Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

952 lines
30 KiB

/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2011 Google Inc. See LICENSE for details.
*
* An exhaustive set of tests for parsing both valid and invalid protobuf
* input, with buffer breaks in arbitrary places.
*
* Tests to add:
* - string/bytes
* - unknown field handler called appropriately
* - unknown fields can be inserted in random places
* - fuzzing of valid input
* - resource limits (max stack depth, max string len)
* - testing of groups
* - more throrough testing of sequences
* - test skipping of submessages
* - test suspending the decoder
* - buffers that are close enough to the end of the address space that
* pointers overflow (this might be difficult).
* - a few "kitchen sink" examples (one proto that uses all types, lots
* of submsg/sequences, etc.
* - test different handlers at every level and whether handlers fire at
* the correct field path.
* - test skips that extend past the end of current buffer (where decoder
* returns value greater than the size param).
*/
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS // For PRIuS, etc.
#endif
#include <inttypes.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "tests/upb_test.h"
#include "third_party/upb/tests/pb/test_decoder_schema.upb.h"
#include "upb/handlers.h"
#include "upb/pb/decoder.h"
#include "upb/pb/varint.int.h"
#include "upb/upb.h"
#undef PRINT_FAILURE
#define PRINT_FAILURE(expr) \
fprintf(stderr, "Assertion failed: %s:%d\n", __FILE__, __LINE__); \
fprintf(stderr, "expr: %s\n", #expr); \
if (testhash) { \
fprintf(stderr, "assertion failed running test %x. " \
"Run with the arg %x to run only this test.\n", \
testhash, testhash); \
fprintf(stderr, "Failed at %02.2f%% through tests.\n", \
(float)completed * 100 / total); \
}
uint32_t filter_hash = 0;
double completed;
double total;
double *count;
bool count_only;
upb::BufferHandle global_handle;
// Copied from decoder.c, since this is not a public interface.
typedef struct {
uint8_t native_wire_type;
bool is_numeric;
} upb_decoder_typeinfo;
static const upb_decoder_typeinfo upb_decoder_types[] = {
{UPB_WIRE_TYPE_END_GROUP, false}, // ENDGROUP
{UPB_WIRE_TYPE_64BIT, true}, // DOUBLE
{UPB_WIRE_TYPE_32BIT, true}, // FLOAT
{UPB_WIRE_TYPE_VARINT, true}, // INT64
{UPB_WIRE_TYPE_VARINT, true}, // UINT64
{UPB_WIRE_TYPE_VARINT, true}, // INT32
{UPB_WIRE_TYPE_64BIT, true}, // FIXED64
{UPB_WIRE_TYPE_32BIT, true}, // FIXED32
{UPB_WIRE_TYPE_VARINT, true}, // BOOL
{UPB_WIRE_TYPE_DELIMITED, false}, // STRING
{UPB_WIRE_TYPE_START_GROUP, false}, // GROUP
{UPB_WIRE_TYPE_DELIMITED, false}, // MESSAGE
{UPB_WIRE_TYPE_DELIMITED, false}, // BYTES
{UPB_WIRE_TYPE_VARINT, true}, // UINT32
{UPB_WIRE_TYPE_VARINT, true}, // ENUM
{UPB_WIRE_TYPE_32BIT, true}, // SFIXED32
{UPB_WIRE_TYPE_64BIT, true}, // SFIXED64
{UPB_WIRE_TYPE_VARINT, true}, // SINT32
{UPB_WIRE_TYPE_VARINT, true}, // SINT64
};
class buffer {
public:
buffer(const void *data, size_t len) : len_(0) { append(data, len); }
explicit buffer(const char *data) : len_(0) { append(data); }
explicit buffer(size_t len) : len_(len) { memset(buf_, 0, len); }
buffer(const buffer& buf) : len_(0) { append(buf); }
buffer() : len_(0) {}
void append(const void *data, size_t len) {
ASSERT_NOCOUNT(len + len_ < sizeof(buf_));
memcpy(buf_ + len_, data, len);
len_ += len;
buf_[len_] = NULL;
}
void append(const buffer& buf) {
append(buf.buf_, buf.len_);
}
void append(const char *str) {
append(str, strlen(str));
}
void vappendf(const char *fmt, va_list args) {
size_t avail = sizeof(buf_) - len_;
size_t size = vsnprintf(buf_ + len_, avail, fmt, args);
ASSERT_NOCOUNT(avail > size);
len_ += size;
}
void appendf(const char *fmt, ...) {
va_list args;
va_start(args, fmt);
vappendf(fmt, args);
va_end(args);
}
void assign(const buffer& buf) {
clear();
append(buf);
}
bool eql(const buffer& other) const {
return len_ == other.len_ && memcmp(buf_, other.buf_, len_) == 0;
}
void clear() { len_ = 0; }
size_t len() const { return len_; }
const char *buf() const { return buf_; }
private:
// Has to be big enough for the largest string used in the test.
