|
|
|
/*
|
|
|
|
* upb - a minimalist implementation of protocol buffers.
|
|
|
|
*
|
|
|
|
* Copyright (c) 2009 Google Inc. See LICENSE for details.
|
|
|
|
* Author: Josh Haberman <jhaberman@gmail.com>
|
|
|
|
*
|
|
|
|
* Implementation is heavily inspired by Lua's ltable.c.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "upb/table.int.h"
|
|
|
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
#define UPB_MAXARRSIZE 16 // 64k.
|
|
|
|
|
|
|
|
// From Chromium.
|
|
|
|
#define ARRAY_SIZE(x) \
|
|
|
|
((sizeof(x)/sizeof(0[x])) / ((size_t)(!(sizeof(x) % sizeof(0[x])))))
|
|
|
|
|
|
|
|
static const double MAX_LOAD = 0.85;
|
|
|
|
|
|
|
|
// The minimum utilization of the array part of a mixed hash/array table. This
|
|
|
|
// is a speed/memory-usage tradeoff (though it's not straightforward because of
|
|
|
|
// cache effects). The lower this is, the more memory we'll use.
|
|
|
|
static const double MIN_DENSITY = 0.1;
|
|
|
|
|
|
|
|
bool is_pow2(uint64_t v) { return v == 0 || (v & (v - 1)) == 0; }
|
|
|
|
|
|
|
|
int log2ceil(uint64_t v) {
|
|
|
|
int ret = 0;
|
|
|
|
bool pow2 = is_pow2(v);
|
|
|
|
while (v >>= 1) ret++;
|
|
|
|
ret = pow2 ? ret : ret + 1; // Ceiling.
|
|
|
|
return UPB_MIN(UPB_MAXARRSIZE, ret);
|
|
|
|
}
|
|
|
|
|
|
|
|
char *upb_strdup(const char *s) {
|
|
|
|
return upb_strdup2(s, strlen(s));
|
|
|
|
}
|
|
|
|
|
|
|
|
char *upb_strdup2(const char *s, size_t len) {
|
|
|
|
// Prevent overflow errors.
|
|
|
|
if (len == SIZE_MAX) return NULL;
|
|
|
|
// Always null-terminate, even if binary data; but don't rely on the input to
|
|
|
|
// have a null-terminating byte since it may be a raw binary buffer.
|
|
|
|
size_t n = len + 1;
|
|
|
|
char *p = malloc(n);
|
|
|
|
if (p) {
|
|
|
|
memcpy(p, s, len);
|
|
|
|
p[len] = 0;
|
|
|
|
}
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
// A type to represent the lookup key of either a strtable or an inttable.
|
|
|
|
typedef struct {
|
|
|
|
upb_tabkey key;
|
|
|
|
} lookupkey_t;
|
|
|
|
|
|
|
|
static lookupkey_t strkey2(const char *str, size_t len) {
|
|
|
|
lookupkey_t k;
|
|
|
|
k.key.s.str = (char*)str;
|
|
|
|
k.key.s.length = len;
|
|
|
|
return k;
|
|
|
|
}
|
|
|
|
|
|
|
|
static lookupkey_t intkey(uintptr_t key) {
|
|
|
|
lookupkey_t k;
|
|
|
|
k.key = upb_intkey(key);
|
|
|
|
return k;
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef uint32_t hashfunc_t(upb_tabkey key);
|
|
|
|
typedef bool eqlfunc_t(upb_tabkey k1, lookupkey_t k2);
|
|
|
|
|
|
|
|
/* Base table (shared code) ***************************************************/
|
|
|
|
|
|
|
|
// For when we need to cast away const.
