Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1174 lines
37 KiB

/*
** upb (prototype) extension for Ruby.
*/
#include "ruby/ruby.h"
#include "ruby/vm.h"
#include "upb/def.h"
#include "upb/handlers.h"
#include "upb/pb/decoder.h"
#include "upb/pb/encoder.h"
#include "upb/pb/glue.h"
#include "upb/shim/shim.h"
#include "upb/symtab.h"
// References to global state.
//
// Ruby does not have multi-VM support and it is common practice to store
// references to classes and other per-VM state in global variables.
static VALUE cSymbolTable;
static VALUE cMessageDef;
static VALUE cMessage;
static VALUE message_map;
static upb_inttable objcache;
static bool objcache_initialized = false;
struct rupb_Message;
struct rupb_MessageDef;
typedef struct rupb_Message rupb_Message;
typedef struct rupb_MessageDef rupb_MessageDef;
#define DEREF_RAW(ptr, ofs, type) *(type*)((char*)ptr + ofs)
#define DEREF(msg, ofs, type) *(type*)(&msg->data[ofs])
void rupb_checkstatus(upb_status *s) {
if (!upb_ok(s)) {
rb_raise(rb_eRuntimeError, "%s", upb_status_errmsg(s));
}
}
static rupb_MessageDef *msgdef_get(VALUE self);
static rupb_Message *msg_get(VALUE self);
static const rupb_MessageDef *get_rbmsgdef(const upb_msgdef *md);
static const upb_handlers *new_fill_handlers(const rupb_MessageDef *rmd,
const void *owner);
static void putmsg(rupb_Message *msg, const rupb_MessageDef *rmd,
upb_sink *sink);
static VALUE msgdef_getwrapper(const upb_msgdef *md);
static VALUE new_message_class(VALUE message_def);
static VALUE get_message_class(VALUE klass, VALUE message);
static VALUE msg_new(VALUE msgdef);
/* Ruby VALUE <-> C primitive conversions *************************************/
// Ruby VALUE -> C.
// TODO(haberman): add type/range/precision checks.
static float value_to_float(VALUE val) { return NUM2DBL(val); }
static double value_to_double(VALUE val) { return NUM2DBL(val); }
static bool value_to_bool(VALUE val) { return RTEST(val); }
static int32_t value_to_int32(VALUE val) { return NUM2INT(val); }
static uint32_t value_to_uint32(VALUE val) { return NUM2LONG(val); }
static int64_t value_to_int64(VALUE val) { return NUM2LONG(val); }
static uint64_t value_to_uint64(VALUE val) { return NUM2ULL(val); }
// C -> Ruby VALUE
static VALUE float_to_value(float val) { return rb_float_new(val); }
static VALUE double_to_value(double val) { return rb_float_new(val); }
static VALUE bool_to_value(bool val) { return val ? Qtrue : Qfalse; }
static VALUE int32_to_value(int32_t val) { return INT2NUM(val); }
static VALUE uint32_to_value(uint32_t val) { return LONG2NUM(val); }
static VALUE int64_to_value(int64_t val) { return LONG2NUM(val); }
static VALUE uint64_to_value(uint64_t val) { return ULL2NUM(val); }
/* stringsink *****************************************************************/
// This should probably be factored into a common upb component.
typedef struct {
upb_byteshandler handler;
upb_bytessink sink;
char *ptr;
size_t len, size;
} stringsink;
static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) {
stringsink *sink = _sink;
sink->len = 0;
return sink;
}
static size_t stringsink_string(void *_sink, const void *hd, const char *ptr,
size_t len, const upb_bufhandle *handle) {
UPB_UNUSED(hd);
UPB_UNUSED(handle);
stringsink *sink = _sink;
size_t new_size = sink->size;
while (sink->len + len > new_size) {
new_size *= 2;
}
if (new_size != sink->size) {
sink->ptr = realloc(sink->ptr, new_size);
sink->size = new_size;
}
memcpy(sink->ptr + sink->len, ptr, len);
sink->len += len;
return len;
}
void stringsink_init(stringsink *sink) {
upb_byteshandler_init(&sink->handler);
upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL);
upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL);
upb_bytessink_reset(&sink->sink, &sink->handler, sink);
sink->size = 32;
sink->ptr = malloc(sink->size);
}
void stringsink_uninit(stringsink *sink) {
free(sink->ptr);
}
/* object cache ***************************************************************/
// The object cache is a singleton mapping of void* -> Ruby Object.
// It caches Ruby objects that wrap C objects.
//
// When we are wrapping C objects it is desirable to give them identity
// semantics. In other words, if you reach the same C object via two different
// paths, it is desirable (and sometimes even required) that you get the same
// wrapper object both times. If we instead just created a new wrapper object
// every time you ask for one, we could end up with unexpected results like:
//
// f1 = msgdef.field("request_id")
// f2 = msgdef.field("request_id")
//
// # equal? tests identity equality. Returns false without a cache.