char buf_[32768];
size_t len_;
};
/* Routines for building arbitrary protos *************************************/
const buffer empty;
buffer cat(const buffer& a, const buffer& b,
const buffer& c = empty,
const buffer& d = empty,
const buffer& e = empty,
const buffer& f = empty) {
buffer ret;
ret.append(a);
ret.append(b);
ret.append(c);
ret.append(d);
ret.append(e);
ret.append(f);
return ret;
}
buffer varint(uint64_t x) {
char buf[UPB_PB_VARINT_MAX_LEN];
size_t len = upb_vencode64(x, buf);
return buffer(buf, len);
}
// TODO: proper byte-swapping for big-endian machines.
buffer fixed32(void *data) { return buffer(data, 4); }
buffer fixed64(void *data) { return buffer(data, 8); }
buffer delim(const buffer& buf) { return cat(varint(buf.len()), buf); }
buffer uint32(uint32_t u32) { return fixed32(&u32); }
buffer uint64(uint64_t u64) { return fixed64(&u64); }
buffer flt(float f) { return fixed32(&f); }
buffer dbl(double d) { return fixed64(&d); }
buffer zz32(int32_t x) { return varint(upb_zzenc_32(x)); }
buffer zz64(int64_t x) { return varint(upb_zzenc_64(x)); }
buffer tag(uint32_t fieldnum, char wire_type) {
return varint((fieldnum << 3) | wire_type);
}
buffer submsg(uint32_t fn, const buffer& buf) {
return cat( tag(fn, UPB_WIRE_TYPE_DELIMITED), delim(buf) );
}
/* A set of handlers that covers all .proto types *****************************/
// The handlers simply append to a string indicating what handlers were called.
// This string is similar to protobuf text format but fields are referred to by
// number instead of name and sequences are explicitly delimited. We indent
// using the closure depth to test that the stack of closures is properly
// handled.
int closures[UPB_DECODER_MAX_NESTING];
buffer output;
void indentbuf(buffer *buf, int depth) {
for (int i = 0; i < depth; i++)
buf->append(" ", 2);
}
#define NUMERIC_VALUE_HANDLER(member, ctype, fmt) \
bool value_ ## member(int* depth, const uint32_t* num, ctype val) { \
indentbuf(&output, *depth); \
output.appendf("%" PRIu32 ":%" fmt "\n", *num, val); \
return true; \
}
NUMERIC_VALUE_HANDLER(uint32, uint32_t, PRIu32)
NUMERIC_VALUE_HANDLER(uint64, uint64_t, PRIu64)
NUMERIC_VALUE_HANDLER(int32, int32_t, PRId32)
NUMERIC_VALUE_HANDLER(int64, int64_t, PRId64)
NUMERIC_VALUE_HANDLER(float, float, "g")
NUMERIC_VALUE_HANDLER(double, double, "g")
bool value_bool(int* depth, const uint32_t* num, bool val) {
indentbuf(&output, *depth);
output.appendf("%" PRIu32 ":%s\n", *num, val ? "true" : "false");
return true;
}
int* startstr(int* depth, const uint32_t* num, size_t size_hint) {
indentbuf(&output, *depth);
output.appendf("%" PRIu32 ":(%zu)\"", *num, size_hint);
return depth + 1;
}
size_t value_string(int* depth, const uint32_t* num, const char* buf,
size_t n, const upb::BufferHandle* handle) {
UPB_UNUSED(num);
output.append(buf, n);
ASSERT(handle == &global_handle);
return n;
}
bool endstr(int* depth, const uint32_t* num) {
UPB_UNUSED(depth);
UPB_UNUSED(num);
output.append("\"\n");
return true;
}
int* startsubmsg(int* depth, const uint32_t* num) {