|
|
|
|
static upb_tabent *mutable_entries(upb_table *t) {
|
|
|
|
return (upb_tabent*)t->entries;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool isfull(upb_table *t) {
|
|
|
|
return (double)(t->count + 1) / upb_table_size(t) > MAX_LOAD;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool init(upb_table *t, upb_ctype_t ctype, uint8_t size_lg2) {
|
|
|
|
t->count = 0;
|
|
|
|
t->ctype = ctype;
|
|
|
|
t->size_lg2 = size_lg2;
|
|
|
|
t->mask = upb_table_size(t) ? upb_table_size(t) - 1 : 0;
|
|
|
|
size_t bytes = upb_table_size(t) * sizeof(upb_tabent);
|
|
|
|
if (bytes > 0) {
|
|
|
|
t->entries = malloc(bytes);
|
|
|
|
if (!t->entries) return false;
|
|
|
|
memset(mutable_entries(t), 0, bytes);
|
|
|
|
} else {
|
|
|
|
t->entries = NULL;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void uninit(upb_table *t) { free(mutable_entries(t)); }
|
|
|
|
|
|
|
|
static upb_tabent *emptyent(upb_table *t) {
|
|
|
|
upb_tabent *e = mutable_entries(t) + upb_table_size(t);
|
|
|
|
while (1) { if (upb_tabent_isempty(--e)) return e; assert(e > t->entries); }
|
|
|
|
}
|
|
|
|
|
|
|
|
static upb_tabent *getentry_mutable(upb_table *t, uint32_t hash) {
|
|
|
|
return (upb_tabent*)upb_getentry(t, hash);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const upb_tabent *findentry(const upb_table *t, lookupkey_t key,
|
|
|
|
uint32_t hash, eqlfunc_t *eql) {
|
|
|
|
if (t->size_lg2 == 0) return NULL;
|
|
|
|
const upb_tabent *e = upb_getentry(t, hash);
|
|
|
|
if (upb_tabent_isempty(e)) return NULL;
|
|
|
|
while (1) {
|
|
|
|
if (eql(e->key, key)) return e;
|
|
|
|
if ((e = e->next) == NULL) return NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static upb_tabent *findentry_mutable(upb_table *t, lookupkey_t key,
|
|
|
|
uint32_t hash, eqlfunc_t *eql) {
|
|
|
|
return (upb_tabent*)findentry(t, key, hash, eql);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool lookup(const upb_table *t, lookupkey_t key, upb_value *v,
|
|
|
|
uint32_t hash, eqlfunc_t *eql) {
|
|
|
|
const upb_tabent *e = findentry(t, key, hash, eql);
|
|
|
|
if (e) {
|
|
|
|
if (v) {
|
|
|
|
_upb_value_setval(v, e->val, t->ctype);
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// The given key must not already exist in the table.
|
|
|
|
static void insert(upb_table *t, lookupkey_t key, upb_value val,
|
|
|
|
uint32_t hash, hashfunc_t *hashfunc, eqlfunc_t *eql) {
|
|
|
|
UPB_UNUSED(eql);
|
|
|
|
assert(findentry(t, key, hash, eql) == NULL);
|
|
|
|
assert(val.ctype == t->ctype);
|
|
|
|
t->count++;
|
|
|
|
upb_tabent *mainpos_e = getentry_mutable(t, hash);
|
|
|
|
upb_tabent *our_e = mainpos_e;
|
|
|
|
if (upb_tabent_isempty(mainpos_e)) {
|
|
|
|
// Our main position is empty; use it.
|
|
|
|
our_e->next = NULL;
|
|
|
|
} else {
|
|
|
|
// Collision.
|
|
|
|
upb_tabent *new_e = emptyent(t);
|
|
|
|
// Head of collider's chain.
|
|
|
|
upb_tabent *chain = getentry_mutable(t, hashfunc(mainpos_e->key));
|
|
|
|
if (chain == mainpos_e) {
|
|
|
|
// Existing ent is in its main posisiton (it has the same hash as us, and
|
|
|
|
// is the head of our chain). Insert to new ent and append to this chain.
|
|
|
|
new_e->next = mainpos_e->next;
|
|
|
|
mainpos_e->next = new_e;
|
|
|
|
our_e = new_e;
|
|
|
|
} else {
|
|
|
|
// Existing ent is not in its main position (it is a node in some other
|
|
|
|
// chain). This implies that no existing ent in the table has our hash.
|
|
|
|
// Evict it (updating its chain) and use its ent for head of our chain.
|
|
|
|
*new_e = *mainpos_e; // copies next.
|
|
|
|
while (chain->next != mainpos_e) {
|
|
|
|
chain = (upb_tabent*)chain->next;
|
|
|
|
assert(chain);
|
|
|
|
}
|
|
|
|
chain->next = new_e;
|
|
|
|
our_e = mainpos_e;
|
|
|
|
our_e->next = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
our_e->key = key.key;
|
|
|
|
our_e->val = val.val;
|
|
|
|
assert(findentry(t, key, hash, eql) == our_e);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool rm(upb_table *t, lookupkey_t key, upb_value *val,
|
|
|
|
upb_tabkey *removed, uint32_t hash, eqlfunc_t *eql) {
|
|
|
|
upb_tabent *chain = getentry_mutable(t, hash);
|
|
|
|
if (upb_tabent_isempty(chain)) return false;
|
|
|
|
if (eql(chain->key, key)) {
|
|
|
|
// Element to remove is at the head of its chain.
