_STARTMSG:
case OP_ENDMSG:
case OP_PUSHLENDELIM:
case OP_POP:
case OP_SETDELIM:
case OP_HALT:
case OP_RET:
break;
case OP_PARSE_DOUBLE:
case OP_PARSE_FLOAT:
case OP_PARSE_INT64:
case OP_PARSE_UINT64:
case OP_PARSE_INT32:
case OP_PARSE_FIXED64:
case OP_PARSE_FIXED32:
case OP_PARSE_BOOL:
case OP_PARSE_UINT32:
case OP_PARSE_SFIXED32:
case OP_PARSE_SFIXED64:
case OP_PARSE_SINT32:
case OP_PARSE_SINT64:
case OP_STARTSEQ:
case OP_ENDSEQ:
case OP_STARTSUBMSG:
case OP_ENDSUBMSG:
case OP_STARTSTR:
case OP_STRING:
case OP_ENDSTR:
case OP_PUSHTAGDELIM:
fprintf(f, " %d", instr >> 8);
break;
case OP_SETBIGGROUPNUM:
fprintf(f, " %d", *p++);
break;
case OP_CHECKDELIM:
case OP_CALL:
case OP_BRANCH:
fprintf(f, " =>0x%tx", p + getofs(instr) - begin);
break;
case OP_TAG1:
case OP_TAG2: {
fprintf(f, " tag:0x%x", instr >> 16);
if (getofs(instr)) {
fprintf(f, " =>0x%tx", p + getofs(instr) - begin);
}
break;
}
case OP_TAGN: {
uint64_t tag = *p++;
tag |= (uint64_t)*p++ << 32;
fprintf(f, " tag:0x%llx", (long long)tag);
fprintf(f, " n:%d", instr >> 16);
if (getofs(instr)) {
fprintf(f, " =>0x%tx", p + getofs(instr) - begin);
}
break;
}
}
fputs("\n", f);
}
}
#endif
static uint64_t get_encoded_tag(const upb_fielddef *f, int wire_type) {
uint32_t tag = (upb_fielddef_number(f) << 3) | wire_type;
uint64_t encoded_tag = upb_vencode32(tag);
/* No tag should be greater than 5 bytes. */
UPB_ASSERT(encoded_tag <= 0xffffffffff);
return encoded_tag;
}
static void putchecktag(compiler *c, const upb_fielddef *f,
int wire_type, int dest) {
uint64_t tag = get_encoded_tag(f, wire_type);
switch (upb_value_size(tag)) {
case 1:
putop(c, OP_TAG1, dest, tag);
break;
case 2:
putop(c, OP_TAG2, dest, tag);
break;
default:
putop(c, OP_TAGN, dest, tag);
break;
}
}
static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) {
upb_selector_t selector;
bool ok = upb_handlers_getselector(f, type, &selector);
UPB_ASSERT(ok);
return selector;
}
/* Takes an existing, primary dispatch table entry and repacks it with a
* different alternate wire type. Called when we are inserting a secondary
* dispatch table entry for an alternate wire type. */
static uint64_t repack(uint64_t dispatch, int new_wt2) {
uint64_t ofs;
uint8_t wt1;
uint8_t old_wt2;
upb_pbdecoder_unpackdispatch(dispatch, &ofs, &wt1, &old_wt2);
UPB_ASSERT(old_wt2 == NO_WIRE_TYPE); /* wt2 should not be set yet. */
return upb_pbdecoder_packdispatch(ofs, wt1, new_wt2);
}
/* Marks the current bytecode position as the dispatch target for this message,
* field, and wire type. */
static void dispatchtarget(compiler *c, upb_pbdecodermethod *method,
const upb_fielddef *f, int wire_type) {
/* Offset is relative to msg base. */
uint64_t ofs = pcofs(c) - method->code_base.ofs;
uint32_t fn = upb_fielddef_number(f);
upb_inttable *d = &method->dispatch;
upb_value v;
if (upb_inttable_remove(d, fn, &v)) {
/* TODO: prioritize based on packed setting in .proto file. */
uint64_t repacked = repack(upb_value_getuint64(v), wire_type);
upb_inttable_insert(d, fn, upb_value_uint64(repacked));
upb_inttable_insert(d, fn + UPB_MAX_FIELDNUMBER, upb_value_uint64(ofs));
} else {
uint64_t val = upb_pbdecoder_packdispatch(ofs, wire_type, NO_WIRE_TYPE);
upb_inttable_insert(d, fn, upb_value_uint64(val));
}
}
static void putpush(compiler *c, const upb_fielddef *f) {
if (upb_fielddef_descriptortype(f) == UPB_DESCRIPTOR_TYPE_MESSAGE) {