indentbuf(&output, *depth);
output.appendf("%" PRIu32 ":{\n", *num);
return depth + 1;
}
bool endsubmsg(int* depth, const uint32_t* num) {
UPB_UNUSED(num);
indentbuf(&output, *depth);
output.append("}\n");
return true;
}
int* startseq(int* depth, const uint32_t* num) {
indentbuf(&output, *depth);
output.appendf("%" PRIu32 ":[\n", *num);
return depth + 1;
}
bool endseq(int* depth, const uint32_t* num) {
UPB_UNUSED(num);
indentbuf(&output, *depth);
output.append("]\n");
return true;
}
bool startmsg(int* depth) {
indentbuf(&output, *depth);
output.append("<\n");
return true;
}
bool endmsg(int* depth, upb_status* status) {
indentbuf(&output, *depth);
output.append(">\n");
return true;
}
void free_uint32(void *val) {
uint32_t *u32 = static_cast<uint32_t*>(val);
delete u32;
}
template<class T, bool F(int*, const uint32_t*, T)>
void doreg(upb_handlers *h, uint32_t num) {
const upb_fielddef *f = upb_msgdef_itof(upb_handlers_msgdef(h), num);
ASSERT(f);
ASSERT(h->SetValueHandler<T>(f, UpbBindT(F, new uint32_t(num))));
if (f->IsSequence()) {
ASSERT(h->SetStartSequenceHandler(f, UpbBind(startseq, new uint32_t(num))));
ASSERT(h->SetEndSequenceHandler(f, UpbBind(endseq, new uint32_t(num))));
}
}
// The repeated field number to correspond to the given non-repeated field
// number.
uint32_t rep_fn(uint32_t fn) {
return (UPB_MAX_FIELDNUMBER - 1000) + fn;
}
#define NOP_FIELD 40
#define UNKNOWN_FIELD 666
template <class T, bool F(int*, const uint32_t*, T)>
void reg(upb_handlers *h, upb_descriptortype_t type) {
// We register both a repeated and a non-repeated field for every type.
// For the non-repeated field we make the field number the same as the
// type. For the repeated field we make it a function of the type.
doreg<T, F>(h, type);
doreg<T, F>(h, rep_fn(type));
}
void regseq(upb::Handlers* h, const upb::FieldDef* f, uint32_t num) {
ASSERT(h->SetStartSequenceHandler(f, UpbBind(startseq, new uint32_t(num))));
ASSERT(h->SetEndSequenceHandler(f, UpbBind(endseq, new uint32_t(num))));
}
void reg_subm(upb_handlers *h, uint32_t num) {
const upb_fielddef *f = upb_msgdef_itof(upb_handlers_msgdef(h), num);
ASSERT(f);
if (f->IsSequence()) regseq(h, f, num);
ASSERT(
h->SetStartSubMessageHandler(f, UpbBind(startsubmsg, new uint32_t(num))));
ASSERT(h->SetEndSubMessageHandler(f, UpbBind(endsubmsg, new uint32_t(num))));
ASSERT(upb_handlers_setsubhandlers(h, f, h));
}
void reg_str(upb_handlers *h, uint32_t num) {
const upb_fielddef *f = upb_msgdef_itof(upb_handlers_msgdef(h), num);
ASSERT(f);
if (f->IsSequence()) regseq(h, f, num);
ASSERT(h->SetStartStringHandler(f, UpbBind(startstr, new uint32_t(num))));
ASSERT(h->SetEndStringHandler(f, UpbBind(endstr, new uint32_t(num))));
ASSERT(h->SetStringHandler(f, UpbBind(value_string, new uint32_t(num))));
}
upb::reffed_ptr<const upb::Handlers> NewHandlers() {
upb::reffed_ptr<upb::Handlers> h(
upb::Handlers::New(UPB_TEST_DECODER_DECODERTEST));
h->SetStartMessageHandler(UpbMakeHandler(startmsg));
h->SetEndMessageHandler(UpbMakeHandler(endmsg));
// Register handlers for each type.