|
|
|
|
t->count--;
|
|
|
|
if (val) {
|
|
|
|
_upb_value_setval(val, chain->val, t->ctype);
|
|
|
|
}
|
|
|
|
if (chain->next) {
|
|
|
|
upb_tabent *move = (upb_tabent*)chain->next;
|
|
|
|
*chain = *move;
|
|
|
|
if (removed) *removed = move->key;
|
|
|
|
move->key.num = 0; // Make the slot empty.
|
|
|
|
} else {
|
|
|
|
if (removed) *removed = chain->key;
|
|
|
|
chain->key.num = 0; // Make the slot empty.
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
// Element to remove is either in a non-head position or not in the table.
|
|
|
|
while (chain->next && !eql(chain->next->key, key))
|
|
|
|
chain = (upb_tabent*)chain->next;
|
|
|
|
if (chain->next) {
|
|
|
|
// Found element to remove.
|
|
|
|
if (val) {
|
|
|
|
_upb_value_setval(val, chain->next->val, t->ctype);
|
|
|
|
}
|
|
|
|
upb_tabent *rm = (upb_tabent*)chain->next;
|
|
|
|
if (removed) *removed = rm->key;
|
|
|
|
rm->key.num = 0;
|
|
|
|
chain->next = rm->next;
|
|
|
|
t->count--;
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static size_t next(const upb_table *t, size_t i) {
|
|
|
|
do {
|
|
|
|
if (++i >= upb_table_size(t))
|
|
|
|
return SIZE_MAX;
|
|
|
|
} while(upb_tabent_isempty(&t->entries[i]));
|
|
|
|
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
static size_t begin(const upb_table *t) {
|
|
|
|
return next(t, -1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* upb_strtable ***************************************************************/
|
|
|
|
|
|
|
|
// A simple "subclass" of upb_table that only adds a hash function for strings.
|
|
|
|
|
|
|
|
static uint32_t strhash(upb_tabkey key) {
|
|
|
|
return MurmurHash2(key.s.str, key.s.length, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool streql(upb_tabkey k1, lookupkey_t k2) {
|
|
|
|
return k1.s.length == k2.key.s.length &&
|
|
|
|
memcmp(k1.s.str, k2.key.s.str, k1.s.length) == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_strtable_init(upb_strtable *t, upb_ctype_t ctype) {
|
|
|
|
return init(&t->t, ctype, 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_strtable_uninit(upb_strtable *t) {
|
|
|
|
for (size_t i = 0; i < upb_table_size(&t->t); i++)
|
|
|
|
free((void*)t->t.entries[i].key.s.str);
|
|
|
|
uninit(&t->t);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_strtable_resize(upb_strtable *t, size_t size_lg2) {
|
|
|
|
upb_strtable new_table;
|
|
|
|
if (!init(&new_table.t, t->t.ctype, size_lg2))
|
|
|
|
return false;
|
|
|
|
upb_strtable_iter i;
|
|
|
|
upb_strtable_begin(&i, t);
|
|
|
|
for ( ; !upb_strtable_done(&i); upb_strtable_next(&i)) {
|
|
|
|
upb_strtable_insert2(
|
|
|
|
&new_table,
|
|
|
|
upb_strtable_iter_key(&i),
|
|
|
|
upb_strtable_iter_keylength(&i),
|
|
|
|
upb_strtable_iter_value(&i));
|
|
|
|
}
|
|
|
|
upb_strtable_uninit(t);
|
|
|
|
*t = new_table;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_strtable_insert2(upb_strtable *t, const char *k, size_t len,
|
|
|
|
upb_value v) {
|
|
|
|
if (isfull(&t->t)) {
|
|
|
|
// Need to resize. New table of double the size, add old elements to it.