// f1.equal?(f2)
//
// We do not register the cache with Ruby's GC, so being in this map will not
// keep the object alive. This is the desired behavior, because it lets objects
// be freed if they have no references from Ruby. We do require, though, that
// objects remove themselves from the map when they are freed. In this respect
// the cache operates like a weak map where the values are weak.
typedef VALUE createfunc(const void *obj);
// Call to initialize the cache. Should be done once on process startup.
static void objcache_init() {
upb_inttable_init(&objcache, UPB_CTYPE_UINT64);
objcache_initialized = true;
}
// Call to uninitialize the cache. Should be done once on process shutdown.
static void objcache_uninit(ruby_vm_t *vm) {
assert(objcache_initialized);
assert(upb_inttable_count(&objcache) == 0);
objcache_initialized = false;
upb_inttable_uninit(&objcache);
}
// Looks up the given object in the cache. If the corresponding Ruby wrapper
// object is found, returns it, otherwise creates the wrapper and returns that.
static VALUE objcache_getorcreate(const void *obj, createfunc *func) {
assert(objcache_initialized);
upb_value v;
if (!upb_inttable_lookupptr(&objcache, obj, &v)) {
v = upb_value_uint64(func(obj));
upb_inttable_insertptr(&objcache, obj, v);
}
return upb_value_getuint64(v);
}
// Removes the given object from the cache. Should only be called by the code
// that is freeing the wrapper object.
static void objcache_remove(const void *obj) {
assert(objcache_initialized);
bool removed = upb_inttable_removeptr(&objcache, obj, NULL);
UPB_ASSERT_VAR(removed, removed);
}
/* message layout *************************************************************/
// We layout Ruby messages using a raw block of C memory. We assign offsets for
// each member so that instances are laid out like a C struct instead of as
// instance variables. This saves both memory and CPU.
typedef struct {
// The size of the block of memory we should allocate for instances.
size_t size;
// Prototype to memcpy() onto new message instances. Size is "size" above.
void *prototype;
// An offset for each member, indexed by upb_fielddef_index(f).
uint32_t *field_offsets;
} rb_msglayout;
// Returns true for fields where the field value we store is a Ruby VALUE (ie. a
// direct pointer to another Ruby object) instead of storing the value directly
// in the message.
static bool is_ruby_value(const upb_fielddef *f) {
if (upb_fielddef_isseq(f)) {
// Repeated fields are pointers to arrays.
return true;
}
if (upb_fielddef_issubmsg(f)) {
// Submessage fields are pointers to submessages.
return true;
}
if (upb_fielddef_isstring(f)) {
// String fields are pointers to string objects.
return true;
}
return false;
}
// General alignment rules are that each type needs to be stored at an address
// that is a multiple of its size.
static size_t align_up(size_t val, size_t align) {
return val % align == 0 ? val : val + align - (val % align);
}
// Byte size to store each upb type.
static size_t rupb_sizeof(const upb_fielddef *f) {
if (is_ruby_value(f)) {
return sizeof(VALUE);
}
switch (upb_fielddef_type(f)) {
case UPB_TYPE_BOOL:
return 1;
case UPB_TYPE_INT32:
case UPB_TYPE_UINT32:
case UPB_TYPE_ENUM:
case UPB_TYPE_FLOAT:
return 4;
case UPB_TYPE_INT64:
case UPB_TYPE_UINT64:
case UPB_TYPE_DOUBLE:
return 8;
default:
break;
}
assert(false);
return 0;
}
// Calculates offsets for each field.
//
// This lets us pack protos like structs instead of storing them like
// dictionaries. This speeds up a parsing a lot and also saves memory
// (unless messages are very sparse).
static void assign_offsets(rb_msglayout *layout, const upb_msgdef *md) {
layout->field_offsets = ALLOC_N(uint32_t, upb_msgdef_numfields(md));
size_t ofs = 0;
upb_msg_field_iter i;
for (upb_msg_field_begin(&i, md);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
const upb_fielddef *f = upb_msg_iter_field(&i);
size_t field_size = rupb_sizeof(f);
// Align field properly.
//
// TODO(haberman): optimize layout? For example we could sort fields
// big-to-small.
ofs = align_up(ofs, field_size);
layout->field_offsets[upb_fielddef_index(f)] = ofs;
ofs += field_size;
}
layout->size = ofs;
}
// Creates a prototype; a buffer we can memcpy() onto new instances to
// initialize them.
static void make_prototype(rb_msglayout *layout, const upb_msgdef *md) {
void *prototype = ALLOC_N(char, layout->size);
// Most members default to zero, so we'll start from that and then overwrite
// more specific initialization.
memset(prototype, 0, layout->size);
upb_msg_field_iter i;
for (upb_msg_field_begin(&i, md);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
const upb_fielddef *f = upb_msg_iter_field(&i);
if (is_ruby_value(f)) {
size_t ofs = layout->field_offsets[upb_fielddef_index(f)];
// Default all Ruby pointers to nil.