reg<double, value_double>(h.get(), UPB_DESCRIPTOR_TYPE_DOUBLE);
reg<float, value_float> (h.get(), UPB_DESCRIPTOR_TYPE_FLOAT);
reg<int64_t, value_int64> (h.get(), UPB_DESCRIPTOR_TYPE_INT64);
reg<uint64_t, value_uint64>(h.get(), UPB_DESCRIPTOR_TYPE_UINT64);
reg<int32_t, value_int32> (h.get(), UPB_DESCRIPTOR_TYPE_INT32);
reg<uint64_t, value_uint64>(h.get(), UPB_DESCRIPTOR_TYPE_FIXED64);
reg<uint32_t, value_uint32>(h.get(), UPB_DESCRIPTOR_TYPE_FIXED32);
reg<bool, value_bool> (h.get(), UPB_DESCRIPTOR_TYPE_BOOL);
reg<uint32_t, value_uint32>(h.get(), UPB_DESCRIPTOR_TYPE_UINT32);
reg<int32_t, value_int32> (h.get(), UPB_DESCRIPTOR_TYPE_ENUM);
reg<int32_t, value_int32> (h.get(), UPB_DESCRIPTOR_TYPE_SFIXED32);
reg<int64_t, value_int64> (h.get(), UPB_DESCRIPTOR_TYPE_SFIXED64);
reg<int32_t, value_int32> (h.get(), UPB_DESCRIPTOR_TYPE_SINT32);
reg<int64_t, value_int64> (h.get(), UPB_DESCRIPTOR_TYPE_SINT64);
reg_str(h.get(), UPB_DESCRIPTOR_TYPE_STRING);
reg_str(h.get(), UPB_DESCRIPTOR_TYPE_BYTES);
reg_str(h.get(), rep_fn(UPB_DESCRIPTOR_TYPE_STRING));
reg_str(h.get(), rep_fn(UPB_DESCRIPTOR_TYPE_BYTES));
// Register submessage/group handlers that are self-recursive
// to this type, eg: message M { optional M m = 1; }
reg_subm(h.get(), UPB_DESCRIPTOR_TYPE_MESSAGE);
reg_subm(h.get(), rep_fn(UPB_DESCRIPTOR_TYPE_MESSAGE));
// For NOP_FIELD we register no handlers, so we can pad a proto freely without
// changing the output.
bool ok = h->Freeze(NULL);
ASSERT(ok);
return h;
}
/* Running of test cases ******************************************************/
const upb::Handlers *global_handlers;
const upb::pb::DecoderMethod *global_method;
uint32_t Hash(const buffer& proto, const buffer* expected_output, size_t seam1,
size_t seam2) {
uint32_t hash = MurmurHash2(proto.buf(), proto.len(), 0);
if (expected_output)
hash = MurmurHash2(expected_output->buf(), expected_output->len(), hash);
hash = MurmurHash2(&seam1, sizeof(seam1), hash);
hash = MurmurHash2(&seam2, sizeof(seam2), hash);
return hash;
}
bool parse(upb::BytesSink* s, void* subc, const char* buf, size_t start,
size_t end, size_t* ofs, upb::Status* status) {
start = UPB_MAX(start, *ofs);
if (start <= end) {
size_t len = end - start;
size_t parsed = s->PutBuffer(subc, buf + start, len, &global_handle);
if (status->ok() != (parsed >= len)) {
fprintf(stderr, "Status: %s, parsed=%zu, len=%zu\n",
status->error_message(), parsed, len);
ASSERT(false);
}
if (!status->ok())
return false;
*ofs += parsed;
}
return true;
}
#define LINE(x) x "\n"
void run_decoder(const buffer& proto, const buffer* expected_output) {
upb::Status status;
upb::pb::Decoder decoder(global_method, &status);
upb::Sink sink(global_handlers, &closures[0]);
decoder.ResetOutput(&sink);
for (size_t i = 0; i < proto.len(); i++) {
for (size_t j = i; j < UPB_MIN(proto.len(), i + 5); j++) {
testhash = Hash(proto, expected_output, i, j);
if (filter_hash && testhash != filter_hash) continue;
if (!count_only) {
decoder.Reset();
output.clear();
status.Clear();
size_t ofs = 0;
upb::BytesSink* input = decoder.input();
void *sub;
bool ok =
input->Start(proto.len(), &sub) &&
parse(input, sub, proto.buf(), 0, i, &ofs, &status) &&
parse(input, sub, proto.buf(), i, j, &ofs, &status) &&
parse(input, sub, proto.buf(), j, proto.len(), &ofs, &status) &&
ofs == proto.len() &&
input->End();
if (expected_output) {
if (!output.eql(*expected_output)) {
fprintf(stderr, "Text mismatch: '%s' vs '%s'\n",
output.buf(), expected_output->buf());
}
if (!ok) {
fprintf(stderr, "Failed: %s\n", status.error_message());
}
ASSERT(ok);
ASSERT(output.eql(*expected_output));
} else {
if (ok) {
fprintf(stderr, "Didn't expect ok result, but got output: '%s'\n",
output.buf());
}
ASSERT(!ok);
}
}
(*count)++;
}
}
testhash = 0;
}
const static buffer thirty_byte_nop = buffer(cat(
tag(NOP_FIELD, UPB_WIRE_TYPE_DELIMITED), delim(buffer(30)) ));
void assert_successful_parse(const buffer& proto,
const char *expected_fmt, ...) {
buffer expected_text;
va_list args;
va_start(args, expected_fmt);
expected_text.vappendf(expected_fmt, args);
va_end(args);
// To test both middle-of-buffer and end-of-buffer code paths,
// repeat once with no-op padding data at the end of buffer.