|
|
|
|
if (!upb_strtable_resize(t, t->t.size_lg2 + 1)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ((k = upb_strdup2(k, len)) == NULL) return false;
|
|
|
|
|
|
|
|
lookupkey_t key = strkey2(k, len);
|
|
|
|
uint32_t hash = MurmurHash2(key.key.s.str, key.key.s.length, 0);
|
|
|
|
insert(&t->t, key, v, hash, &strhash, &streql);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len,
|
|
|
|
upb_value *v) {
|
|
|
|
uint32_t hash = MurmurHash2(key, len, 0);
|
|
|
|
return lookup(&t->t, strkey2(key, len), v, hash, &streql);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_strtable_remove2(upb_strtable *t, const char *key, size_t len,
|
|
|
|
upb_value *val) {
|
|
|
|
uint32_t hash = MurmurHash2(key, strlen(key), 0);
|
|
|
|
upb_tabkey tabkey;
|
|
|
|
if (rm(&t->t, strkey2(key, len), val, &tabkey, hash, &streql)) {
|
|
|
|
free((void*)tabkey.s.str);
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Iteration
|
|
|
|
|
|
|
|
static const upb_tabent *str_tabent(const upb_strtable_iter *i) {
|
|
|
|
return &i->t->t.entries[i->index];
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t) {
|
|
|
|
i->t = t;
|
|
|
|
i->index = begin(&t->t);
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_strtable_next(upb_strtable_iter *i) {
|
|
|
|
i->index = next(&i->t->t, i->index);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_strtable_done(const upb_strtable_iter *i) {
|
|
|
|
return i->index >= upb_table_size(&i->t->t) ||
|
|
|
|
upb_tabent_isempty(str_tabent(i));
|
|
|
|
}
|
|
|
|
|
|
|
|
const char *upb_strtable_iter_key(upb_strtable_iter *i) {
|
|
|
|
assert(!upb_strtable_done(i));
|
|
|
|
return str_tabent(i)->key.s.str;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t upb_strtable_iter_keylength(upb_strtable_iter *i) {
|
|
|
|
assert(!upb_strtable_done(i));
|
|
|
|
return str_tabent(i)->key.s.length;
|
|
|
|
}
|
|
|
|
|
|
|
|
upb_value upb_strtable_iter_value(const upb_strtable_iter *i) {
|
|
|
|
assert(!upb_strtable_done(i));
|
|
|
|
return _upb_value_val(str_tabent(i)->val, i->t->t.ctype);
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_strtable_iter_setdone(upb_strtable_iter *i) {
|
|
|
|
i->index = SIZE_MAX;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_strtable_iter_isequal(const upb_strtable_iter *i1,
|
|
|
|
const upb_strtable_iter *i2) {
|
|
|
|
if (upb_strtable_done(i1) && upb_strtable_done(i2))
|
|
|
|
return true;
|
|
|
|
return i1->t == i2->t && i1->index == i2->index;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* upb_inttable ***************************************************************/
|
|
|
|
|
|
|
|
// For inttables we use a hybrid structure where small keys are kept in an
|
|
|
|
// array and large keys are put in the hash table.
|
|
|
|
|
|
|
|
static uint32_t inthash(upb_tabkey key) { return upb_inthash(key.num); }
|
|
|
|
|
|
|
|
static bool inteql(upb_tabkey k1, lookupkey_t k2) {
|
|
|
|
return k1.num == k2.key.num;
|
|
|
|
}
|
|
|
|
|
|
|
|
static _upb_value *mutable_array(upb_inttable *t) {
|
|
|
|
return (_upb_value*)t->array;
|
|
|
|
}
|
|
|
|
|
|
|
|
static _upb_value *inttable_val(upb_inttable *t, uintptr_t key) {
|
|
|
|
if (key < t->array_size) {
|
|
|
|
return upb_arrhas(t->array[key]) ? &(mutable_array(t)[key]) : NULL;
|
|
|
|
} else {
|
|
|
|
upb_tabent *e =
|
|
|
|
findentry_mutable(&t->t, intkey(key), upb_inthash(key), &inteql);
|
|
|
|
return e ? &e->val : NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static const _upb_value *inttable_val_const(const upb_inttable *t,
|
|
|
|
uintptr_t key) {
|
|
|
|
return inttable_val((upb_inttable*)t, key);
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t upb_inttable_count(const upb_inttable *t) {
|
|
|
|
return t->t.count + t->array_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void check(upb_inttable *t) {
|
|
|
|
UPB_UNUSED(t);
|
|
|
|
#if defined(UPB_DEBUG_TABLE) && !defined(NDEBUG)
|
|
|
|
// This check is very expensive (makes inserts/deletes O(N)).