putop(c, OP_PUSHLENDELIM);
} else {
uint32_t fn = upb_fielddef_number(f);
if (fn >= 1 << 24) {
putop(c, OP_PUSHTAGDELIM, 0);
putop(c, OP_SETBIGGROUPNUM, fn);
} else {
putop(c, OP_PUSHTAGDELIM, fn);
}
}
}
static upb_pbdecodermethod *find_submethod(const compiler *c,
const upb_pbdecodermethod *method,
const upb_fielddef *f) {
const upb_handlers *sub =
upb_handlers_getsubhandlers(method->dest_handlers_, f);
upb_value v;
return upb_inttable_lookupptr(&c->group->methods, sub, &v)
? upb_value_getptr(v)
: NULL;
}
static void putsel(compiler *c, opcode op, upb_selector_t sel,
const upb_handlers *h) {
if (upb_handlers_gethandler(h, sel)) {
putop(c, op, sel);
}
}
/* Puts an opcode to call a callback, but only if a callback actually exists for
* this field and handler type. */
static void maybeput(compiler *c, opcode op, const upb_handlers *h,
const upb_fielddef *f, upb_handlertype_t type) {
putsel(c, op, getsel(f, type), h);
}
static bool haslazyhandlers(const upb_handlers *h, const upb_fielddef *f) {
if (!upb_fielddef_lazy(f))
return false;
return upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_STARTSTR)) ||
upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_STRING)) ||
upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_ENDSTR));
}
/* bytecode compiler code generation ******************************************/
/* Symbolic names for our local labels. */
#define LABEL_LOOPSTART 1 /* Top of a repeated field loop. */
#define LABEL_LOOPBREAK 2 /* To jump out of a repeated loop */
#define LABEL_FIELD 3 /* Jump backward to find the most recent field. */
#define LABEL_ENDMSG 4 /* To reach the OP_ENDMSG instr for this msg. */
/* Generates bytecode to parse a single non-lazy message field. */
static void generate_msgfield(compiler *c, const upb_fielddef *f,
upb_pbdecodermethod *method) {
const upb_handlers *h = upb_pbdecodermethod_desthandlers(method);
const upb_pbdecodermethod *sub_m = find_submethod(c, method, f);
int wire_type;
if (!sub_m) {
/* Don't emit any code for this field at all; it will be parsed as an
* unknown field.
*
* TODO(haberman): we should change this to parse it as a string field
* instead. It will probably be faster, but more importantly, once we
* start vending unknown fields, a field shouldn't be treated as unknown
* just because it doesn't have subhandlers registered. */
return;
}
label(c, LABEL_FIELD);
wire_type =
(upb_fielddef_descriptortype(f) == UPB_DESCRIPTOR_TYPE_MESSAGE)
? UPB_WIRE_TYPE_DELIMITED
: UPB_WIRE_TYPE_START_GROUP;
if (upb_fielddef_isseq(f)) {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, wire_type, LABEL_DISPATCH);
dispatchtarget(c, method, f, wire_type);
putop(c, OP_PUSHTAGDELIM, 0);
putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ));
label(c, LABEL_LOOPSTART);
putpush(c, f);
putop(c, OP_STARTSUBMSG, getsel(f, UPB_HANDLER_STARTSUBMSG));
putop(c, OP_CALL, sub_m);
putop(c, OP_POP);
maybeput(c, OP_ENDSUBMSG, h, f, UPB_HANDLER_ENDSUBMSG);
if (wire_type == UPB_WIRE_TYPE_DELIMITED) {
putop(c, OP_SETDELIM);
}
putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK);
putchecktag(c, f, wire_type, LABEL_LOOPBREAK);
putop(c, OP_BRANCH, -LABEL_LOOPSTART);
label(c, LABEL_LOOPBREAK);
putop(c, OP_POP);
maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ);
} else {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, wire_type, LABEL_DISPATCH);