run_decoder(proto, &expected_text);
run_decoder(cat( proto, thirty_byte_nop ), &expected_text);
}
void assert_does_not_parse_at_eof(const buffer& proto) {
run_decoder(proto, NULL);
}
void assert_does_not_parse(const buffer& proto) {
// Test that the error is caught both at end-of-buffer and middle-of-buffer.
assert_does_not_parse_at_eof(proto);
assert_does_not_parse_at_eof(cat( proto, thirty_byte_nop ));
}
/* The actual tests ***********************************************************/
void test_premature_eof_for_type(upb_descriptortype_t type) {
// Incomplete values for each wire type.
static const buffer incompletes[6] = {
buffer("\x80"), // UPB_WIRE_TYPE_VARINT
buffer("abcdefg"), // UPB_WIRE_TYPE_64BIT
buffer("\x80"), // UPB_WIRE_TYPE_DELIMITED (partial length)
buffer(), // UPB_WIRE_TYPE_START_GROUP (no value required)
buffer(), // UPB_WIRE_TYPE_END_GROUP (no value required)
buffer("abc") // UPB_WIRE_TYPE_32BIT
};
uint32_t fieldnum = type;
uint32_t rep_fieldnum = rep_fn(type);
int wire_type = upb_decoder_types[type].native_wire_type;
const buffer& incomplete = incompletes[wire_type];
// EOF before a known non-repeated value.
assert_does_not_parse_at_eof(tag(fieldnum, wire_type));
// EOF before a known repeated value.
assert_does_not_parse_at_eof(tag(rep_fieldnum, wire_type));
// EOF before an unknown value.
assert_does_not_parse_at_eof(tag(UNKNOWN_FIELD, wire_type));
// EOF inside a known non-repeated value.
assert_does_not_parse_at_eof(
cat( tag(fieldnum, wire_type), incomplete ));
// EOF inside a known repeated value.
assert_does_not_parse_at_eof(
cat( tag(rep_fieldnum, wire_type), incomplete ));
// EOF inside an unknown value.
assert_does_not_parse_at_eof(
cat( tag(UNKNOWN_FIELD, wire_type), incomplete ));
if (wire_type == UPB_WIRE_TYPE_DELIMITED) {
// EOF in the middle of delimited data for known non-repeated value.
assert_does_not_parse_at_eof(
cat( tag(fieldnum, wire_type), varint(1) ));
// EOF in the middle of delimited data for known repeated value.
assert_does_not_parse_at_eof(
cat( tag(rep_fieldnum, wire_type), varint(1) ));
// EOF in the middle of delimited data for unknown value.
assert_does_not_parse_at_eof(
cat( tag(UNKNOWN_FIELD, wire_type), varint(1) ));
if (type == UPB_DESCRIPTOR_TYPE_MESSAGE) {
// Submessage ends in the middle of a value.
buffer incomplete_submsg =
cat ( tag(UPB_DESCRIPTOR_TYPE_INT32, UPB_WIRE_TYPE_VARINT),
incompletes[UPB_WIRE_TYPE_VARINT] );
assert_does_not_parse(
cat( tag(fieldnum, UPB_WIRE_TYPE_DELIMITED),
varint(incomplete_submsg.len()),
incomplete_submsg ));
}
} else {
// Packed region ends in the middle of a value.
assert_does_not_parse(
cat( tag(rep_fieldnum, UPB_WIRE_TYPE_DELIMITED),
varint(incomplete.len()),
incomplete ));
// EOF in the middle of packed region.