|
|
|
|
size_t count = 0;
|
|
|
|
upb_inttable_iter i;
|
|
|
|
upb_inttable_begin(&i, t);
|
|
|
|
for(; !upb_inttable_done(&i); upb_inttable_next(&i), count++) {
|
|
|
|
assert(upb_inttable_lookup(t, upb_inttable_iter_key(&i), NULL));
|
|
|
|
}
|
|
|
|
assert(count == upb_inttable_count(t));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_inttable_sizedinit(upb_inttable *t, upb_ctype_t ctype,
|
|
|
|
size_t asize, int hsize_lg2) {
|
|
|
|
if (!init(&t->t, ctype, hsize_lg2)) return false;
|
|
|
|
// Always make the array part at least 1 long, so that we know key 0
|
|
|
|
// won't be in the hash part, which simplifies things.
|
|
|
|
t->array_size = UPB_MAX(1, asize);
|
|
|
|
t->array_count = 0;
|
|
|
|
size_t array_bytes = t->array_size * sizeof(upb_value);
|
|
|
|
t->array = malloc(array_bytes);
|
|
|
|
if (!t->array) {
|
|
|
|
uninit(&t->t);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
memset(mutable_array(t), 0xff, array_bytes);
|
|
|
|
check(t);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_inttable_init(upb_inttable *t, upb_ctype_t ctype) {
|
|
|
|
return upb_inttable_sizedinit(t, ctype, 0, 4);
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_inttable_uninit(upb_inttable *t) {
|
|
|
|
uninit(&t->t);
|
|
|
|
free(mutable_array(t));
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_inttable_insert(upb_inttable *t, uintptr_t key, upb_value val) {
|
|
|
|
assert(upb_arrhas(val.val));
|
|
|
|
if (key < t->array_size) {
|
|
|
|
assert(!upb_arrhas(t->array[key]));
|
|
|
|
t->array_count++;
|
|
|
|
mutable_array(t)[key] = val.val;
|
|
|
|
} else {
|
|
|
|
if (isfull(&t->t)) {
|
|
|
|
// Need to resize the hash part, but we re-use the array part.
|
|
|
|
upb_table new_table;
|
|
|
|
if (!init(&new_table, t->t.ctype, t->t.size_lg2 + 1))
|
|
|
|
return false;
|
|
|
|
size_t i;
|
|
|
|
for (i = begin(&t->t); i < upb_table_size(&t->t); i = next(&t->t, i)) {
|
|
|
|
const upb_tabent *e = &t->t.entries[i];
|
|
|
|
upb_value v;
|
|
|
|
_upb_value_setval(&v, e->val, t->t.ctype);
|
|
|
|
uint32_t hash = upb_inthash(e->key.num);
|
|
|
|
insert(&new_table, intkey(e->key.num), v, hash, &inthash, &inteql);
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(t->t.count == new_table.count);
|
|
|
|
|
|
|
|
uninit(&t->t);
|
|
|
|
t->t = new_table;
|
|
|
|
}
|
|
|
|
insert(&t->t, intkey(key), val, upb_inthash(key), &inthash, &inteql);
|
|
|
|
}
|
|
|
|
check(t);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v) {
|
|
|
|
const _upb_value *table_v = inttable_val_const(t, key);
|
|
|
|
if (!table_v) return false;
|
|
|
|
if (v) _upb_value_setval(v, *table_v, t->t.ctype);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val) {
|
|
|
|
_upb_value *table_v = inttable_val(t, key);
|
|
|
|
if (!table_v) return false;
|
|
|
|
*table_v = val.val;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val) {
|
|
|
|
bool success;
|
|
|
|
if (key < t->array_size) {
|
|
|
|
if (upb_arrhas(t->array[key])) {
|
|
|
|
t->array_count--;
|
|
|
|
if (val) {
|
|
|
|
_upb_value_setval(val, t->array[key], t->t.ctype);
|
|
|
|
}
|
|
|
|
_upb_value empty = UPB_ARRAY_EMPTYENT;
|
|
|
|
mutable_array(t)[key] = empty;
|
|
|
|
success = true;
|
|
|
|
} else {
|
|
|
|
success = false;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
upb_tabkey removed;
|
|
|
|
uint32_t hash = upb_inthash(key);
|
|
|
|
success = rm(&t->t, intkey(key), val, &removed, hash, &inteql);
|
|
|
|
}
|
|
|
|
check(t);
|
|
|
|
return success;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_inttable_push(upb_inttable *t, upb_value val) {
|
|
|
|
return upb_inttable_insert(t, upb_inttable_count(t), val);
|
|
|
|
}
|
|
|
|
|
|
|
|
upb_value upb_inttable_pop(upb_inttable *t) {
|
|
|
|
upb_value val;
|
|
|
|
bool ok = upb_inttable_remove(t, upb_inttable_count(t) - 1, &val);
|
|
|
|
UPB_ASSERT_VAR(ok, ok);
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_inttable_insertptr(upb_inttable *t, const void *key, upb_value val) {
|
|
|
|
return upb_inttable_insert(t, (uintptr_t)key, val);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_inttable_lookupptr(const upb_inttable *t, const void *key,
|
|
|
|
upb_value *v) {
|
|
|
|
return upb_inttable_lookup(t, (uintptr_t)key, v);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val) {
|
|
|
|
return upb_inttable_remove(t, (uintptr_t)key, val);
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_inttable_compact(upb_inttable *t) {
|
|
|
|
// Create a power-of-two histogram of the table keys.