DEREF_RAW(prototype, ofs, VALUE) = Qnil;
}
}
layout->prototype = prototype;
}
static void msglayout_init(rb_msglayout *layout, const upb_msgdef *m) {
assign_offsets(layout, m);
make_prototype(layout, m);
}
static void msglayout_uninit(rb_msglayout *layout) {
free(layout->field_offsets);
free(layout->prototype);
}
/* Upb::MessageDef ************************************************************/
// C representation for Upb::MessageDef.
//
// Contains a reference to the underlying upb_msgdef, as well as associated data
// like a reference to the corresponding Ruby class.
struct rupb_MessageDef {
// We own refs on all of these.
// The upb_msgdef we are wrapping.
const upb_msgdef *md;
// A DecoderMethod for parsing a protobuf into this type.
const upb_pbdecodermethod *fill_method;
// Handlers for serializing into a protobuf of this type.
const upb_handlers *serialize_handlers;
// The Ruby class for instances of this type.
VALUE klass;
// Layout for messages of this type.
rb_msglayout layout;
};
// Called by the Ruby GC when a Upb::MessageDef is being freed.
static void msgdef_free(void *_rmd) {
rupb_MessageDef *rmd = _rmd;
objcache_remove(rmd->md);
upb_msgdef_unref(rmd->md, &rmd->md);
if (rmd->fill_method) {
upb_pbdecodermethod_unref(rmd->fill_method, &rmd->fill_method);
}
if (rmd->serialize_handlers) {
upb_handlers_unref(rmd->serialize_handlers, &rmd->serialize_handlers);
}
msglayout_uninit(&rmd->layout);
free(rmd);
}
// Called by the Ruby GC during the "mark" phase to decide what is still alive.
// We call rb_gc_mark on all Ruby VALUE pointers we reference.
static void msgdef_mark(void *_rmd) {
rupb_MessageDef *rmd = _rmd;
rb_gc_mark(rmd->klass);
// Mark all submessage types.
upb_msg_field_iter i;
for (upb_msg_field_begin(&i, rmd->md);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
upb_fielddef *f = upb_msg_iter_field(&i);
if (upb_fielddef_issubmsg(f)) {
// If we were trying to be more aggressively lazy, the submessage might
// not be created and we only mark ones that are.
rb_gc_mark(msgdef_getwrapper(upb_fielddef_msgsubdef(f)));
}
}
}
static const rb_data_type_t msgdef_type = {"Upb::MessageDef",
{msgdef_mark, msgdef_free, NULL}};
// TODO(haberman): do we need an alloc func? We want to prohibit dup and
// probably subclassing too.
static rupb_MessageDef *msgdef_get(VALUE self) {
rupb_MessageDef *msgdef;
TypedData_Get_Struct(self, rupb_MessageDef, &msgdef_type, msgdef);
return msgdef;
}
// Constructs the upb decoder method for parsing messages of this type.
const upb_pbdecodermethod *new_fillmsg_decodermethod(const rupb_MessageDef *rmd,
const void *owner) {
const upb_handlers *fill_handlers = new_fill_handlers(rmd, &fill_handlers);
upb_pbdecodermethodopts opts;
upb_pbdecodermethodopts_init(&opts, fill_handlers);
const upb_pbdecodermethod *ret = upb_pbdecodermethod_new(&opts, owner);
upb_handlers_unref(fill_handlers, &fill_handlers);
return ret;
}
// Constructs a new Ruby wrapper object around the given msgdef.
static VALUE make_msgdef(const void *_md) {
const upb_msgdef *md = _md;
rupb_MessageDef *rmd;
VALUE ret =
TypedData_Make_Struct(cMessageDef, rupb_MessageDef, &msgdef_type, rmd);
upb_msgdef_ref(md, &rmd->md);
rmd->md = md;
rmd->fill_method = NULL;
// OPT: most of these things could be built lazily, when they are first
// needed.
msglayout_init(&rmd->layout, md);
rmd->fill_method = NULL;
rmd->klass = new_message_class(ret);
rmd->serialize_handlers =
upb_pb_encoder_newhandlers(md, &rmd->serialize_handlers);
return ret;
}
// Accessor to get a decoder method for this message type.
// Constructs the decoder method lazily.
static const upb_pbdecodermethod *msgdef_decodermethod(rupb_MessageDef *rmd) {
if (!rmd->fill_method) {
rmd->fill_method = new_fillmsg_decodermethod(rmd, &rmd->fill_method);
}
return rmd->fill_method;
}
static VALUE msgdef_getwrapper(const upb_msgdef *md) {
return objcache_getorcreate(md, make_msgdef);
}
static const rupb_MessageDef *get_rbmsgdef(const upb_msgdef *md) {
return msgdef_get(msgdef_getwrapper(md));
}
/* Upb::Message ***************************************************************/
// Code to implement the Upb::Message object.
//
// A unique Ruby class is generated for each message type, but all message types
// share Upb::Message as their base class. Upb::Message contains all of the
// actual functionality; the only reason the derived class exists at all is
// for convenience. It lets Ruby users do things like:
//
// message = MyMessage.new
// if message.kind_of?(MyMessage)
//
// ... and other similar things that Ruby users expect they can do.