dispatchtarget(c, method, f, wire_type);
putpush(c, f);
putop(c, OP_STARTSUBMSG, getsel(f, UPB_HANDLER_STARTSUBMSG));
putop(c, OP_CALL, sub_m);
putop(c, OP_POP);
maybeput(c, OP_ENDSUBMSG, h, f, UPB_HANDLER_ENDSUBMSG);
if (wire_type == UPB_WIRE_TYPE_DELIMITED) {
putop(c, OP_SETDELIM);
}
}
}
/* Generates bytecode to parse a single string or lazy submessage field. */
static void generate_delimfield(compiler *c, const upb_fielddef *f,
upb_pbdecodermethod *method) {
const upb_handlers *h = upb_pbdecodermethod_desthandlers(method);
label(c, LABEL_FIELD);
if (upb_fielddef_isseq(f)) {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH);
dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED);
putop(c, OP_PUSHTAGDELIM, 0);
putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ));
label(c, LABEL_LOOPSTART);
putop(c, OP_PUSHLENDELIM);
putop(c, OP_STARTSTR, getsel(f, UPB_HANDLER_STARTSTR));
/* Need to emit even if no handler to skip past the string. */
putop(c, OP_STRING, getsel(f, UPB_HANDLER_STRING));
putop(c, OP_POP);
maybeput(c, OP_ENDSTR, h, f, UPB_HANDLER_ENDSTR);
putop(c, OP_SETDELIM);
putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK);
putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_LOOPBREAK);
putop(c, OP_BRANCH, -LABEL_LOOPSTART);
label(c, LABEL_LOOPBREAK);
putop(c, OP_POP);
maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ);
} else {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH);
dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED);
putop(c, OP_PUSHLENDELIM);
putop(c, OP_STARTSTR, getsel(f, UPB_HANDLER_STARTSTR));
putop(c, OP_STRING, getsel(f, UPB_HANDLER_STRING));
putop(c, OP_POP);
maybeput(c, OP_ENDSTR, h, f, UPB_HANDLER_ENDSTR);
putop(c, OP_SETDELIM);
}
}
/* Generates bytecode to parse a single primitive field. */
static void generate_primitivefield(compiler *c, const upb_fielddef *f,
upb_pbdecodermethod *method) {
const upb_handlers *h = upb_pbdecodermethod_desthandlers(method);
upb_descriptortype_t descriptor_type = upb_fielddef_descriptortype(f);
opcode parse_type;
upb_selector_t sel;
int wire_type;
label(c, LABEL_FIELD);
/* From a decoding perspective, ENUM is the same as INT32. */
if (descriptor_type == UPB_DESCRIPTOR_TYPE_ENUM)
descriptor_type = UPB_DESCRIPTOR_TYPE_INT32;
parse_type = (opcode)descriptor_type;
/* TODO(haberman): generate packed or non-packed first depending on "packed"
* setting in the fielddef. This will favor (in speed) whichever was
* specified. */
UPB_ASSERT((int)parse_type >= 0 && parse_type <= OP_MAX);
sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
wire_type = upb_pb_native_wire_types[upb_fielddef_descriptortype(f)];
if (upb_fielddef_isseq(f)) {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH);
dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED);
putop(c, OP_PUSHLENDELIM);
putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); /* Packed */
label(c, LABEL_LOOPSTART);
putop(c, parse_type, sel);
putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK);
putop(c, OP_BRANCH, -LABEL_LOOPSTART);
dispatchtarget(c, method, f, wire_type);
putop(c, OP_PUSHTAGDELIM, 0);
putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); /* Non-packed */
label(c, LABEL_LOOPSTART);
putop(c, parse_type, sel);
putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK);
putchecktag(c, f, wire_type, LABEL_LOOPBREAK);
putop(c, OP_BRANCH, -LABEL_LOOPSTART);