|
|
|
|
int counts[UPB_MAXARRSIZE + 1] = {0};
|
|
|
|
uintptr_t max_key = 0;
|
|
|
|
upb_inttable_iter i;
|
|
|
|
upb_inttable_begin(&i, t);
|
|
|
|
for (; !upb_inttable_done(&i); upb_inttable_next(&i)) {
|
|
|
|
uintptr_t key = upb_inttable_iter_key(&i);
|
|
|
|
if (key > max_key) {
|
|
|
|
max_key = key;
|
|
|
|
}
|
|
|
|
counts[log2ceil(key)]++;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t arr_size = 1;
|
|
|
|
int arr_count = upb_inttable_count(t);
|
|
|
|
|
|
|
|
if (upb_inttable_count(t) >= max_key * MIN_DENSITY) {
|
|
|
|
// We can put 100% of the entries in the array part.
|
|
|
|
arr_size = max_key + 1;
|
|
|
|
} else {
|
|
|
|
// Find the largest power of two that satisfies the MIN_DENSITY definition.
|
|
|
|
for (int size_lg2 = ARRAY_SIZE(counts) - 1; size_lg2 > 1; size_lg2--) {
|
|
|
|
arr_size = 1 << size_lg2;
|
|
|
|
arr_count -= counts[size_lg2];
|
|
|
|
if (arr_count >= arr_size * MIN_DENSITY) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Array part must always be at least 1 entry large to catch lookups of key
|
|
|
|
// 0. Key 0 must always be in the array part because "0" in the hash part
|
|
|
|
// denotes an empty entry.
|
|
|
|
arr_size = UPB_MAX(arr_size, 1);
|
|
|
|
|
|
|
|
// Insert all elements into new, perfectly-sized table.
|
|
|
|
int hash_count = upb_inttable_count(t) - arr_count;
|
|
|
|
int hash_size = hash_count ? (hash_count / MAX_LOAD) + 1 : 0;
|
|
|
|
int hashsize_lg2 = log2ceil(hash_size);
|
|
|
|
assert(hash_count >= 0);
|
|
|
|
|
|
|
|
upb_inttable new_t;
|
|
|
|
upb_inttable_sizedinit(&new_t, t->t.ctype, arr_size, hashsize_lg2);
|
|
|
|
upb_inttable_begin(&i, t);
|
|
|
|
for (; !upb_inttable_done(&i); upb_inttable_next(&i)) {
|
|
|
|
uintptr_t k = upb_inttable_iter_key(&i);
|
|
|
|
upb_inttable_insert(&new_t, k, upb_inttable_iter_value(&i));
|
|
|
|
}
|
|
|
|
assert(new_t.array_size == arr_size);
|
|
|
|
assert(new_t.t.size_lg2 == hashsize_lg2);
|
|
|
|
upb_inttable_uninit(t);
|
|
|
|
*t = new_t;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Iteration.
