Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

422 lines
13 KiB

/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2009 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*/
#include "upb_encoder.h"
#include <stdlib.h>
#include "descriptor.h"
/* Functions for calculating sizes of wire values. ****************************/
static size_t upb_v_uint64_t_size(uint64_t val) {
#ifdef __GNUC__
int high_bit = 63 - __builtin_clzll(val); // 0-based, undef if val == 0.
#else
int high_bit = 0;
uint64_t tmp = val;
while(tmp >>= 1) high_bit++;
#endif
return val == 0 ? 1 : high_bit / 7 + 1;
}
static size_t upb_v_int32_t_size(int32_t val) {
// v_uint32's are sign-extended to maintain wire compatibility with int64s.
return upb_v_uint64_t_size((int64_t)val);
}
static size_t upb_v_uint32_t_size(uint32_t val) {
return upb_v_uint64_t_size(val);
}
static size_t upb_f_uint64_t_size(uint64_t val) {
(void)val; // Length is independent of value.
return sizeof(uint64_t);
}
static size_t upb_f_uint32_t_size(uint32_t val) {
(void)val; // Length is independent of value.
return sizeof(uint32_t);
}
/* Functions to write wire values. ********************************************/
// Since we know in advance the longest that the value could be, we always make
// sure that our buffer is long enough. This saves us from having to perform
// bounds checks.
// Puts a varint (wire type: UPB_WIRE_TYPE_VARINT).
static uint8_t *upb_put_v_uint64_t(uint8_t *buf, uint64_t val)
{
do {
uint8_t byte = val & 0x7f;
val >>= 7;
if(val) byte |= 0x80;
*buf++ = byte;
} while(val);
return buf;
}
// Puts an unsigned 32-bit varint, verbatim. Never uses the high 64 bits.
static uint8_t *upb_put_v_uint32_t(uint8_t *buf, uint32_t val)
{
return upb_put_v_uint64_t(buf, val);
}
// Puts a signed 32-bit varint, first sign-extending to 64-bits. We do this to
// maintain wire-compatibility with 64-bit signed integers.
static uint8_t *upb_put_v_int32_t(uint8_t *buf, int32_t val)
{
return upb_put_v_uint64_t(buf, (int64_t)val);
}
static void upb_put32(uint8_t *buf, uint32_t val) {
buf[0] = val & 0xff;
buf[1] = (val >> 8) & 0xff;
buf[2] = (val >> 16) & 0xff;
buf[3] = (val >> 24);
}
// Puts a fixed-length 32-bit integer (wire type: UPB_WIRE_TYPE_32BIT).
static uint8_t *upb_put_f_uint32_t(uint8_t *buf, uint32_t val)
{
uint8_t *uint32_end = buf + sizeof(uint32_t);
#if UPB_UNALIGNED_READS_OK
*(uint32_t*)buf = val;
#else
upb_put32(buf, val);
#endif
return uint32_end;
}
// Puts a fixed-length 64-bit integer (wire type: UPB_WIRE_TYPE_64BIT).
static uint8_t *upb_put_f_uint64_t(uint8_t *buf, uint64_t val)
{
uint8_t *uint64_end = buf + sizeof(uint64_t);
#if UPB_UNALIGNED_READS_OK
*(uint64_t*)buf = val;
#else
upb_put32(buf, (uint32_t)val);
upb_put32(buf, (uint32_t)(val >> 32));
#endif
return uint64_end;
}
/* Functions to write and calculate sizes for .proto values. ******************/
// Performs zig-zag encoding, which is used by sint32 and sint64.
static uint32_t upb_zzenc_32(int32_t n) { return (n << 1) ^ (n >> 31); }
static uint64_t upb_zzenc_64(int64_t n) { return (n << 1) ^ (n >> 63); }
/* Use macros to define a set of two functions for each .proto type:
*
* // Converts and writes a .proto value into buf. "end" indicates the end
* // of the current available buffer (if the buffer does not contain enough
* // space UPB_STATUS_NEED_MORE_DATA is returned). On success, *outbuf will
* // point one past the data that was written.