// C representation of Upb::Message.
//
// Represents a message instance, laid out like a C struct in a type-specific
// layout.
//
// This will be sized according to what fields are actually present.
struct rupb_Message {
VALUE rbmsgdef;
char data[];
};
// Returns the size of a message instance.
size_t msg_size(const rupb_MessageDef *rmd) {
return sizeof(rupb_Message) + rmd->layout.size;
}
static void msg_free(void *msg) {
free(msg);
}
// Invoked by the Ruby GC whenever it is doing a mark-and-sweep.
static void msg_mark(void *p) {
rupb_Message *msg = p;
rupb_MessageDef *rmd = msgdef_get(msg->rbmsgdef);
// Mark the msgdef to keep it alive.
rb_gc_mark(msg->rbmsgdef);
// We need to mark all references to other Ruby values: strings, arrays, and
// submessages that we point to.
upb_msg_field_iter i;
for (upb_msg_field_begin(&i, rmd->md);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
upb_fielddef *f = upb_msg_iter_field(&i);
if (is_ruby_value(f)) {
size_t ofs = rmd->layout.field_offsets[upb_fielddef_index(f)];
rb_gc_mark(DEREF(msg, ofs, VALUE));
}
}
}
static const rb_data_type_t msg_type = {"Upb::Message",
{msg_mark, msg_free, NULL}};
static rupb_Message *msg_get(VALUE self) {
rupb_Message *msg;
TypedData_Get_Struct(self, rupb_Message, &msg_type, msg);
return msg;
}
// Instance variable name that we use to store a reference from the Ruby class
// for a message and its Upb::MessageDef.
//
// We avoid prefixing this by "@" to make it inaccessible by Ruby.
static const char *kMessageDefMemberName = "msgdef";
static VALUE msg_getmsgdef(VALUE klass) {
VALUE msgdef = rb_iv_get(klass, kMessageDefMemberName);
if (msgdef == Qnil) {
// TODO(haberman): If we want to allow subclassing, we might want to walk up
// the hierarchy looking for this member.
rb_raise(rb_eRuntimeError,
"Can't call on Upb::Message directly, only subclasses");
}
return msgdef;
}
// Called by the Ruby VM when it wants to create a new message instance.
static VALUE msg_alloc(VALUE klass) {
VALUE msgdef = msg_getmsgdef(klass);
const rupb_MessageDef *rmd = msgdef_get(msgdef);
rupb_Message *msg = (rupb_Message*)ALLOC_N(char, msg_size(rmd));
msg->rbmsgdef = msgdef;
memcpy(&msg->data, rmd->layout.prototype, rmd->layout.size);
VALUE ret = TypedData_Wrap_Struct(klass, &msg_type, msg);
return ret;
}
// Creates a new Ruby class for the given Upb::MessageDef. The new class
// derives from Upb::Message but also stores a reference to the Upb::MessageDef.
static VALUE new_message_class(VALUE message_def) {
msgdef_get(message_def); // Check type.
VALUE klass = rb_class_new(cMessage);
rb_iv_set(klass, kMessageDefMemberName, message_def);
// This shouldn't be necessary because we should inherit the alloc func from
// the base class of Message. For some reason this is not working properly
// and we are having to define it manually.
rb_define_alloc_func(klass, msg_alloc);
return klass;
}
// Call to create a new Message instance.
static VALUE msg_new(VALUE msgdef) {
return rb_class_new_instance(0, NULL, get_message_class(Qnil, msgdef));
}
// Looks up the given field. On success returns the upb_fielddef and stores the
// offset in *ofs. Otherwise raises a Ruby exception.
static const upb_fielddef *lookup_field(rupb_Message *msg, const char *field,
size_t len, size_t *ofs) {
const rupb_MessageDef *rmd = msgdef_get(msg->rbmsgdef);
const upb_fielddef *f = upb_msgdef_ntof(rmd->md, field, len);
if (!f) {
rb_raise(rb_eArgError, "Message %s does not contain field %s",
upb_msgdef_fullname(rmd->md), field);
}
*ofs = rmd->layout.field_offsets[upb_fielddef_index(f)];
return f;
}
// Sets the given field to the given value.
static void setprimitive(rupb_Message *m, size_t ofs, const upb_fielddef *f,
VALUE val) {
switch (upb_fielddef_type(f)) {
case UPB_TYPE_FLOAT: DEREF(m, ofs, float) = value_to_float(val); break;
case UPB_TYPE_DOUBLE: DEREF(m, ofs, double) = value_to_double(val); break;
case UPB_TYPE_BOOL: DEREF(m, ofs, bool) = value_to_bool(val); break;
case UPB_TYPE_ENUM:
case UPB_TYPE_INT32: DEREF(m, ofs, int32_t) = value_to_int32(val); break;
case UPB_TYPE_UINT32: DEREF(m, ofs, uint32_t) = value_to_uint32(val); break;
case UPB_TYPE_INT64: DEREF(m, ofs, int64_t) = value_to_int64(val); break;
case UPB_TYPE_UINT64: DEREF(m, ofs, uint64_t) = value_to_uint64(val); break;
default: rb_bug("Unexpected type");
}
}
// Returns the Ruby VALUE for the given field.