assert_does_not_parse_at_eof(
cat( tag(rep_fieldnum, UPB_WIRE_TYPE_DELIMITED), varint(1) ));
}
}
// "33" and "66" are just two random values that all numeric types can
// represent.
void test_valid_data_for_type(upb_descriptortype_t type,
const buffer& enc33, const buffer& enc66) {
uint32_t fieldnum = type;
uint32_t rep_fieldnum = rep_fn(type);
int wire_type = upb_decoder_types[type].native_wire_type;
// Non-repeated
assert_successful_parse(
cat( tag(fieldnum, wire_type), enc33,
tag(fieldnum, wire_type), enc66 ),
LINE("<")
LINE("%u:33")
LINE("%u:66")
LINE(">"), fieldnum, fieldnum);
// Non-packed repeated.
assert_successful_parse(
cat( tag(rep_fieldnum, wire_type), enc33,
tag(rep_fieldnum, wire_type), enc66 ),
LINE("<")
LINE("%u:[")
LINE(" %u:33")
LINE(" %u:66")
LINE("]")
LINE(">"), rep_fieldnum, rep_fieldnum, rep_fieldnum);
// Packed repeated.
assert_successful_parse(
cat( tag(rep_fieldnum, UPB_WIRE_TYPE_DELIMITED),
delim(cat( enc33, enc66 )) ),
LINE("<")
LINE("%u:[")
LINE(" %u:33")
LINE(" %u:66")
LINE("]")
LINE(">"), rep_fieldnum, rep_fieldnum, rep_fieldnum);
}
void test_valid_data_for_signed_type(upb_descriptortype_t type,
const buffer& enc33, const buffer& enc66) {
uint32_t fieldnum = type;
uint32_t rep_fieldnum = rep_fn(type);
int wire_type = upb_decoder_types[type].native_wire_type;
// Non-repeated
assert_successful_parse(
cat( tag(fieldnum, wire_type), enc33,
tag(fieldnum, wire_type), enc66 ),
LINE("<")
LINE("%u:33")
LINE("%u:-66")
LINE(">"), fieldnum, fieldnum);
// Non-packed repeated.
assert_successful_parse(
cat( tag(rep_fieldnum, wire_type), enc33,
tag(rep_fieldnum, wire_type), enc66 ),
LINE("<")
LINE("%u:[")
LINE(" %u:33")
LINE(" %u:-66")
LINE("]")
LINE(">"), rep_fieldnum, rep_fieldnum, rep_fieldnum);
// Packed repeated.
assert_successful_parse(
cat( tag(rep_fieldnum, UPB_WIRE_TYPE_DELIMITED),
delim(cat( enc33, enc66 )) ),
LINE("<")
LINE("%u:[")
LINE(" %u:33")
LINE(" %u:-66")
LINE("]")
LINE(">"), rep_fieldnum, rep_fieldnum, rep_fieldnum);
}
// Test that invalid protobufs are properly detected (without crashing) and
// have an error reported. Field numbers match registered handlers above.
void test_invalid() {
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_DOUBLE);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_FLOAT);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_INT64);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_UINT64);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_INT32);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_FIXED64);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_FIXED32);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_BOOL);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_STRING);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_BYTES);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_UINT32);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_ENUM);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_SFIXED32);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_SFIXED64);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_SINT32);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_SINT64);
// EOF inside a tag's varint.
assert_does_not_parse_at_eof( buffer("\x80") );
// EOF inside a known group.
// TODO(haberman): add group to decoder test schema.
//assert_does_not_parse_at_eof( tag(4, UPB_WIRE_TYPE_START_GROUP) );
// EOF inside an unknown group.
// TODO(haberman): unknown groups not supported yet.
//assert_does_not_parse_at_eof( tag(UNKNOWN_FIELD, UPB_WIRE_TYPE_START_GROUP) );
// End group that we are not currently in.
assert_does_not_parse( tag(4, UPB_WIRE_TYPE_END_GROUP) );
// Field number is 0.
assert_does_not_parse(
cat( tag(0, UPB_WIRE_TYPE_DELIMITED), varint(0) ));
// Field number is too large.
assert_does_not_parse(
cat( tag(UPB_MAX_FIELDNUMBER + 1, UPB_WIRE_TYPE_DELIMITED),
varint(0) ));
// Known group inside a submessage has ENDGROUP tag AFTER submessage end.