* uint8_t *upb_put_INT32(uint8_t *buf, int32_t val);
*
* // Returns the number of bytes required to encode val.
* size_t upb_get_INT32_size(int32_t val);
*
* // Given a .proto value s (source) convert it to a wire value.
* uint32_t upb_vtowv_INT32(int32_t s);
*/
#define VTOWV(type, wire_t, val_t) \
static wire_t upb_vtowv_ ## type(val_t s)
#define PUT(type, v_or_f, wire_t, val_t, member_name) \
static uint8_t *upb_put_ ## type(uint8_t *buf, val_t val) { \
wire_t tmp = upb_vtowv_ ## type(val); \
return upb_put_ ## v_or_f ## _ ## wire_t(buf, tmp); \
}
#define T(type, v_or_f, wire_t, val_t, member_name) \
static size_t upb_get_ ## type ## _size(val_t val) { \
return upb_ ## v_or_f ## _ ## wire_t ## _size(val); \
} \
VTOWV(type, wire_t, val_t); /* prototype for PUT below */ \
PUT(type, v_or_f, wire_t, val_t, member_name) \
VTOWV(type, wire_t, val_t)
T(INT32, v, int32_t, int32_t, int32) { return (uint32_t)s; }
T(INT64, v, uint64_t, int64_t, int64) { return (uint64_t)s; }
T(UINT32, v, uint32_t, uint32_t, uint32) { return s; }
T(UINT64, v, uint64_t, uint64_t, uint64) { return s; }
T(SINT32, v, uint32_t, int32_t, int32) { return upb_zzenc_32(s); }
T(SINT64, v, uint64_t, int64_t, int64) { return upb_zzenc_64(s); }
T(FIXED32, f, uint32_t, uint32_t, uint32) { return s; }
T(FIXED64, f, uint64_t, uint64_t, uint64) { return s; }
T(SFIXED32, f, uint32_t, int32_t, int32) { return (uint32_t)s; }
T(SFIXED64, f, uint64_t, int64_t, int64) { return (uint64_t)s; }
T(BOOL, v, uint32_t, bool, _bool) { return (uint32_t)s; }
T(ENUM, v, uint32_t, int32_t, int32) { return (uint32_t)s; }
T(DOUBLE, f, uint64_t, double, _double) {
upb_value v;
v._double = s;
return v.uint64;
}
T(FLOAT, f, uint32_t, float, _float) {
upb_value v;
v._float = s;
return v.uint32;
}
#undef VTOWV
#undef PUT
#undef T
static uint8_t *upb_encode_value(uint8_t *buf, upb_field_type_t ft, upb_value v)
{
#define CASE(t, member_name) \
case UPB_TYPE(t): return upb_put_ ## t(buf, v.member_name);
switch(ft) {
CASE(DOUBLE, _double)
CASE(FLOAT, _float)
CASE(INT32, int32)
CASE(INT64, int64)
CASE(UINT32, uint32)
CASE(UINT64, uint64)
CASE(SINT32, int32)
CASE(SINT64, int64)
CASE(FIXED32, uint32)
CASE(FIXED64, uint64)
CASE(SFIXED32, int32)
CASE(SFIXED64, int64)
CASE(BOOL, _bool)
CASE(ENUM, int32)
default: assert(false); return buf;
}
#undef CASE
}
static uint32_t _upb_get_value_size(upb_field_type_t ft, upb_value v)
{
#define CASE(t, member_name) \
case UPB_TYPE(t): return upb_get_ ## t ## _size(v.member_name);
switch(ft) {
CASE(DOUBLE, _double)
CASE(FLOAT, _float)
CASE(INT32, int32)
CASE(INT64, int64)
CASE(UINT32, uint32)
CASE(UINT64, uint64)
CASE(SINT32, int32)
CASE(SINT64, int64)
CASE(FIXED32, uint32)
CASE(FIXED64, uint64)
CASE(SFIXED32, int32)
CASE(SFIXED64, int64)
CASE(BOOL, _bool)
CASE(ENUM, int32)
default: assert(false); return 0;
}
#undef CASE
}
static uint8_t *_upb_put_tag(uint8_t *buf, upb_field_number_t num,
upb_wire_type_t wt)
{
return upb_put_UINT32(buf, wt | (num << 3));
}
static uint32_t _upb_get_tag_size(upb_field_number_t num)
{
return upb_get_UINT32_size(num << 3);
}
/* upb_sizebuilder ************************************************************/
struct upb_sizebuilder {
// Accumulating size for the current level.