label(c, LABEL_LOOPBREAK);
putop(c, OP_POP); /* Packed and non-packed join. */
maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ);
putop(c, OP_SETDELIM); /* Could remove for non-packed by dup ENDSEQ. */
} else {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, wire_type, LABEL_DISPATCH);
dispatchtarget(c, method, f, wire_type);
putop(c, parse_type, sel);
}
}
/* Adds bytecode for parsing the given message to the given decoderplan,
* while adding all dispatch targets to this message's dispatch table. */
static void compile_method(compiler *c, upb_pbdecodermethod *method) {
const upb_handlers *h;
const upb_msgdef *md;
uint32_t* start_pc;
upb_msg_field_iter i;
upb_value val;
UPB_ASSERT(method);
/* Clear all entries in the dispatch table. */
upb_inttable_uninit(&method->dispatch);
upb_inttable_init(&method->dispatch, UPB_CTYPE_UINT64);
h = upb_pbdecodermethod_desthandlers(method);
md = upb_handlers_msgdef(h);
method->code_base.ofs = pcofs(c);
putop(c, OP_SETDISPATCH, &method->dispatch);
putsel(c, OP_STARTMSG, UPB_STARTMSG_SELECTOR, h);
label(c, LABEL_FIELD);
start_pc = c->pc;
for(upb_msg_field_begin(&i, md);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
const upb_fielddef *f = upb_msg_iter_field(&i);
upb_fieldtype_t type = upb_fielddef_type(f);
if (type == UPB_TYPE_MESSAGE && !(haslazyhandlers(h, f) && c->lazy)) {
generate_msgfield(c, f, method);
} else if (type == UPB_TYPE_STRING || type == UPB_TYPE_BYTES ||
type == UPB_TYPE_MESSAGE) {
generate_delimfield(c, f, method);
} else {
generate_primitivefield(c, f, method);
}
}
/* If there were no fields, or if no handlers were defined, we need to
* generate a non-empty loop body so that we can at least dispatch for unknown
* fields and check for the end of the message. */
if (c->pc == start_pc) {
/* Check for end-of-message. */
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
/* Unconditionally dispatch. */
putop(c, OP_DISPATCH, 0);
}
/* For now we just loop back to the last field of the message (or if none,
* the DISPATCH opcode for the message). */
putop(c, OP_BRANCH, -LABEL_FIELD);
/* Insert both a label and a dispatch table entry for this end-of-msg. */
label(c, LABEL_ENDMSG);
val = upb_value_uint64(pcofs(c) - method->code_base.ofs);
upb_inttable_insert(&method->dispatch, DISPATCH_ENDMSG, val);
putsel(c, OP_ENDMSG, UPB_ENDMSG_SELECTOR, h);
putop(c, OP_RET);
upb_inttable_compact(&method->dispatch);
}
/* Populate "methods" with new upb_pbdecodermethod objects reachable from "h".
* Returns the method for these handlers.
*
* Generates a new method for every destination handlers reachable from "h". */
static void find_methods(compiler *c, const upb_handlers *h) {
upb_value v;
upb_msg_field_iter i;
const upb_msgdef *md;
if (upb_inttable_lookupptr(&c->group->methods, h, &v))
return;
newmethod(h, c->group);
/* Find submethods. */
md = upb_handlers_msgdef(h);
for(upb_msg_field_begin(&i, md);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
const upb_fielddef *f = upb_msg_iter_field(&i);
const upb_handlers *sub_h;
if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE &&
(sub_h = upb_handlers_getsubhandlers(h, f)) != NULL) {
/* We only generate a decoder method for submessages with handlers.
* Others will be parsed as unknown fields. */
find_methods(c, sub_h);
}
}
}
/* (Re-)compile bytecode for all messages in "msgs."