static VALUE getprimitive(rupb_Message *m, size_t ofs, const upb_fielddef *f) {
switch (upb_fielddef_type(f)) {
case UPB_TYPE_FLOAT: return float_to_value(DEREF(m, ofs, float));
case UPB_TYPE_DOUBLE: return double_to_value(DEREF(m, ofs, double));
case UPB_TYPE_BOOL: return bool_to_value(DEREF(m, ofs, bool));
case UPB_TYPE_ENUM:
case UPB_TYPE_INT32: return int32_to_value(DEREF(m, ofs, int32_t));
case UPB_TYPE_UINT32: return uint32_to_value(DEREF(m, ofs, uint32_t));
case UPB_TYPE_INT64: return int64_to_value(DEREF(m, ofs, int64_t));
case UPB_TYPE_UINT64: return uint64_to_value(DEREF(m, ofs, uint64_t));
default: rb_bug("Unexpected type");
}
}
static VALUE msg_setter(rupb_Message *msg, VALUE field, VALUE val) {
size_t ofs;
// fieldp is a string like "id=". But we want to look up "id".
const upb_fielddef *f =
lookup_field(msg, RSTRING_PTR(field), RSTRING_LEN(field) - 1, &ofs);
// Possibly introduce stricter type checking.
if (is_ruby_value(f)) {
DEREF(msg, ofs, VALUE) = val;
} else {
setprimitive(msg, ofs, f, val);
}
return val;
}
static VALUE msg_getter(rupb_Message *msg, VALUE field) {
size_t ofs;
const upb_fielddef *f =
lookup_field(msg, RSTRING_PTR(field), RSTRING_LEN(field), &ofs);
if (is_ruby_value(f)) {
return DEREF(msg, ofs, VALUE);
} else {
return getprimitive(msg, ofs, f);
}
}
// This is the Message object's "method_missing" method, so it receives calls
// for any method whose name was not recognized. We use it to implement getters
// and setters for every field
//
// call-seq:
// message.field -> current value of "field"
// message.field = new_value
static VALUE msg_accessor(int argc, VALUE *argv, VALUE obj) {
rupb_Message *msg = msg_get(obj);
// method_missing protocol: (method [, arg1, arg2, ...])
assert(argc >= 1 && SYMBOL_P(argv[0]));
// OPT(haberman): find a better way to get the method name.
// This is allocating a new string each time, which should not be necessary.
VALUE method = rb_id2str(SYM2ID(argv[0]));
const char *method_str = RSTRING_PTR(method);
size_t method_len = RSTRING_LEN(method);
if (method_str[method_len - 1] == '=') {
// Call was:
// foo.bar = x
//
// Ruby should guarantee that we have exactly one more argument (x)
assert(argc == 2);
return msg_setter(msg, method, argv[1]);
} else {
// Call was:
// foo.bar
//
// ...but may have had arguments. We want to disallow arguments.
if (argc > 1) {
rb_raise(rb_eArgError, "Accessor %s takes no arguments", method_str);
}
return msg_getter(msg, method);
}
}
// Called when Ruby wants to turn this value into a string.
// TODO(haberman): implement.
static VALUE msg_tostring(VALUE self) {
return rb_str_new2("tostring!");
}
// call-seq:
// MessageClass.parse(binary_protobuf) -> message instance
//
// Parses a binary protobuf according to this message class and returns a new
// message instance of this class type.
static VALUE msg_parse(VALUE klass, VALUE binary_protobuf) {
Check_Type(binary_protobuf, T_STRING);
rupb_MessageDef *rmd = msgdef_get(msg_getmsgdef(klass));
VALUE msg = rb_class_new_instance(0, NULL, klass);
rupb_Message *msgp = msg_get(msg);
const upb_pbdecodermethod *method = msgdef_decodermethod(rmd);
const upb_handlers *h = upb_pbdecodermethod_desthandlers(method);
upb_pbdecoder decoder;
upb_sink sink;
upb_status status = UPB_STATUS_INIT;
upb_pbdecoder_init(&decoder, method, &status);
upb_sink_reset(&sink, h, msgp);
upb_pbdecoder_resetoutput(&decoder, &sink);
upb_bufsrc_putbuf(RSTRING_PTR(binary_protobuf),
RSTRING_LEN(binary_protobuf),
upb_pbdecoder_input(&decoder));
// TODO(haberman): make uninit optional if custom allocator for parsing
// returns GC-rooted memory. That will make decoding longjmp-safe (required
// if parsing triggers any VM errors like OOM or errors in user handlers).
upb_pbdecoder_uninit(&decoder);
rupb_checkstatus(&status);
return msg;
}
// call-seq:
// Message.serialize(message instance) -> serialized string
//
// Serializes the given message instance to a string.