uint32_t size;
// Stack of sizes for our current nesting.
uint32_t stack[UPB_MAX_NESTING], *top;
// Vector of sizes.
uint32_t *sizes;
int sizes_len;
int sizes_size;
upb_status status;
};
// upb_sink callbacks.
static upb_sink_status _upb_sizebuilder_valuecb(upb_sink *sink, upb_fielddef *f,
upb_value val,
upb_status *status)
{
(void)status;
upb_sizebuilder *sb = (upb_sizebuilder*)sink;
uint32_t size = 0;
size += _upb_get_tag_size(f->number);
size += _upb_get_value_size(f->type, val);
sb->size += size;
return UPB_SINK_CONTINUE;
}
static upb_sink_status _upb_sizebuilder_strcb(upb_sink *sink, upb_fielddef *f,
upb_strptr str,
int32_t start, uint32_t end,
upb_status *status)
{
(void)status;
(void)str; // String data itself is not used.
upb_sizebuilder *sb = (upb_sizebuilder*)sink;
if(start >= 0) {
uint32_t size = 0;
size += _upb_get_tag_size(f->number);
size += upb_get_UINT32_size(end - start);
sb->size += size;
}
return UPB_SINK_CONTINUE;
}
static upb_sink_status _upb_sizebuilder_startcb(upb_sink *sink, upb_fielddef *f,
upb_status *status)
{
(void)status;
(void)f; // Unused (we calculate tag size and delimiter in endcb).
upb_sizebuilder *sb = (upb_sizebuilder*)sink;
if(f->type == UPB_TYPE(MESSAGE)) {
*sb->top = sb->size;
sb->top++;
sb->size = 0;
} else {
assert(f->type == UPB_TYPE(GROUP));
sb->size += _upb_get_tag_size(f->number);
}
return UPB_SINK_CONTINUE;
}
static upb_sink_status _upb_sizebuilder_endcb(upb_sink *sink, upb_fielddef *f,
upb_status *status)
{
(void)status;
upb_sizebuilder *sb = (upb_sizebuilder*)sink;
if(f->type == UPB_TYPE(MESSAGE)) {
sb->top--;
if(sb->sizes_len == sb->sizes_size) {
sb->sizes_size *= 2;
sb->sizes = realloc(sb->sizes, sb->sizes_size * sizeof(*sb->sizes));
}
uint32_t child_size = sb->size;
uint32_t parent_size = *sb->top;
sb->sizes[sb->sizes_len++] = child_size;
// The size according to the parent includes the tag size and delimiter of
// the submessage.
parent_size += upb_get_UINT32_size(child_size);
parent_size += _upb_get_tag_size(f->number);
// Include size accumulated in parent before child began.
sb->size = child_size + parent_size;
} else {
assert(f->type == UPB_TYPE(GROUP));
// As an optimization, we could just add this number twice in startcb, to
// avoid having to recalculate it.
sb->size += _upb_get_tag_size(f->number);
}
return UPB_SINK_CONTINUE;
}
upb_sink_callbacks _upb_sizebuilder_sink_vtbl = {
_upb_sizebuilder_valuecb,
_upb_sizebuilder_strcb,
_upb_sizebuilder_startcb,
_upb_sizebuilder_endcb
};
/* upb_sink callbacks *********************************************************/
struct upb_encoder {
upb_sink base;
//upb_bytesink *bytesink;
uint32_t *sizes;
int size_offset;
};
// Within one callback we may need to encode up to two separate values.