|
|
|
|
|
|
|
|
static const upb_tabent *int_tabent(const upb_inttable_iter *i) {
|
|
|
|
assert(!i->array_part);
|
|
|
|
return &i->t->t.entries[i->index];
|
|
|
|
}
|
|
|
|
|
|
|
|
static _upb_value int_arrent(const upb_inttable_iter *i) {
|
|
|
|
assert(i->array_part);
|
|
|
|
return i->t->array[i->index];
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t) {
|
|
|
|
i->t = t;
|
|
|
|
i->index = -1;
|
|
|
|
i->array_part = true;
|
|
|
|
upb_inttable_next(i);
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_inttable_next(upb_inttable_iter *iter) {
|
|
|
|
const upb_inttable *t = iter->t;
|
|
|
|
if (iter->array_part) {
|
|
|
|
while (++iter->index < t->array_size) {
|
|
|
|
if (upb_arrhas(int_arrent(iter))) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
iter->array_part = false;
|
|
|
|
iter->index = begin(&t->t);
|
|
|
|
} else {
|
|
|
|
iter->index = next(&t->t, iter->index);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_inttable_done(const upb_inttable_iter *i) {
|
|
|
|
if (i->array_part) {
|
|
|
|
return i->index >= i->t->array_size ||
|
|
|
|
!upb_arrhas(int_arrent(i));
|
|
|
|
} else {
|
|
|
|
return i->index >= upb_table_size(&i->t->t) ||
|
|
|
|
upb_tabent_isempty(int_tabent(i));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i) {
|
|
|
|
assert(!upb_inttable_done(i));
|
|
|
|
return i->array_part ? i->index : int_tabent(i)->key.num;
|
|
|
|
}
|
|
|
|
|
|
|
|
upb_value upb_inttable_iter_value(const upb_inttable_iter *i) {
|
|
|
|
assert(!upb_inttable_done(i));
|
|
|
|
return _upb_value_val(
|
|
|
|
i->array_part ? i->t->array[i->index] : int_tabent(i)->val,
|
|
|
|
i->t->t.ctype);
|
|
|
|
}
|
|
|
|
|
|
|
|
void upb_inttable_iter_setdone(upb_inttable_iter *i) {
|
|
|
|
i->index = SIZE_MAX;
|
|
|
|
i->array_part = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool upb_inttable_iter_isequal(const upb_inttable_iter *i1,
|
|
|
|
const upb_inttable_iter *i2) {
|
|
|
|
if (upb_inttable_done(i1) && upb_inttable_done(i2))
|
|
|
|
return true;
|
|
|
|
return i1->t == i2->t && i1->index == i2->index &&
|
|
|
|
i1->array_part == i2->array_part;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef UPB_UNALIGNED_READS_OK
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// MurmurHash2, by Austin Appleby (released as public domain).
|
|
|
|
// Reformatted and C99-ified by Joshua Haberman.
|
|
|
|
// Note - This code makes a few assumptions about how your machine behaves -
|
|
|
|
// 1. We can read a 4-byte value from any address without crashing
|
|
|
|
// 2. sizeof(int) == 4 (in upb this limitation is removed by using uint32_t
|
|
|
|
// And it has a few limitations -
|
|
|
|
// 1. It will not work incrementally.
|
|
|
|
// 2. It will not produce the same results on little-endian and big-endian
|
|
|
|
// machines.
|
|
|
|
uint32_t MurmurHash2(const void *key, size_t len, uint32_t seed) {
|
|
|
|
// 'm' and 'r' are mixing constants generated offline.
|
|
|
|
// They're not really 'magic', they just happen to work well.
|
|
|
|
const uint32_t m = 0x5bd1e995;
|
|
|
|
const int32_t r = 24;
|
|
|
|
|
|
|
|
// Initialize the hash to a 'random' value
|
|
|
|
uint32_t h = seed ^ len;
|
|
|
|
|
|
|
|
// Mix 4 bytes at a time into the hash
|
|
|
|
const uint8_t * data = (const uint8_t *)key;
|
|
|
|
while(len >= 4) {
|
|
|
|
uint32_t k = *(uint32_t *)data;
|
|
|
|
|
|
|
|
k *= m;
|
|
|
|
k ^= k >> r;
|
|
|
|
k *= m;
|
|
|
|
|
|
|
|
h *= m;
|
|
|
|
h ^= k;
|
|
|
|
|
|
|
|
data += 4;
|
|
|
|
len -= 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Handle the last few bytes of the input array
|
|
|
|
switch(len) {
|
|
|
|
case 3: h ^= data[2] << 16;
|
|
|
|
case 2: h ^= data[1] << 8;
|
|
|
|
case 1: h ^= data[0]; h *= m;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Do a few final mixes of the hash to ensure the last few
|
|
|
|
// bytes are well-incorporated.