static VALUE msg_serialize(VALUE klass, VALUE message) {
rupb_Message *msg = msg_get(message);
const rupb_MessageDef *rmd = msgdef_get(msg->rbmsgdef);
stringsink sink;
stringsink_init(&sink);
upb_pb_encoder encoder;
upb_pb_encoder_init(&encoder, rmd->serialize_handlers);
upb_pb_encoder_resetoutput(&encoder, &sink.sink);
putmsg(msg, rmd, upb_pb_encoder_input(&encoder));
VALUE ret = rb_str_new(sink.ptr, sink.len);
upb_pb_encoder_uninit(&encoder);
stringsink_uninit(&sink);
return ret;
}
/* Upb::SymbolTable ***********************************************************/
// Ruby wrapper around a SymbolTable. Allows loading of descriptors and turning
// them into MessageDef objects.
void symtab_free(void *s) {
upb_symtab_unref(s, UPB_UNTRACKED_REF);
}
static const rb_data_type_t symtab_type = {"Upb::SymbolTable",
{NULL, symtab_free, NULL}};
// Called by the Ruby VM to allocate a SymbolTable object.
static VALUE symtab_alloc(VALUE klass) {
upb_symtab *symtab = upb_symtab_new(UPB_UNTRACKED_REF);
VALUE ret = TypedData_Wrap_Struct(klass, &symtab_type, symtab);
return ret;
}
static upb_symtab *symtab_get(VALUE self) {
upb_symtab *symtab;
TypedData_Get_Struct(self, upb_symtab, &symtab_type, symtab);
return symtab;
}
// call-seq:
// symtab.load_descriptor(descriptor)
//
// Parses a FileDescriptorSet from the given string and adds the defs to the
// SymbolTable. Raises if there was an error.
static VALUE symtab_load_descriptor(VALUE self, VALUE descriptor) {
upb_symtab *symtab = symtab_get(self);
Check_Type(descriptor, T_STRING);
upb_status status = UPB_STATUS_INIT;
upb_load_descriptor_into_symtab(
symtab, RSTRING_PTR(descriptor), RSTRING_LEN(descriptor), &status);
if (!upb_ok(&status)) {
rb_raise(rb_eRuntimeError,
"Error loading descriptor: %s", upb_status_errmsg(&status));
}
return Qnil;
}
// call-seq:
// symtab.lookup(name)
//
// Returns the def for this name, or nil if none.
// TODO(haberman): only support messages right now, not enums.
static VALUE symtab_lookup(VALUE self, VALUE name) {
upb_symtab *symtab = symtab_get(self);
Check_Type(name, T_STRING);
const char *cname = RSTRING_PTR(name);
const upb_msgdef *m = upb_symtab_lookupmsg(symtab, cname);
if (!m) {
rb_raise(rb_eRuntimeError, "Message name '%s' not found", cname);
}
return msgdef_getwrapper(m);
}
/* handlers *******************************************************************/
// These are handlers for populating a Ruby protobuf message (rupb_Message) when
// parsing.
// Creates a handlerdata that simply contains the offset for this field.
static const void *newhandlerdata(upb_handlers *h, uint32_t ofs) {
size_t *hd_ofs = ALLOC(size_t);
*hd_ofs = ofs;
upb_handlers_addcleanup(h, hd_ofs, free);
return hd_ofs;
}
typedef struct {
size_t ofs;
const upb_msgdef *md;
} submsg_handlerdata_t;
// Creates a handlerdata that contains offset and submessage type information.
static const void *newsubmsghandlerdata(upb_handlers *h, uint32_t ofs,
const upb_fielddef *f) {
submsg_handlerdata_t *hd = ALLOC(submsg_handlerdata_t);
hd->ofs = ofs;
hd->md = upb_fielddef_msgsubdef(f);
upb_handlers_addcleanup(h, hd, free);
return hd;
}
// A handler that starts a repeated field. Gets or creates a Ruby array for the
// field.
static void *startseq_handler(void *closure, const void *hd) {
rupb_Message *msg = closure;
const size_t *ofs = hd;
if (DEREF(msg, *ofs, VALUE) == Qnil) {
DEREF(msg, *ofs, VALUE) = rb_ary_new();
}
return (void*)DEREF(msg, *ofs, VALUE);
}
// Handlers that append primitive values to a repeated field (a regular Ruby
// array for now).