assert_does_not_parse(
cat ( submsg(UPB_DESCRIPTOR_TYPE_MESSAGE,
tag(UPB_DESCRIPTOR_TYPE_GROUP, UPB_WIRE_TYPE_START_GROUP)),
tag(UPB_DESCRIPTOR_TYPE_GROUP, UPB_WIRE_TYPE_END_GROUP)));
// Test exceeding the resource limit of stack depth.
buffer buf;
for (int i = 0; i <= UPB_DECODER_MAX_NESTING; i++) {
buf.assign(submsg(UPB_DESCRIPTOR_TYPE_MESSAGE, buf));
}
assert_does_not_parse(buf);
}
void test_valid() {
// Empty protobuf.
assert_successful_parse(buffer(""), "<\n>\n");
// Empty protobuf where we never call PutString between
// StartString/EndString.
{
upb::Status status;
upb::pb::Decoder decoder(global_method, &status);
upb::Sink sink(global_handlers, &closures[0]);
decoder.ResetOutput(&sink);
output.clear();
bool ok = upb::BufferSource::PutBuffer("", 0, decoder.input());
ASSERT(ok);
ASSERT(status.ok());
ASSERT(output.eql(buffer("<\n>\n")));
}
test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_DOUBLE,
dbl(33),
dbl(-66));
test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_FLOAT, flt(33), flt(-66));
test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_INT64,
varint(33),
varint(-66));
test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_INT32,
varint(33),
varint(-66));
test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_ENUM,
varint(33),
varint(-66));
test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_SFIXED32,
uint32(33),
uint32(-66));
test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_SFIXED64,
uint64(33),
uint64(-66));
test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_SINT32,
zz32(33),
zz32(-66));
test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_SINT64,
zz64(33),
zz64(-66));
test_valid_data_for_type(UPB_DESCRIPTOR_TYPE_UINT64, varint(33), varint(66));
test_valid_data_for_type(UPB_DESCRIPTOR_TYPE_UINT32, varint(33), varint(66));
test_valid_data_for_type(UPB_DESCRIPTOR_TYPE_FIXED64, uint64(33), uint64(66));
test_valid_data_for_type(UPB_DESCRIPTOR_TYPE_FIXED32, uint32(33), uint32(66));
// Unknown fields.
int int32_type = UPB_DESCRIPTOR_TYPE_INT32;
int msg_type = UPB_DESCRIPTOR_TYPE_MESSAGE;
assert_successful_parse(
cat( tag(12345, UPB_WIRE_TYPE_VARINT), varint(2345678) ),
"<\n>\n");
assert_successful_parse(
cat( tag(12345, UPB_WIRE_TYPE_32BIT), uint32(2345678) ),
"<\n>\n");
assert_successful_parse(
cat( tag(12345, UPB_WIRE_TYPE_64BIT), uint64(2345678) ),
"<\n>\n");
assert_successful_parse(
submsg(12345, buffer(" ")),
"<\n>\n");
assert_successful_parse(
cat(
submsg(UPB_DESCRIPTOR_TYPE_MESSAGE,
submsg(UPB_DESCRIPTOR_TYPE_MESSAGE,
cat( tag(int32_type, UPB_WIRE_TYPE_VARINT), varint(2345678),
tag(12345, UPB_WIRE_TYPE_VARINT), varint(2345678) ))),
tag(int32_type, UPB_WIRE_TYPE_VARINT), varint(22222)),
LINE("<")
LINE("%u:{")
LINE(" <")
LINE(" %u:{")
LINE(" <")
LINE(" %u:2345678")
LINE(" >")
LINE(" }")
LINE(" >")
LINE("}")
LINE("%u:22222")
LINE(">"), msg_type, msg_type, int32_type, int32_type);
assert_successful_parse(
cat( tag(UPB_DESCRIPTOR_TYPE_INT32, UPB_WIRE_TYPE_VARINT), varint(1),
tag(12345, UPB_WIRE_TYPE_VARINT), varint(2345678) ),
LINE("<")
LINE("%u:1")
LINE(">"), UPB_DESCRIPTOR_TYPE_INT32);
// Test implicit startseq/endseq.