|
|
|
|
h ^= h >> 13;
|
|
|
|
h *= m;
|
|
|
|
h ^= h >> 15;
|
|
|
|
|
|
|
|
return h;
|
|
|
|
}
|
|
|
|
|
|
|
|
#else // !UPB_UNALIGNED_READS_OK
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// MurmurHashAligned2, by Austin Appleby
|
|
|
|
// Same algorithm as MurmurHash2, but only does aligned reads - should be safer
|
|
|
|
// on certain platforms.
|
|
|
|
// Performance will be lower than MurmurHash2
|
|
|
|
|
|
|
|
#define MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; }
|
|
|
|
|
|
|
|
uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed) {
|
|
|
|
const uint32_t m = 0x5bd1e995;
|
|
|
|
const int32_t r = 24;
|
|
|
|
const uint8_t * data = (const uint8_t *)key;
|
|
|
|
uint32_t h = seed ^ len;
|
|
|
|
uint8_t align = (uintptr_t)data & 3;
|
|
|
|
|
|
|
|
if(align && (len >= 4)) {
|
|
|
|
// Pre-load the temp registers
|
|
|
|
uint32_t t = 0, d = 0;
|
|
|
|
|
|
|
|
switch(align) {
|
|
|
|
case 1: t |= data[2] << 16;
|
|
|
|
case 2: t |= data[1] << 8;
|
|
|
|
case 3: t |= data[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
t <<= (8 * align);
|
|
|
|
|
|
|
|
data += 4-align;
|
|
|
|
len -= 4-align;
|
|
|
|
|
|
|
|
int32_t sl = 8 * (4-align);
|
|
|
|
int32_t sr = 8 * align;
|
|
|
|
|
|
|
|
// Mix
|
|
|
|
|
|
|
|
while(len >= 4) {
|
|
|
|
d = *(uint32_t *)data;
|
|
|
|
t = (t >> sr) | (d << sl);
|
|
|
|
|
|
|
|
uint32_t k = t;
|
|
|
|
|
|
|
|
MIX(h,k,m);
|
|
|
|
|
|
|
|
t = d;
|
|
|
|
|
|
|
|
data += 4;
|
|
|
|
len -= 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Handle leftover data in temp registers
|
|
|
|
|
|
|
|
d = 0;
|
|
|
|
|
|
|
|
if(len >= align) {
|
|
|
|
switch(align) {
|
|
|
|
case 3: d |= data[2] << 16;
|
|
|
|
case 2: d |= data[1] << 8;
|
|
|
|
case 1: d |= data[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t k = (t >> sr) | (d << sl);
|
|
|
|
MIX(h,k,m);
|
|
|
|
|
|
|
|
data += align;
|
|
|
|
len -= align;
|
|
|
|
|
|
|
|
//----------
|
|
|
|
// Handle tail bytes
|
|
|
|
|
|
|
|
switch(len) {
|
|
|
|
case 3: h ^= data[2] << 16;
|
|
|
|
case 2: h ^= data[1] << 8;
|
|
|
|
case 1: h ^= data[0]; h *= m;
|
|
|
|
};
|
|
|
|
} else {
|
|
|
|
switch(len) {
|
|
|
|
case 3: d |= data[2] << 16;
|
|
|
|
case 2: d |= data[1] << 8;
|
|
|
|
case 1: d |= data[0];
|
|
|
|
case 0: h ^= (t >> sr) | (d << sl); h *= m;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
h ^= h >> 13;
|
|
|
|
h *= m;
|
|
|
|
h ^= h >> 15;
|
|
|
|
|
|
|
|
return h;
|
|
|
|
} else {
|
|
|
|
while(len >= 4) {
|
|
|
|
uint32_t k = *(uint32_t *)data;
|
|
|
|
|
|
|
|
MIX(h,k,m);
|
|
|
|
|
|
|
|
data += 4;
|
|
|
|
len -= 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
//----------
|
|
|
|
// Handle tail bytes
|
|
|
|
|
|
|
|
switch(len) {
|
|
|
|
case 3: h ^= data[2] << 16;
|
|
|
|
case 2: h ^= data[1] << 8;
|
|
|
|
case 1: h ^= data[0]; h *= m;
|
|
|
|
};
|
|
|
|
|
|
|
|
h ^= h >> 13;
|
|
|
|
h *= m;
|
|
|
|
h ^= h >> 15;
|
|
|
|
|
|
|
|
return h;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#undef MIX
|
|
|
|
|
|
|
|
#endif // UPB_UNALIGNED_READS_OK
|