#define DEFINE_APPEND_HANDLER(type, ctype) \
static bool append##type##_handler(void *closure, const void *hd, \
ctype val) { \
VALUE ary = (VALUE)closure; \
rb_ary_push(ary, type##_to_value(val)); \
return true; \
}
DEFINE_APPEND_HANDLER(bool, bool)
DEFINE_APPEND_HANDLER(int32, int32_t)
DEFINE_APPEND_HANDLER(uint32, uint32_t)
DEFINE_APPEND_HANDLER(float, float)
DEFINE_APPEND_HANDLER(int64, int64_t)
DEFINE_APPEND_HANDLER(uint64, uint64_t)
DEFINE_APPEND_HANDLER(double, double)
// Appends a string to a repeated field (a regular Ruby array for now).
static size_t appendstr_handler(void *closure, const void *hd, const char *str,
size_t len, const upb_bufhandle *handle) {
VALUE ary = (VALUE)closure;
rb_ary_push(ary, rb_str_new(str, len));
return len;
}
// Sets a non-repeated string field in a message.
static size_t str_handler(void *closure, const void *hd, const char *str,
size_t len, const upb_bufhandle *handle) {
rupb_Message *msg = closure;
const size_t *ofs = hd;
DEREF(msg, *ofs, VALUE) = rb_str_new(str, len);
return len;
}
// Appends a submessage to a repeated field (a regular Ruby array for now).
static void *appendsubmsg_handler(void *closure, const void *hd) {
VALUE ary = (VALUE)closure;
const submsg_handlerdata_t *submsgdata = hd;
VALUE submsg = msg_new(msgdef_getwrapper(submsgdata->md));
rb_ary_push(ary, submsg);
return msg_get(submsg);
}
// Sets a non-repeated submessage field in a message.
static void *submsg_handler(void *closure, const void *hd) {
rupb_Message *msg = closure;
const submsg_handlerdata_t *submsgdata = hd;
if (DEREF(msg, submsgdata->ofs, VALUE) == Qnil) {
DEREF(msg, submsgdata->ofs, VALUE) =
msg_new(msgdef_getwrapper(submsgdata->md));
}
VALUE submsg = DEREF(msg, submsgdata->ofs, VALUE);
return msg_get(submsg);
}
static void add_handlers_for_message(const void *closure, upb_handlers *h) {
const rupb_MessageDef *rmd = get_rbmsgdef(upb_handlers_msgdef(h));
upb_msg_field_iter i;
for (upb_msg_field_begin(&i, rmd->md);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
const upb_fielddef *f = upb_msg_iter_field(&i);
size_t ofs = rmd->layout.field_offsets[upb_fielddef_index(f)];
if (upb_fielddef_isseq(f)) {
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, ofs));
upb_handlers_setstartseq(h, f, startseq_handler, &attr);
upb_handlerattr_uninit(&attr);
switch (upb_fielddef_type(f)) {
#define SET_HANDLER(utype, ltype) \
case utype: \
upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \
break;
SET_HANDLER(UPB_TYPE_BOOL, bool);
SET_HANDLER(UPB_TYPE_INT32, int32);
SET_HANDLER(UPB_TYPE_UINT32, uint32);
SET_HANDLER(UPB_TYPE_ENUM, int32);
SET_HANDLER(UPB_TYPE_FLOAT, float);
SET_HANDLER(UPB_TYPE_INT64, int64);
SET_HANDLER(UPB_TYPE_UINT64, uint64);
SET_HANDLER(UPB_TYPE_DOUBLE, double);
#undef SET_HANDLER
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
// XXX: does't currently handle split buffers.
upb_handlers_setstring(h, f, appendstr_handler, NULL);
break;
case UPB_TYPE_MESSAGE: {
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, 0, f));
upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr);
upb_handlerattr_uninit(&attr);
break;
}
}
}
switch (upb_fielddef_type(f)) {
case UPB_TYPE_BOOL:
case UPB_TYPE_INT32:
case UPB_TYPE_UINT32:
case UPB_TYPE_ENUM:
case UPB_TYPE_FLOAT:
case UPB_TYPE_INT64:
case UPB_TYPE_UINT64:
case UPB_TYPE_DOUBLE:
// The shim writes directly at the given offset (instead of using
// DEREF()) so we need to add the msg overhead.
upb_shim_set(h, f, ofs + sizeof(rupb_Message), -1);
break;
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES: {
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, ofs));
// XXX: does't currently handle split buffers.
upb_handlers_setstring(h, f, str_handler, &attr);
upb_handlerattr_uninit(&attr);
break;
}
case UPB_TYPE_MESSAGE: {
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, ofs, f));
upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr);
upb_handlerattr_uninit(&attr);
break;
}
}
}
}
// Creates upb handlers for populating a message.
static const upb_handlers *new_fill_handlers(const rupb_MessageDef *rmd,
const void *owner) {
return upb_handlers_newfrozen(rmd->md, owner, add_handlers_for_message, NULL);
}
/* msgvisitor *****************************************************************/
// This is code to push the contents of a Ruby message (rupb_Message) to a upb
// sink.