uint32_t repfl_fn = rep_fn(UPB_DESCRIPTOR_TYPE_FLOAT);
uint32_t repdb_fn = rep_fn(UPB_DESCRIPTOR_TYPE_DOUBLE);
assert_successful_parse(
cat( tag(repfl_fn, UPB_WIRE_TYPE_32BIT), flt(33),
tag(repdb_fn, UPB_WIRE_TYPE_64BIT), dbl(66) ),
LINE("<")
LINE("%u:[")
LINE(" %u:33")
LINE("]")
LINE("%u:[")
LINE(" %u:66")
LINE("]")
LINE(">"), repfl_fn, repfl_fn, repdb_fn, repdb_fn);
// Submessage tests.
uint32_t msg_fn = UPB_DESCRIPTOR_TYPE_MESSAGE;
assert_successful_parse(
submsg(msg_fn, submsg(msg_fn, submsg(msg_fn, buffer()))),
LINE("<")
LINE("%u:{")
LINE(" <")
LINE(" %u:{")
LINE(" <")
LINE(" %u:{")
LINE(" <")
LINE(" >")
LINE(" }")
LINE(" >")
LINE(" }")
LINE(" >")
LINE("}")
LINE(">"), msg_fn, msg_fn, msg_fn);
uint32_t repm_fn = rep_fn(UPB_DESCRIPTOR_TYPE_MESSAGE);
assert_successful_parse(
submsg(repm_fn, submsg(repm_fn, buffer())),
LINE("<")
LINE("%u:[")
LINE(" %u:{")
LINE(" <")
LINE(" %u:[")
LINE(" %u:{")
LINE(" <")
LINE(" >")
LINE(" }")
LINE(" ]")
LINE(" >")
LINE(" }")
LINE("]")
LINE(">"), repm_fn, repm_fn, repm_fn, repm_fn);
// Staying within the stack limit should work properly.
buffer buf;
buffer textbuf;
int total = UPB_DECODER_MAX_NESTING - 1;
for (int i = 0; i < total; i++) {
buf.assign(submsg(UPB_DESCRIPTOR_TYPE_MESSAGE, buf));
indentbuf(&textbuf, i);
textbuf.append("<\n");
indentbuf(&textbuf, i);
textbuf.appendf("%u:{\n", UPB_DESCRIPTOR_TYPE_MESSAGE);
}
indentbuf(&textbuf, total);
textbuf.append("<\n");
indentbuf(&textbuf, total);
textbuf.append(">\n");
for (int i = 0; i < total; i++) {
indentbuf(&textbuf, total - i - 1);
textbuf.append("}\n");
indentbuf(&textbuf, total - i - 1);
textbuf.append(">\n");
}
assert_successful_parse(buf, "%s", textbuf.buf());
}
void run_tests() {
test_invalid();
test_valid();
}
upb::reffed_ptr<const upb::pb::DecoderMethod> NewMethod(
const upb::Handlers* dest_handlers, bool allow_jit) {
upb::pb::CodeCache cache;
cache.set_allow_jit(allow_jit);
return cache.GetDecoderMethodForDestHandlers(dest_handlers);
}
void test_emptyhandlers(bool allowjit) {
// Create an empty handlers to make sure that the decoder can handle empty
// messages.
upb::reffed_ptr<upb::Handlers> h(
upb::Handlers::New(UPB_TEST_DECODER_EMPTYMESSAGE));
bool ok = h->Freeze(NULL);
ASSERT(ok);
NewMethod(h.get(), allowjit);
}
extern "C" {
int run_tests(int argc, char *argv[]) {
if (argc > 1)
filter_hash = strtol(argv[1], NULL, 16);
for (int i = 0; i < UPB_DECODER_MAX_NESTING; i++) {
closures[i] = i;
}
upb::reffed_ptr<const upb::pb::DecoderMethod> method;
upb::reffed_ptr<const upb::Handlers> handlers;
// Construct decoder plan.
handlers = NewHandlers();
global_handlers = handlers.get();
// Count tests.
method = NewMethod(handlers.get(), false);
global_method = method.get();
count_only = true;
count = &total;
total = 0;
run_tests();
count_only = false;
count = &completed;
// Test without JIT.
method = NewMethod(handlers.get(), false);
global_method = method.get();
ASSERT(!global_method->is_native());
completed = 0;
run_tests();
test_emptyhandlers(false);
#ifdef UPB_USE_JIT_X64
// Test JIT.
method = NewMethod(handlers.get(), true);
global_method = method.get();
ASSERT(global_method->is_native());
completed = 0;
run_tests();
test_emptyhandlers(true);
#endif
printf("All tests passed, %d assertions.\n", num_assertions);
return 0;
}
}