#define UPB_ENCODER_BUFSIZE (UPB_MAX_ENCODED_SIZE * 2)
static upb_sink_status _upb_encoder_push_buf(upb_encoder *s, const uint8_t *buf,
size_t len, upb_status *status)
{
// TODO: conjure a upb_strptr that points to buf.
//upb_strptr ptr;
(void)s;
(void)buf;
(void)status;
size_t written = 5;// = upb_bytesink_onbytes(s->bytesink, ptr);
if(written < len) {
// TODO: mark to skip "written" bytes next time.
return UPB_SINK_STOP;
} else {
return UPB_SINK_CONTINUE;
}
}
static upb_sink_status _upb_encoder_valuecb(upb_sink *sink, upb_fielddef *f,
upb_value val, upb_status *status)
{
upb_encoder *s = (upb_encoder*)sink;
uint8_t buf[UPB_ENCODER_BUFSIZE], *ptr = buf;
upb_wire_type_t wt = upb_types[f->type].expected_wire_type;
// TODO: handle packed encoding.
ptr = _upb_put_tag(ptr, f->number, wt);
ptr = upb_encode_value(ptr, f->type, val);
return _upb_encoder_push_buf(s, buf, ptr - buf, status);
}
static upb_sink_status _upb_encoder_strcb(upb_sink *sink, upb_fielddef *f,
upb_strptr str,
int32_t start, uint32_t end,
upb_status *status)
{
upb_encoder *s = (upb_encoder*)sink;
uint8_t buf[UPB_ENCODER_BUFSIZE], *ptr = buf;
if(start >= 0) {
ptr = _upb_put_tag(ptr, f->number, UPB_WIRE_TYPE_DELIMITED);
ptr = upb_put_UINT32(ptr, end - start);
}
// TODO: properly handle partially consumed strings and partially supplied
// strings.
_upb_encoder_push_buf(s, buf, ptr - buf, status);
return _upb_encoder_push_buf(s, (uint8_t*)upb_string_getrobuf(str), end - start, status);
}
static upb_sink_status _upb_encoder_startcb(upb_sink *sink, upb_fielddef *f,
upb_status *status)
{
upb_encoder *s = (upb_encoder*)sink;
uint8_t buf[UPB_ENCODER_BUFSIZE], *ptr = buf;
if(f->type == UPB_TYPE(GROUP)) {
ptr = _upb_put_tag(ptr, f->number, UPB_WIRE_TYPE_START_GROUP);
} else {
ptr = _upb_put_tag(ptr, f->number, UPB_WIRE_TYPE_DELIMITED);
ptr = upb_put_UINT32(ptr, s->sizes[--s->size_offset]);
}
return _upb_encoder_push_buf(s, buf, ptr - buf, status);
}
static upb_sink_status _upb_encoder_endcb(upb_sink *sink, upb_fielddef *f,
upb_status *status)
{
upb_encoder *s = (upb_encoder*)sink;
uint8_t buf[UPB_ENCODER_BUFSIZE], *ptr = buf;
if(f->type != UPB_TYPE(GROUP)) return UPB_SINK_CONTINUE;
ptr = _upb_put_tag(ptr, f->number, UPB_WIRE_TYPE_END_GROUP);
return _upb_encoder_push_buf(s, buf, ptr - buf, status);
}
upb_sink_callbacks _upb_encoder_sink_vtbl = {
_upb_encoder_valuecb,
_upb_encoder_strcb,
_upb_encoder_startcb,
_upb_encoder_endcb
};