static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) {
upb_selector_t ret;
bool ok = upb_handlers_getselector(f, type, &ret);
UPB_ASSERT_VAR(ok, ok);
return ret;
}
static void putstr(VALUE str, const upb_fielddef *f, upb_sink *sink) {
if (str == Qnil) return;
assert(BUILTIN_TYPE(str) == RUBY_T_STRING);
upb_sink subsink;
upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), RSTRING_LEN(str),
&subsink);
upb_sink_putstring(&subsink, getsel(f, UPB_HANDLER_STRING), RSTRING_PTR(str),
RSTRING_LEN(str), NULL);
upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR));
}
static void putsubmsg(VALUE submsg, const upb_fielddef *f, upb_sink *sink) {
if (submsg == Qnil) return;
upb_sink subsink;
const rupb_MessageDef *sub_rmd = get_rbmsgdef(upb_fielddef_msgsubdef(f));
upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink);
putmsg(msg_get(submsg), sub_rmd, &subsink);
upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG));
}
static void putary(VALUE ary, const upb_fielddef *f, upb_sink *sink) {
if (ary == Qnil) return;
assert(BUILTIN_TYPE(ary) == RUBY_T_ARRAY);
upb_sink subsink;
upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
upb_fieldtype_t type = upb_fielddef_type(f);
upb_selector_t sel = 0;
if (upb_fielddef_isprimitive(f)) {
sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
}
int i;
for (i = 0; i < RARRAY_LEN(ary); i++) {
VALUE val = rb_ary_entry(ary, i);
switch (type) {
#define T(upbtypeconst, upbtype, ctype) \
case upbtypeconst: \
upb_sink_put##upbtype(&subsink, sel, value_to_##upbtype(val)); \
break;
T(UPB_TYPE_FLOAT, float, float)
T(UPB_TYPE_DOUBLE, double, double)
T(UPB_TYPE_BOOL, bool, bool)
case UPB_TYPE_ENUM:
T(UPB_TYPE_INT32, int32, int32_t)
T(UPB_TYPE_UINT32, uint32, uint32_t)
T(UPB_TYPE_INT64, int64, int64_t)
T(UPB_TYPE_UINT64, uint64, uint64_t)
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
putstr(val, f, &subsink);
break;
case UPB_TYPE_MESSAGE:
putsubmsg(val, f, &subsink);
break;
#undef T
}
}
upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
}
static void putmsg(rupb_Message *msg, const rupb_MessageDef *rmd,
upb_sink *sink) {
upb_sink_startmsg(sink);
upb_msg_field_iter i;
for (upb_msg_field_begin(&i, rmd->md);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
upb_fielddef *f = upb_msg_iter_field(&i);
uint32_t ofs = rmd->layout.field_offsets[upb_fielddef_index(f)];
if (upb_fielddef_isseq(f)) {
VALUE ary = DEREF(msg, ofs, VALUE);
if (ary != Qnil) {
putary(ary, f, sink);
}
} else if (upb_fielddef_isstring(f)) {
putstr(DEREF(msg, ofs, VALUE), f, sink);
} else if (upb_fielddef_issubmsg(f)) {
putsubmsg(DEREF(msg, ofs, VALUE), f, sink);
} else {
upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
#define T(upbtypeconst, upbtype, ctype) \
case upbtypeconst: \
upb_sink_put##upbtype(sink, sel, DEREF(msg, ofs, ctype)); \
break;
switch (upb_fielddef_type(f)) {
T(UPB_TYPE_FLOAT, float, float)
T(UPB_TYPE_DOUBLE, double, double)
T(UPB_TYPE_BOOL, bool, bool)
case UPB_TYPE_ENUM:
T(UPB_TYPE_INT32, int32, int32_t)
T(UPB_TYPE_UINT32, uint32, uint32_t)
T(UPB_TYPE_INT64, int64, int64_t)
T(UPB_TYPE_UINT64, uint64, uint64_t)
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
case UPB_TYPE_MESSAGE: rb_raise(rb_eRuntimeError, "Internal error.");
}
#undef T
}
}
upb_status status;
upb_sink_endmsg(sink, &status);
}
/* top level ******************************************************************/
static VALUE get_message_class(VALUE klass, VALUE message) {
rupb_MessageDef *rmd = msgdef_get(message);
return rmd->klass;
}
void Init_upb() {
VALUE upb = rb_define_module("Upb");
rb_define_singleton_method(upb, "get_message_class", get_message_class, 1);
rb_gc_register_address(&message_map);
cSymbolTable = rb_define_class_under(upb, "SymbolTable", rb_cObject);
rb_define_alloc_func(cSymbolTable, symtab_alloc);
rb_define_method(cSymbolTable, "load_descriptor", symtab_load_descriptor, 1);
rb_define_method(cSymbolTable, "lookup", symtab_lookup, 1);
cMessageDef = rb_define_class_under(upb, "MessageDef", rb_cObject);
cMessage = rb_define_class_under(upb, "Message", rb_cObject);
rb_define_alloc_func(cMessage, msg_alloc);
rb_define_method(cMessage, "method_missing", msg_accessor, -1);
rb_define_method(cMessage, "to_s", msg_tostring, 0);
rb_define_singleton_method(cMessage, "parse", msg_parse, 1);
rb_define_singleton_method(cMessage, "serialize", msg_serialize, 1);
objcache_init();
// This causes atexit crashes for unknown reasons. :(
// ruby_vm_at_exit(objcache_uninit);
}