* Overwrites any existing bytecode in "c". */
static void compile_methods(compiler *c) {
upb_inttable_iter i;
/* Start over at the beginning of the bytecode. */
c->pc = c->group->bytecode;
upb_inttable_begin(&i, &c->group->methods);
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
upb_pbdecodermethod *method = upb_value_getptr(upb_inttable_iter_value(&i));
compile_method(c, method);
}
}
static void set_bytecode_handlers(mgroup *g) {
upb_inttable_iter i;
upb_inttable_begin(&i, &g->methods);
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
upb_pbdecodermethod *m = upb_value_getptr(upb_inttable_iter_value(&i));
upb_byteshandler *h = &m->input_handler_;
m->code_base.ptr = g->bytecode + m->code_base.ofs;
upb_byteshandler_setstartstr(h, upb_pbdecoder_startbc, m->code_base.ptr);
upb_byteshandler_setstring(h, upb_pbdecoder_decode, g);
upb_byteshandler_setendstr(h, upb_pbdecoder_end, m);
}
}
/* JIT setup. *****************************************************************/
#ifdef UPB_USE_JIT_X64
static void sethandlers(mgroup *g, bool allowjit) {
g->jit_code = NULL;
if (allowjit) {
/* Compile byte-code into machine code, create handlers. */
upb_pbdecoder_jit(g);
} else {
set_bytecode_handlers(g);
}
}
#else /* UPB_USE_JIT_X64 */
static void sethandlers(mgroup *g, bool allowjit) {
/* No JIT compiled in; use bytecode handlers unconditionally. */
UPB_UNUSED(allowjit);
set_bytecode_handlers(g);
}
#endif /* UPB_USE_JIT_X64 */
/* TODO(haberman): allow this to be constructed for an arbitrary set of dest
* handlers and other mgroups (but verify we have a transitive closure). */
const mgroup *mgroup_new(const upb_handlers *dest, bool allowjit, bool lazy,
const void *owner) {
mgroup *g;
compiler *c;
UPB_UNUSED(allowjit);
UPB_ASSERT(upb_handlers_isfrozen(dest));
g = newgroup(owner);
c = newcompiler(g, lazy);
find_methods(c, dest);
/* We compile in two passes:
* 1. all messages are assigned relative offsets from the beginning of the
* bytecode (saved in method->code_base).
* 2. forwards OP_CALL instructions can be correctly linked since message
* offsets have been previously assigned.
*
* Could avoid the second pass by linking OP_CALL instructions somehow. */
compile_methods(c);
compile_methods(c);
g->bytecode_end = c->pc;
freecompiler(c);
#ifdef UPB_DUMP_BYTECODE
{
FILE *f = fopen("/tmp/upb-bytecode", "w");
UPB_ASSERT(f);
dumpbc(g->bytecode, g->bytecode_end, stderr);
dumpbc(g->bytecode, g->bytecode_end, f);
fclose(f);
f = fopen("/tmp/upb-bytecode.bin", "wb");
UPB_ASSERT(f);
fwrite(g->bytecode, 1, g->bytecode_end - g->bytecode, f);
fclose(f);
}
#endif
sethandlers(g, allowjit);
return g;
}
/* upb_pbcodecache ************************************************************/
void upb_pbcodecache_init(upb_pbcodecache *c) {
upb_inttable_init(&c->groups, UPB_CTYPE_CONSTPTR);
c->allow_jit_ = true;
}
void upb_pbcodecache_uninit(upb_pbcodecache *c) {
upb_inttable_iter i;
upb_inttable_begin(&i, &c->groups);
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
const mgroup *group = upb_value_getconstptr(upb_inttable_iter_value(&i));
mgroup_unref(group, c);
}
upb_inttable_uninit(&c->groups);
}
bool upb_pbcodecache_allowjit(const upb_pbcodecache *c) {
return c->allow_jit_;
}
bool upb_pbcodecache_setallowjit(upb_pbcodecache *c, bool allow) {
if (upb_inttable_count(&c->groups) > 0)
return false;
c->allow_jit_ = allow;
return true;
}
const upb_pbdecodermethod *upb_pbcodecache_getdecodermethod(
upb_pbcodecache *c, const upb_pbdecodermethodopts *opts) {
upb_value v;
bool ok;
/* Right now we build a new DecoderMethod every time.
* TODO(haberman): properly cache methods by their true key. */
const mgroup *g = mgroup_new(opts->handlers, c->allow_jit_, opts->lazy, c);
upb_inttable_push(&c->groups, upb_value_constptr(g));
ok = upb_inttable_lookupptr(&g->methods, opts->handlers, &v);
UPB_ASSERT(ok);
return upb_value_getptr(v);
}
/* upb_pbdecodermethodopts ****************************************************/
void upb_pbdecodermethodopts_init(upb_pbdecodermethodopts *opts,
const upb_handlers *h) {
opts->handlers = h;
opts->lazy = false;
}
void upb_pbdecodermethodopts_setlazy(upb_pbdecodermethodopts *opts, bool lazy) {
opts->lazy = lazy;
}